Low Dose Gamma Irradiation Does Not Affect the Quality or Total Ascorbic Acid Concentration of “Sweetheart” Passionfruit (Passiflora edulis)
Abstract
:1. Introduction
2. Experimental Section
2.1. Source of Fruit
2.2. Experimental Design
2.3. Gamma Irradiation
2.4. Storage and Assessment Times
2.5. Fruit Quality Assessments
2.5.1. Subjective Fruit Quality Assessments
2.5.2. Objective Fruit Quality Assessments
2.6. Determination of Total Ascorbic Acid Concentration
2.7. Statistical Analyses
3. Results
3.1. Dosimetry
Target Irradiation Dose (Gy) | Minimum Dose (Gy) | Maximum Dose (Gy) | Average Dose (Gy) |
---|---|---|---|
Replicate 1 | |||
150 | 146 ± 7 | 155 ± 9 | 150 ± 6 |
400 | 384 ± 7 | 410 ± 5 | 397 ± 3 |
1000 | 964 ± 20 | 1028 ± 24 | 996 ± 16 |
Replicate 2 | |||
150 | 146 ± 7 | 155 ± 9 | 151 ± 6 |
400 | 378 ± 13 | 403 ± 16 | 391 ± 10 |
1000 | 952 ± 21 | 1015 ± 25 | 984 ± 16 |
Replicate 3 | |||
150 | 146 ± 7 | 155 ± 9 | 151 ± 6 |
400 | 381 ± 13 | 407 ± 16 | 394 ± 10 |
1000 | 962 ± 26 | 1026 ± 30 | 994 ± 20 |
3.2 Fruit Quality
Fruit quality attributes | Irradiation (I) | Storage (S) | Interaction (I × S) |
---|---|---|---|
Overall fruit quality | 0.46 | <0.001 | 0.82 |
Minolta Colour—“L” value | 0.96 | 0.003 | 0.36 |
Minolta Colour—“a” value | 0.73 | 0.52 | 0.86 |
Minolta Colour—“b” value | 0.28 | 0.26 | 0.36 |
Minolta Colour—“hue angle” value | 0.27 | 0.73 | 0.27 |
Weight loss | 0.26 | <0.001 | 0.36 |
Fruit firmness score | 0.66 | <0.001 | 0.98 |
Pulp recovery | 0.54 | 0.94 | 0.47 |
Fruit shrivel score | 0.62 | <0.001 | 0.94 |
Stem score | 0.26 | <0.001 | 0.48 |
Rots score | 0.22 | <0.001 | 0.16 |
Total soluble solids (TSS) | 0.23 | 0.77 | 0.23 |
Titratable acidity (TA) | 0.11 | 0.47 | 0.65 |
TSS/TA ratio | 0.09 | 0.37 | 0.41 |
Juice pH | 0.052 | 0.53 | 0.47 |
Total ascorbic acid concentration | 0.21 | <0.001 | 0.31 |
Fruit quality attributes | 1 Day Storage | 14 Days Storage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 Gy | 150 Gy | 400 Gy | 1000 Gy | 1 Day Mean | 0 Gy | 150 Gy | 400 Gy | 1000 Gy | 14 Days Mean | |
Overall fruit quality | 1.3 | 1.3 | 1.4 | 1.4 | 1.4 a | 2.5 | 2.3 | 2.7 | 2.6 | 2.5 b |
Minolta Colour—“L” value | 30.6 | 30.4 | 30.1 | 30.8 | 30.5 a | 31.5 | 32.4 | 32.6 | 31.7 | 32.0 b |
Minolta Colour—“a” value | 10.4 | 11.0 | 10.5 | 11.2 | 10.8 a | 10.3 | 11.1 | 11.3 | 11.5 | 11.0 a |
Minolta Colour—“b” value | 4.1 | 4.2 | 4.6 | 5.4 | 4.6 a | 4.3 | 5.2 | 5.2 | 4.9 | 4.9 a |
Minolta Colour—hue angle value | 21.8 | 21.2 | 24.3 | 26.5 | 23.4 a | 22.8 | 25.3 | 25.0 | 22.6 | 23.9 a |
Weight loss (%) | 1.05 | 0.98 | 1.13 | 1.11 | 1.03 a | 5.45 | 5.12 | 5.74 | 5.86 | 5.61 b |
Fruit firmness score | 1.4 | 1.3 | 1.3 | 1.4 | 1.4 a | 2.4 | 2.3 | 2.4 | 2.5 | 2.4 b |
Pulp recovery (%) | 39.1 | 38.9 | 39.4 | 41.1 | 39.6 a | 38.9 | 41.3 | 38.6 | 39.3 | 39.5 a |
Fruit shrivel score | 1.6 | 1.4 | 1.7 | 1.5 | 1.5 a | 3.0 | 2.7 | 2.9 | 2.8 | 2.9 b |
Stem score | 1.3 | 1.3 | 1.4 | 1.4 | 1.4 a | 2.5 | 2.8 | 3.1 | 3.1 | 2.9 b |
Rots score | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 a | 1.5 | 1.3 | 1.7 | 1.5 | 1.5 b |
2 Days Storage | 15 Days Storage | |||||||||
Total soluble solids (TSS, Brix%) | 16.8 | 16.3 | 16.4 | 16.3 | 16.4 a | 16.5 | 16.5 | 16.4 | 16.3 | 16.4 a |
