Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.1.1. Plant Material
2.1.2. Chemicals and Reagents
2.2. Methods
2.2.1. Ultrasound-Assisted Extraction
2.2.2. Soxhlet Method
2.3. Total Phenols Determination
2.4. Statistical Analysis
3. Results and Discussion
3.1. Influence of Solvent Type on UAE Efficiency Depending on the Tea Brand
Solvent type | Solvent Percentage (% (v/v)) | Tea brand | Time (min) | Extract yield y (mg/g DM) | Total phenolic content z (mg GAE/g DM) |
---|---|---|---|---|---|
EtOH | 100 | A | 30 | 37.56 ± 0.51 | 2.25 ± 0.05 a |
60 | 63.86 ± 0.50 | 3.45 ± 0.16 b | |||
90 | 71.00 ± 0.73 | 6.52 ± 0.26 c | |||
B | 30 | 76.54 ± 0.54 | 2.95 ± 0.07 ab | ||
60 | 99.82 ± 0.42 | 3.58 ± 0.15 bd | |||
90 | 105.33 ± 0.51 | 4.30 ± 0.13 de | |||
C | 30 | 84.22 ± 0.32 | 7.54 ± 0.21 c | ||
60 | 92.63 ± 0.46 | 4.38 ± 0.04 de | |||
90 | 114.20 ± 0.25 | 4.69 ± 0.06 e | |||
MeOH | 100 | A | 30 | 273.13 ± 0.79 | 11.86 ± 0.21 f |
60 | 295.08 ± 0.54 a | 16.15 ± 0.24 | |||
90 | 333.13 ± 0.64 b | 18.36 ± 0.29 | |||
B | 30 | 293.65 ± 0.43 a | 12.06 ± 0.19 f | ||
60 | 325.70 ± 0.60 c | 12.33 ± 0.16 fg | |||
90 | 327.08 ± 0.64 c | 13.42 ± 0.22 g | |||
C | 30 | 271.15 ± 0.43 | 11.91 ± 0.30 f | ||
60 | 308.03 ± 0.71 | 12.52 ± 0.21 fg | |||
90 | 333.80 ± 0.95 b | 13.26 ± 0.23 g | |||
EtOH | 50 | A | 30 | 455.22 ± 0.61 | 21.58 ± 0.27 h |
60 | 500.38 ± 0.64 | 20.23 ± 0.46 i | |||
90 | 524.45 ± 0.62 d | 31.37 ± 0.49 | |||
B | 30 | 407.98 ± 0.62 e | 20.28 ± 0.14 i | ||
60 | 523.88 ± 0.53 d | 21.70 ± 0.12 h | |||
90 | 578.96 ± 0.63 | 29.80 ± 0.19 j | |||
C | 30 | 337.13 ± 0.78 | 26.26 ± 0.41 | ||
60 | 457.79 ± 0.80 | 29.88 ± 0.47 j | |||
90 | 463.07 ± 0.63 | 27.98 ± 0.18 | |||
MeOH | 50 | A | 30 | 492.83 ± 0.84 f | 41.57 ± 0.30 l |
60 | 527.49 ± 0.78 | 48.42 ± 0.50 k | |||
90 | 542.81 ± 0.80 | 49.26 ± 0.52 k | |||
B | 30 | 492.57 ± 0.42 f | 43.25 ± 0.29 m | ||
60 | 532.30 ± 0.89 | 42.12 ± 0.30 l | |||
90 | 617.01 ± 0.45 | 45.66 ± 0.23 n | |||
C | 30 | 409.44 ± 0.39 e | 40.11 ± 0.31 | ||
60 | 436.55 ± 0.35 | 42.05 ± 0.49 lo | |||
90 | 467.49 ± 0.43 | 44.08 ± 0.41 m | |||
Water | 100 | A | 30 | 404.23 ± 0.61 | 45.42 ± 0.33 n |
60 | 476.44 ± 0.64 | 47.34 ± 0.47 k | |||
90 | 548.76 ± 0.71 | 54.85 ± 0.59 | |||
B | 30 | 537.91 ± 0.36 | 44.28 ± 0.21 m | ||
60 | 569.95 ± 0.67 | 43.75 ± 0.18 m | |||
90 | 619.37 ± 0.58 | 47.91 ± 0.34 k | |||
C | 30 | 363.53 ± 0.37 | 42.39 ± 0.40 l m | ||
60 | 429.51 ± 0.62 | 42.68 ± 0.35 mo | |||
90 | 484.85 ± 0.59 | 48.59 ± 0.29 k |
3.2. Influence of Solvent Type on Soxhlet Method Efficiency Depending on the Tea Brand
Solvent type | Solvent Percentage (% (v/v)) | Tea brand | Extract yield y (mg/g DM) | Total phenolic content z (mg GAE/g DM) |
---|---|---|---|---|
EtOH | 100 | A | 213.34 ± 0.57 | 16.63 ± 0.30 a |
B | 187.31 ± 0.43 | 14.46 ± 0.27 b | ||
C | 202.42 ± 0.52 | 15.01 ± 0.22 b | ||
MeOH | 100 | A | 446.84 ± 0.62 | 27.08 ± 0.43 |
B | 551.44 ± 0.69 | 24.63 ± 0.33 c | ||
