A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods
Abstract
:1. Introduction
2. Applications of NIR and MIR Spectroscopy
2.1. Determination of Amylose, Amylopectin, Starch and Granule Structure
Chemical parameter | Reference method | Sample | SECV/SEP | Reference |
---|---|---|---|---|
Amylose (%) | Iodine—colorimetric method | Rice | 0.30–0.31 | [39] |
Amylose (g kg−1) | Iodine—colorimetric method | Beans 1 | 11.4–12.8 | [40] |
Amylose (%) | Enzymatic | Barley | 0.93–1.09 | [41] |
Starch (%) | Enzymatic | Barley | 0.78–0.98 | [41] |
Amylose (%) | Iodine—colorimetric method | Yam | 3.71 | [29] |
Starch (%) | Iodine—colorimetric method | Yam | 1.78 | [29] |
Crude starch (%) | Acetic acid-calcium chloride and polarization | Maize | 0.72–0.96 * | [42] |
2.2. Gelatinization, Pasting Properties and Retrogradation of Starch
Sample | Method and wavelength range | Parameter (RVU) | R2 | SECV/SEP | Reference |
---|---|---|---|---|---|
Rice | NIR (400–2500 nm) | PV | 0.35 | 17.5 | [49] |
BD | 0.88 | 10.2 | |||
SB | 0.92 | 13.6 | |||
HPV | 0.55 | 16.7 | |||
Rice non-waxy | NIR (1100–2500 nm) | PV | 0.37 | 32.44 | [50] |
BD | 0.58 | 13.36 | |||
SB | 0.60 | 25.07 | |||
Rice | NIR (1100–2500 nm) | PV | 0.63 | 23.7 | [33] |
BD | 0.72 | 14.2 | |||
SB | 0.73 | 20.2 | |||
Rice | NIR (1100–2500 nm) | PV | 0.38–0.42 | [43] | |
BD | 0.057–0.060 | ||||
SB | 0.57–0.59 | ||||
Rice | NIR (1100–2500 nm) | PV | 0.74 | 20.99 | [51] |
BD | 0.80 | 21.47 | |||
SB | 0.97 | 22.23 | |||
TH | 0.80 | 7.37 | |||
FV | 0.95 | 13.2 | |||
Sweet potato | NIR (1100–2500 nm) | PV | 0.91 | 13.1 | [46,47] |
BD | 0.81 | 10.67 | |||
SB | 0.92 | 1.82 | |||
Maize | NIR (1100–2500 nm) | PV | 0.92 | 183 | [44] |
BD | 0.92 | 232 | |||
SB | 0.92 | 412 |
2.3. Monitoring of Starch Gelatinization and Processing
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Evers, A.D.; Blakeney, A.B.; O’Brien, L. Cereal structure and composition. Aust. J. Agric. Res. 1999, 50, 629–650. [Google Scholar] [CrossRef]
- Pérez, S.; Baldwin, P.M.; Gallant, D.J. Structural features of starch granules. In Starch: Chemistry and Technology, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: New York, NY, USA, 2009. [Google Scholar]
- Perez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Schwartz, D.; Whistler, R.L. History and future of starch. In Starch: Chemistry and Technology, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: New York, NY, USA, 2009. [Google Scholar]
- Xie, S.; Liu, Q.; Cui, S.W. Starch modification and applications. In Food Carbohydrates; Cui, S., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2005. [Google Scholar]
- Keeling, P.L.; Myers, A.M. Biochemistry and genetics of starch synthesis. Ann. Rev. Food. Sci. Technol. 2010, 1, 271–303. [Google Scholar] [CrossRef]
- Willett, J.L. Starch in polymer compositions. In Starch: Chemistry and Technology, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: New York, NY, USA, 2009. [Google Scholar]
- Karoui, R.; Downey, G.; Blecker, C. Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships—A review. Chem. Rev. 2010, 110, 6144–6168. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Allder, K.; Roumeliotis, S.; Eglinton, J. Feasibility study on the use of multivariate data methods and derivatives to enhance information from the rapid visco analyser. J. Cereal Sci. 2012, 56, 610–614. [Google Scholar] [CrossRef]
- Cozzolino, D.; Roumeliotis, S.; Eglinton, J. Exploring the use of near infrared (NIR) reflectance spectroscopy to predict starch pasting properties in whole grain barley. Food Biophys. 2013, 8, 256–261. [Google Scholar] [CrossRef]