Titratable acidity (TA, % citric acid) | 2.11 | 2.33 | 2.33 | 2.39 | 2.29 a | 2.30 | 2.36 | 2.36 | 2.34 | 2.34 a |
TSS/TA ratio | 8.0 | 7.0 | 7.0 | 6.8 | 7.2 a | 7.2 | 7.0 | 7.0 | 7.0 | 7.0 a |
Juice pH | 3.72 | 3.65 | 3.64 | 3.66 | 3.67 a | 3.69 | 3.65 | 3.66 | 3.72 | 3.68 a |
Total ascorbic acid concentration (mg/100 g) | 33.3 | 34.0 | 35.0 | 32.3 | 33.7 a | 26.7 | 29.3 | 27.7 | 27.3 | 27.8 b |
4. Discussion
4.1. Fruit Quality
4.2. Total Ascorbic Acid Concentration
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Follet, P.A. Generic radiation quarantine treatments: the next steps. J. Econ. Entomol. 2009, 102, 1399–1406. [Google Scholar] [CrossRef]
- United States Animal and Plant Health Inspection Service; Plant Protection and Quarantine (USDA APHIS PPQ). Treatment Manual. Section 3–8. Nonchemical treatments. Irradiation; United States Department of Agriculture: Washington, DC, USA, 2012.
- United States Food and Drug Administration. Foods Permitted to be Irradiated under FDA Regulations (21 CFR 179.26); USFDA: Washington, DC, USA, 2008.
- Kader, A.A. Potential applications of ionizing radiation in postharvest handling of fruit fruits and vegetables. Food Technol. 1986, 40, 117–121. [Google Scholar]
- Akamine, E.K.; Goo, T. Respiration of gamma-irradiated fresh fruits. J. Food Sci. 1971, 36, 1074–1076. [Google Scholar] [CrossRef]
- Grosso, G.; Bei, R.; Mistretta, A.; Marventano, S.; Calabrese, G.; Masuelli, L.; Giganti, M.G.; Modesti, A.; Galvano, F.; Gazzolo, D. Effects of vitamin C on health: A review of evidence. Front. Biosci. 2013, 18, 1017–1029. [Google Scholar]
- Tsujimura, M.; Higasa, S.; Nakayama, K.; Yanagisawa, Y.; Iwamoto, S.; Kagawa, Y. Vitamin C activity of dehydroascorbic acid in humans—Association between changes in the blood vitamin C concentration or urinary excretion after oral loading. J. Nutr. Sci. Vitaminol. 2008, 54, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Kader, A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest. Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Kilcast, D. Effect of irradiation on vitamins. Food Chem. 1994, 49, 157–164. [Google Scholar] [CrossRef]
- Dionísio, A.P.; Gomes, R.T.; Oetterer, M. Ionizing radiation effects on food vitamins: A review. Braz. Arch. Biol. Technol. 2009, 52, 1267–1278. [Google Scholar] [CrossRef]
- Fricke, H.; Hart, E.J. Chemical Dosimetry, 2nd ed.; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Brubacher, G.; Müller-Mulot, W.; Southgate, D.A.T. Total ascorbic acid in food and beverages. In Methods for the Determination of Vitamins in Food; Brubacher, G., Müller-Mulot, W., Southgate, D.A.T., Eds.; Elsevier Applied Science Publishers Ltd.: London, UK, 1995. [Google Scholar]
- VSN International. GenStat for Windows, 15th ed.; VSN International: Hemel Hempstead, UK, 2012. [Google Scholar]
- Pereira da Silva, M.A.; Plácido, G.R.; Caliari, M.C.; Bruno de Sousa, C.; Marins da Silva, R.; Cagnin, C.; Siqueira de Lima, M.; Moraes do Carmo, R.; Francisco da Silva, R.C. Physical and chemical characteristics and instrumental color parameters of passion fruit (Passiflora edulis Sims). Afric. J. Agric. Res. 2015, 10, 1119–1126. [Google Scholar]
- Thomas, P. Irradiation of fruits and vegetables. In Food Irradiation: Principles and Applications; Molins, R.A., Ed.; John Wiley & Sons: New York, NY, USA, 2001; pp. 213–240. [Google Scholar]