- Cozzolino, D.; Roumeliotis, S.; Eglinton, J. Prediction of starch pasting properties in barley flour using ATR-MIR spectroscopy. Carbohydr. Polym. 2014, 95, 509–514. [Google Scholar] [CrossRef]
- Reeves, J.B., III. Potential of near- and mid-infrared spectroscopy in biofuel production. Commun. Soil Sci. Plant Anal. 2012, 43, 478–495. [Google Scholar] [CrossRef]
- Singh, J.; Dartois, A.; Kaur, L. Starch digestibility in food matrix: A review. Trends Food Sci. Technol. 2010, 21, 68–180. [Google Scholar] [CrossRef]
- Hodsagi, M.; Gergely, S.; Galencser, T.; Salgo, A. Investigations of native and resistant starches and their mixtures using near infrared spectroscopy. Food Bioprocess Technol. 2012, 5, 401–407. [Google Scholar] [CrossRef]
- Kim, J.-O.; Kim, W.-S.; Shin, M.-S. A comparative study on retrogradation of rice starch gels by DSC, X-ray and alpha-amylase methods. Starch 1997, 49, 71–75. [Google Scholar] [CrossRef]
- Booth, R.; Bason, M.L. Principles of operation and experimental techniques. In The RVA Handbook; Crosbie, G.B., Ross, A.S., Eds.; AACC International: St Paul, MN, USA, 2007; pp. 1–19. [Google Scholar]
- Batey, I.L. Interpretation of RVA curves. In The RVA Handbook; Crosbie, G.B., Ross, A.S., Eds.; AACC International: St Paul, MN, USA, 2007; pp. 19–31. [Google Scholar]
- Zhou, M.; Mendham, N.J. Predicting barley malt extract with a Rapid Viscoanalyser. J. Cereal Sci. 2005, 41, 31–36. [Google Scholar] [CrossRef]
- Shewayrga, H.; Sopade, P.A.; Jordan, D.R. Characterisation of grain quality in diverse sorghum germplasm using a rapid visco-analyzer and near infrared reflectance spectroscopy. J. Sci. Food Agric. 2012, 92, 1402–1410. [Google Scholar] [CrossRef] [PubMed]
- Kaddour, A.A.; Cuq, B. Dynamic NIR spectroscopy to monitor wheat product processing: A short review. Am. J. Food Technol. 2011, 6, 186–196. [Google Scholar] [CrossRef]
- Kaddour, A.A.; Cuq, B. Dynamic NIR spectroscopy to monitor bread dough mixing: A short review. Am. J. Food Technol. 2011, 6, 173–185. [Google Scholar] [CrossRef]
- Hong, J.H.; Ikeda, K.; Kreft, I.; Yasumoto, K. Near-infrared diffuse reflectance spectroscopic analysis of the amounts of moisture, protein, starch, amylose, and tannin in buckwheat flours. J. Nutr. Sci. Vitaminol. 1996, 42, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Katayama, K.; Komaki, K.; Tamiya, S. Prediction of starch, moisture, and sugar in sweetpotato by near infrared transmittance. HortScience 1996, 31, 1003–1006. [Google Scholar]
- Campbell, M.R.; Mannis, S.R.; Port, H.A.; Zimmerman, A.M.; Glover, D.V. Prediction of starch amylose content versus total grain amylose content in corn by near-infrared transmittance spectroscopy. Cereal Chem. 1999, 76, 552–557. [Google Scholar] [CrossRef]
- Haase, N.U. Rapid estimation of potato tuber quality by near-infrared spectroscopy. Starch 2006, 58, 268–273. [Google Scholar] [CrossRef]
- Haase, N.U.; Mintus, T.; Weipert, D. Viscosity measurements of potato starch paste with the rapid visco analyser. Starch 1995, 47, 123–126. [Google Scholar] [CrossRef]
- Alencar-Figueredo, L.F.; Davrieux, F.; Fliedel, G.; Rami, J.F.; Chantereau, J.; Deu, M.; Courtois, B.; Mestres, C. Development of NIRS equations for food grain quality traits through exploitation of core collection of cultivated sorghum. J. Agric. Food Chem. 2006, 54, 8501–8509. [Google Scholar] [CrossRef] [PubMed]
- Lebot, V.; Champagne, A.; Malapa, R.; Shiley, D. NIR determination of major constituents in tropical root and tuber crop flours. J. Agric. Food Chem. 2009, 57, 10539–10547. [Google Scholar] [CrossRef] [PubMed]
- Lebot, V.; Malapa, R. Application of near infrared reflectance spectroscopy for the evaluation of yam (Dioscorea alata) germplasm and breeding lines. J. Sci. Food Agric. 2013, 93, 1788–1797. [Google Scholar] [CrossRef] [PubMed]
- Lebot, V.; Malapa, R.; Bourrieau, M. Rapid estimation of taro (Colocasia esculenta) quality by near-infrared reflectance spectroscopy. J. Agric. Food Chem. 2011, 59, 9327–9334. [Google Scholar] [CrossRef] [PubMed]
- Delwiche, S.R.; Weaver, G. Bread quality of wheat flour by near-infrared spectroscopy: Feasibility of modeling. J. Food Sci. 1994, 59, 410–415. [Google Scholar] [CrossRef]
- Delwiche, S.R. Protein content of single kernels of wheat by near-infrared reflectance spectroscopy. J. Cereal Sci. 1998, 27, 241–254. [Google Scholar] [CrossRef]
- Delwiche, S.R.; McKenzie, K.S.; Webb, B.D. Quality characteristics in rice by near-infrared reflectance analysis of whole-grain milled samples. Cereal Chem. 1996, 73, 257–263. [Google Scholar]
- Delwiche, S.R.; Graybosch, R.A.; St Amand, P.; Bai, G. Starch waxiness in hexaploid wheat (Triticum aestivum L.) by NIR reflectance spectroscopy. J. Agric. Food Chem. 2011, 59, 4002–4008. [Google Scholar] [CrossRef] [PubMed]
- Reeves, J.B. Solid-state matrix effects on near-infrared spectra: Interactions of glucose and sucrose with amylose, amylopectin, cellulose, and starch—Implications for near-infrared calibrations. Appl. Spectrosc. 1996, 50, 154–160. [Google Scholar] [CrossRef]
- Zeng, J.; Li, G.; Gao, H.; Ru, Z. Comparison of A and B starch granules from three wheat varieties. Molecules 2011, 16, 10570–10591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, P. Using ATR-FT/IR molecular spectroscopy to detect effects of blend DDGS inclusion level on the molecular structure spectral and metabolic characteristics of the proteins of hulless barley. Spectroc. Acta A Mol. Biomol. Spectrosc. 2012, 95, 53–63. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Liu, J.; Xie, F.; Chen, L. Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocoll. 2013, 31, 68–73. [Google Scholar] [CrossRef]
- Xie, L.H.; Tang, S.Q.; Chen, N.; Luo, J.; Jiao, G.A.; Shao, G.N.; Wei, X.J.; Hu, P.S. Optimisation of near-infrared reflectance model in measuring protein and amylose content of rice flour. Food Chem. 2014, 142, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Plans, M.; Siro, J.; Casanas, F.; Sabate, J.; Rodriguez-Saona, L. Characterization of common beans (Phaseolus vulgaris L.) by infrared spectroscopy: Comparison of MIR, FT-NIR and dispersive NIR using portable and benchtop instruments. Food Res. Int. 2013, 54, 1643–1651. [Google Scholar] [CrossRef]
- Ping, H.; Wang, J.; Ren, G. Prediction of the total starch and amylose content in barley using near infrared reflectance spectroscopy. Intell. Autom. Soft Comput. 2013, 19, 231–237. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Zhu, Y.J.; Wei, L.M.; Dai, J.R.; Song, T.M.; Yan, Y.L.; Chen, S.J. Analysis of protein, starch and oil content of single intact kernels by near infrared reflectance spectroscopy (NIRS) in maize (Zea mays L.). Plant Breed. 2007, 126, 492–497. [Google Scholar] [CrossRef]
- Meadows, F.; Barton, F.E. Determination of rapid visco analyser parameters in rice by near infrared spectroscopy. Cereal Chem. 2002, 79, 563–566. [Google Scholar] [CrossRef]
- Juhasz, R.; Gergely, S.; Gelencser, T.; Salgo, A. Relationships between NIR spectra and RVA parameters during wheat germination. Cereal Chem. 2005, 82, 488–493. [Google Scholar] [CrossRef]
- Gergely, S.; Salgo, A. Changes in carbohydrate content during wheat-maturation-what is measured by near infrared spectroscopy? J. Near Infrared Spec. 2005, 13, 9–17. [Google Scholar] [CrossRef]
- Lu, G.Q.; Huang, H.H.; Zhang, D.P. Application of near-infrared spectroscopy to predict sweet potato starch thermal properties and noodle quality. J. Zhejiang Univ. Sci. 2006, 7, 475–481. [Google Scholar] [CrossRef]