- Shiomi, S.; Wamocho, L.S.; Agong, S.G. Ripening characteristics of purple passion fruit on and off the vine. Postharvest Biol. Technol. 1996, 7, 161–170. [Google Scholar] [CrossRef]
- Shiomi, S.; Kubo, Y.; Wamocho, L.S.; Koaze, H.; Nakamura, R.; Inaba, A. Postharvest ripening and ethylene biosynthesis in purple passion fruit. Postharvest Biol. Technol. 1996, 8, 199–207. [Google Scholar] [CrossRef]
- Wills, R.B.H.; McGlasson, W.B.; Graham, D.; Joyce, D. Postharvest: An Introduction to the Physiology & Handling of Fruit, Vegetables & Ornamentals, 5th ed.; UNSW Press: Sydney, Australia, 2007. [Google Scholar]
- Golding, J.B.; Blades, B.L.; Satyan, S.; Jessup, A.J.; Spohr, L.J.; Harris, A.M.; Banos, C.; Davies, J.B. Low dose gamma irradiation does not affect the quality, proximate or nutritional profile of “Brigitta” blueberry and “Maravilla” raspberry fruit. Postharvest Biol. Technol. 2014, 96, 49–52. [Google Scholar] [CrossRef]
- Wall, M. Quality of postharvest horticultural crops after irradiation treatment. Stewart Postharvest Rev. 2008, 4. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand (FSANZ). Nutritional Impact of Phytosanitary Irradiation of Fruits and Vegetables. Available online: http://www.foodstandards.gov.au/publications/Pages/Nutritional-impact-of-phytosanitary-irradiation-of-fruits-and-vegetables.aspx (accessed on 1 June 2015).
- Mitchell, G.E.; McLauchlan, R.L.; Isaacs, A.R.; Williams, D.J.; Nottingham, S.M. Effect of low dose irradiation on composition of tropical fruits and vegetables. J. Food Comp. Anal. 1992, 5, 291–311. [Google Scholar] [CrossRef]
- Moy, J.H.; Wong, L. The efficacy and progress in using radiation as a quarantine treatment of tropical fruits—A case study in Hawaii. Radiat. Phys. Chem. 2002, 63, 397–401. [Google Scholar] [CrossRef]
- Wills, R.B.H.; Lim, J.S.K.; Greenfield, H. Composition of Australian foods. 31. Tropical and sub-tropical fruit. Food Tech. Aust. 1986, 38, 118–123. [Google Scholar]
- Luximon-Ramma, A.; Bahorun, T.; Crozier, A. Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. J. Sci. Food Agric. 2003, 83, 496–502. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golding, J.B.; Blades, B.L.; Satyan, S.; Spohr, L.J.; Harris, A.; Jessup, A.J.; Archer, J.R.; Davies, J.B.; Banos, C. Low Dose Gamma Irradiation Does Not Affect the Quality or Total Ascorbic Acid Concentration of “Sweetheart” Passionfruit (Passiflora edulis). Foods 2015, 4, 376-390. https://doi.org/10.3390/foods4030376
Golding JB, Blades BL, Satyan S, Spohr LJ, Harris A, Jessup AJ, Archer JR, Davies JB, Banos C. Low Dose Gamma Irradiation Does Not Affect the Quality or Total Ascorbic Acid Concentration of “Sweetheart” Passionfruit (Passiflora edulis). Foods. 2015; 4(3):376-390. https://doi.org/10.3390/foods4030376
Chicago/Turabian StyleGolding, John B., Barbara L. Blades, Shashirekha Satyan, Lorraine J. Spohr, Anne Harris, Andrew J. Jessup, John R. Archer, Justin B. Davies, and Connie Banos. 2015. "Low Dose Gamma Irradiation Does Not Affect the Quality or Total Ascorbic Acid Concentration of “Sweetheart” Passionfruit (Passiflora edulis)" Foods 4, no. 3: 376-390. https://doi.org/10.3390/foods4030376