- Lu, G.Q.; Huang, H.H.; Zhang, D.P. Prediction of sweet potato starch physiochemical quality and pasting properties using near-infrared reflectance spectroscopy. Food Chem. 2006, 94, 632–639. [Google Scholar] [CrossRef]
- Garcia-Rosas, M.; Bello-Perez, A.; Hernani, Y.M.; Gonzalo, R.; Flores-Morales, A.; Mora-Escobedo, R. Resistant starch content and structural changes in maize (Zea mays) tortillas during storage. Starch 2009, 61, 414–421. [Google Scholar] [CrossRef]
- Bao, J.S.; Cai, Y.Z.; Corke, H. Prediction of rice starch quality parameters by near-infrared reflectance spectroscopy. J. Food Sci. 2001, 66, 936–939. [Google Scholar] [CrossRef]
- Bao, J.; Wang, Y.; Shen, Y. Determination of apparent amylose content, pasting properties and gel texture of rice starch by near infrared spectroscopy. J. Sci. Food Agric. 2007, 87, 2040–2048. [Google Scholar] [CrossRef]
- Chueamchaitrakun, P.; Chompreeda, P.; Haruthaithanasan, V.; Suwonsichon, T.; Kasemsamran, S. Prediction of pasting and thermal properties of mixed Hom-Mali and glutinous rice flours using near infrared spectroscopy. Kasetsart J. (Nat. Sci.) 2011, 45, 481–489. [Google Scholar]
- Onda, T.; Abe, H.; Matsunaga, A.; Komiyama, Y.; Kawano, S. Analysis of gelatinization of starch by near-infrared spectroscopy. J. Jpn. Soc. Food Sci. Technol. 1994, 41, 886–890. [Google Scholar] [CrossRef]
- Rubens, P.; Heremans, K. Pressure-temperature gelatinization phase diagram of starch: An in situ fourier transform infrared study. Biopolymers 2000, 54, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Zardetto, S. Potential applications of near infrared spectroscopy for evaluating thermal treatments of fresh egg pasta. Food Control 2005, 16, 249–256. [Google Scholar] [CrossRef]
- Zardetto, S.; Rosa, M.D. Study of the effect of lamination process on pasta by physical chemical determination and near infrared spectroscopy analysis. J. Food Eng. 2006, 74, 402–409. [Google Scholar] [CrossRef]
- Lu, G.Q.; Sheng, J.L. Application of near infrared reflectance spectroscopy (NIRS) in sweet potato quality breeding. Sci. Agric. Sin. 1990, 23, 76–81. [Google Scholar]
- Liu, Y.F.; Lu, Y.X.; Kui, L.M.; Guo, Y.M.; Tan, C.Y.; Liu, X.L. Determination of RVA profile parameters of rice by near infrared spectrometer. Southwest China J. Agric. Sci. 2007, 20, 974–978. [Google Scholar]
- Wu, J.G.; Shi, C.H. Prediction of grain weight, brown rice weight and amylose content in single grains using near infrared reflectance spectroscopy. Field Crops Res. 2004, 87, 13–21. [Google Scholar] [CrossRef]
- Wu, J.G.; Shi, C.H. Calibration model optimization for rice cooking characteristics by near infrared reflectance spectroscopy (NIRS). Food Chem. 2007, 103, 1054–1061. [Google Scholar] [CrossRef]
- Chen, J.Y.; Zhang, H.; Yagi, Y. Nondestructive determination of major components and pasting viscosity of potato tuber by near infrared spectroscopy. J. Jpn. Soc. Food Sci. Technol. 2009, 56, 299–306. [Google Scholar] [CrossRef]
- Ji, Y.; Zhu, K.; Zhou, H.; Qian, H. Study of the retrogradation behaviour of rice cake using rapid visco analyser, fourier transform infrared spectroscopy and X-ray analysis. Int. J. Food Sci. Technol. 2010, 45, 871–876. [Google Scholar]
- Nakorn, K.N.; Tongdang, T.; Sirivongpaisal, P. Crystallinity and rheological properties of pregelatinized rice starches differing in amylose content. Starch 2009, 61, 101–108. [Google Scholar] [CrossRef]
- Codgill, R.P.; Anderson, C.A.; Drennen, J.K., III. Using NIR spectroscopy as an integrated PAT tool. Spectroscopy 2004, 19, 104–109. [Google Scholar]
- Jorgensen, P.; Pedersen, J.G.; Jensen, E.P.; Esbensen, K.H. On line batch fermentation process monitoring (NIR)—Introducing biological process time. J. Chemom. 2004, 18, 81–91. [Google Scholar] [CrossRef]
- Robert, P.; Devaux, M.F.; Mouhous, N.; Dufour, E. Monitoring the secondary structure of proteins by near-infrared spectroscopy. Appl. Spectrosc. 1999, 53, 226–232. [Google Scholar] [CrossRef]
- Millar, S.; Robert, P.; Devaux, M.F.; Guy, R.C.E.; Maris, P. Near-infrared spectroscopy measurements of structural changes in starch-containing extruded products. Appl. Spectrosc. 1996, 50, 1134–1139. [Google Scholar] [CrossRef]
- Osborne, B.G. Near infrared spectroscopic studies of starch and water in some processed cereal foods. J. Near Infrared Spectrosc. 1996, 4, 195–200. [Google Scholar] [CrossRef]
- Osborne, B.G. NIR measurements of the development of crystallinity in stored bread crumb. Analusis 1998, 26, M55–M57. [Google Scholar] [CrossRef]
- Osborne, B.G. Applications of near infrared spectroscopy in quality screening of early-generation material in cereal breeding programmes. J. Near Infrared Spectrosc. 2006, 14, 93–101. [Google Scholar] [CrossRef]
- Wesley, I.J.; Larsen, N.; Osborne, B.G.; Skerritt, J.H. Non-invasive monitoring of dough mixing by near infrared spectroscopy. J. Cereal Sci. 1998, 27, 61–69. [Google Scholar] [CrossRef]
- Wesley, I.J.; Blakeney, A.B. Investigation of starch-protein water mixtures using dynamic near infrared spectroscopy. J. Near Infrared Spectrosc. 2001, 9, 211–220. [Google Scholar] [CrossRef]
- Wellner, N.; Mills, E.N.; Brownsey, G.; Wilson, R.H.; Brown, N.; Freeman, J.; Halford, N.C.; Shewry, P.R.; Belton, P.S. Changes in protein secondary structure during gluten deformation studied by dynamic fourier transform infrared spectroscopy. Biomacromolecules 2005, 6, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.H.; Goodfellow, B.J.; Belton, P.S.; Osborne, B.G.; Oliver, G.; Russell, P.L. Comparison of Fourier transform mid infrared spectroscopy and near infrared reflectance spectroscopy with differential scanning calorimetry for the study of the staling of bread. J. Sci. Food Agric. 1991, 54, 471–483. [Google Scholar] [CrossRef]
- Chung, H.; Arnold, M.A. Near-infrared spectroscopy for monitoring starch hydrolysis. Appl. Spectrosc. 2000, 54, 277–284. [Google Scholar] [CrossRef]
- Xie, F.; Dowell, F.E.; Sun, X.S. Comparaison of near-infrared spectroscopy and texture analyser for measuring wheat bread changes in storage. Cereal Chem. 2003, 80, 25–29. [Google Scholar] [CrossRef]
- Xie, F.; Dowell, F.E.; Sun, X.S. Using visible and near-infrared reflectance spectroscopy and differential scanning calorimetry to study starch, protein and temperature effects on bread staling. Cereal Chem. 2004, 81, 249–254. [Google Scholar] [CrossRef]
- Haase, N.U. Prediction of potato processing quality by near infrared reflectance spectroscopy of ground raw tubers. J. Near Infrared Spectrosc. 2011, 19, 37–45. [Google Scholar]
- Kaddour, A.A.; Morel, M.-H.; Barron, C.; Cuq, B. Dynamic monitoring of dough mixing using near-infrared spectroscopy: Physical and chemical outcomes. Cereal Chem. 2007, 84, 70–79. [Google Scholar] [CrossRef]
- Kaddour, A.A.; Morel, M.-H.; Barron, C.; Cuq, B. Physico-chemical description of bread dough mixing using two-dimensional near-infrared correlation spectroscopy and moving-window two-dimensional correlation spectroscopy. J. Cereal Sci. 2008, 48, 10–19. [Google Scholar] [CrossRef]
- Kaddour, A.A.; Cuq, B.; Damiri, H.; Cassan, D.; Menut, P.; Morel, M. Physico-chemical mechanisms involved in the near infrared monitoring of dough mixing. In Proceedings of AACC Annual Meeting, Orlando, FL, USA, 24–28 July 2005; p. 216.
- Alava, J.M.; Millar, S.J.; Salmon, S.E. The determination of wheat breadmaking performance and bread dough mixing time by NIR spectroscopy for high speed mixers. J. Cereal Sci. 2001, 33, 71–81. [Google Scholar] [CrossRef]
- Apruzzese, F.; Balke, S.T.; Diosady, L.L. In-line colour and composition monitoring in the extrusion cooking process. Food Res. Inter. 2000, 33, 621–628. [Google Scholar] [CrossRef]
- Evans, A.J.; Huang, S.; Osborne, B.G.; Kotwal, Z.; Wesley, I.J. Near infrared on-line measurement of degree of cook in extrusion processing of wheat flour. J. Near Infrared Spectrosc. 1999, 7, 77–84. [Google Scholar]
- Kaddour, A.A.; Morel, M.H.; Cuq, B. Description of batter dough mixing using near-infrared spectroscopy. J. Cereal Sci. 2008, 48, 698–708. [Google Scholar] [CrossRef]
- Psotka, J. Utilizing predictive technologies in milling and baking. Cereal Foods World 1999, 44, 30–31. [Google Scholar]
- Arazuri, S.; Arana, I.; Arias, N.; Arregui, L.M.; Torralba, J.G.; Jaren, C. Rheological parameters determination using near infrared technology in whole wheat grain. J. Food Eng. 2012, 111, 115–121. [Google Scholar] [CrossRef]
- Huang, T.; Zhu, B.; Du, X.; Li, B.; Wu, X.F.; Wang, S.H. Study on gelatinization property and edible quality mechanism of rice. Starch 2012, 64, 846–854. [Google Scholar] [CrossRef]
- Piccinini, M.; Simonetta, F.; Secchi, N.; Sanna, M.; Roggio, T.; Catzeddu, P. The application of NIR FT-Raman spectroscopy to monitor starch retrogradation and crumb firmness in semolina bread. Food Anal. Methods 2012, 5, 1145–1149. [Google Scholar] [CrossRef]
- Iizuka, K.; Aishima, T. Starch gelation process observed by FT-IR/ATR spectrometry with multivariate data analysis. J. Food Sci. 1999, 64, 653–658. [Google Scholar] [CrossRef]
- Van Velzen, E.J.J.; van Duynhoven, J.P.M.; Pudney, P.; Weegels, P.L.; van der Maas, J.H. Factors associated with dough stickiness as sensed by attenuated total reflectance infrared spectroscopy. Cereal Chem. 2003, 80, 378–382. [Google Scholar] [CrossRef]
- Bock, J.E.; Connelly, R.K.; Damodaran, S. Impact of bran addition on water properties and gluten secondary structure in wheat flour doughs studied by attenuated total reflectance fourier transform infrared spectroscopy. Cereal Chem. 2013, 90, 377–386. [Google Scholar] [CrossRef]
- Bock, J.E.; Damodaran, S. Impact of bran addition on water properties and gluten secondary structure in model gluten dough studied by attenuated total reflectance Fourier transformed infrared spectroscopy. Food Hydrocoll. 2013, 31, 146–155. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cozzolino, D.; Degner, S.; Eglinton, J. A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods. Foods 2014, 3, 605-621. https://doi.org/10.3390/foods3040605
Cozzolino D, Degner S, Eglinton J. A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods. Foods. 2014; 3(4):605-621. https://doi.org/10.3390/foods3040605
Chicago/Turabian StyleCozzolino, D., S. Degner, and J. Eglinton. 2014. "A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods" Foods 3, no. 4: 605-621. https://doi.org/10.3390/foods3040605
APA StyleCozzolino, D., Degner, S., & Eglinton, J. (2014). A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods. Foods, 3(4), 605-621. https://doi.org/10.3390/foods3040605