C | 486.13 ± 0.83 | 23.29 ± 0.26 c | ||
EtOH | 50 | A | 153.35 ± 0.26 | 51.18 ± 0.81 |
B | 159.82 ± 0.33 a | 43.83 ± 0.58 | ||
C | 161.19 ± 0.35 a | 41.52 ± 0.30 | ||
MeOH | 50 | A | 407.15 ± 0.98 | 59.69 ± 0.89 |
B | 350.16 ± 0.48 | 57.26 ± 0.83 | ||
C | 328.74 ± 0.63 | 48.69 ± 0.53 | ||
Water | 100 | A | 566.02 ± 0.87 | 18.07 ± 0.39 a |
B | 531.76 ± 0.77 | 13.24 ± 0.23 b | ||
C | 462.55 ± 0.82 | 15.74 ± 0.14 ab |
4. Conclusions
Conflicts of Interest
References
- Davies, K.J. Oxidative stress: The paradox of aerobic life. Biochem. Soc. Symp. 1995, 61, 1–31. [Google Scholar]
- Buxiang, S.; Fukuhara, M. Effects of co-administration of butylatedhydroxytoluene, butylatedhydroxyanisole and flavonoide on the activation of mutagens and drug-metabolizing enzymes in mice. Toxicology 1997, 122, 61–72. [Google Scholar] [CrossRef]
- Hirose, M.; Takesada, Y.; Tanaka, H.; Tamano, S.; Kato, T.; Shirai, T. Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination and modulation of their effects in a rat medium-term multi-organ carcinogensis model. Carcinogenesis 1998, 19, 207–212. [Google Scholar] [CrossRef]
- Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of bran extracts from selected wheat varieties commercially available in Pakistan. LWT Food Sci. Technol. 2007, 40, 361–367. [Google Scholar] [CrossRef]
- Loliger, J. The Use of Antioxidants in Foods. In Free Radicals and Food Additives; Aruoma, O.I., Halliwell, B., Eds.; Taylor Francis: London, UK, 1991; pp. 121–150. [Google Scholar]
- Rababah, T.M.; Hettiarachy, N.S.; Horax, R. Total phenolics and antioxidant activities of feurgreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhrdroquinone. J. Agric. Food Chem. 2004, 52, 5183–5186. [Google Scholar] [CrossRef]
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar] [CrossRef]
- Potter, J.D.; Steinmetz, K. Vegetables, fruit and phytoestrogens as preventive agents. IARC Sci. Publ. 1996, 139, 61–90. [Google Scholar]
- Halliwell, B. Antioxidants and human disease: A general introduction. Nutr. Rev. 1997, 1, 44–49. [Google Scholar]
- Diplock, A.T.; Charleux, J.L.; Crozier-Willi, G.; Kok, F.J.; Rice-Evans, C.; Roberfroid, M.; Stahl, W.; Viña-Ribes, J. Functional food science and defence against reactive oxidative species. Br. J. Nutr. 1998, 80, 77–112. [Google Scholar] [CrossRef]
- Boots, W.A.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef]
- Valenzuela, A.; Nieto, S.; Cassels, B.K.; Speisky, H. Inhibitory effect of boldine on fish oil oxidation. J. Am. Oil Chem. Soc. 1991, 68, 935–937. [Google Scholar] [CrossRef]
- Halliwell, B.; Aeschbach, R.; Löliger, J.; Aruoma, O.I. The characterisation of antioxidants. Food Chem. Toxicol. 1995, 33, 601–617. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M. The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 1985, 8, 89–193. [Google Scholar] [CrossRef]
- Hanasaki, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Adv. Exp. Med. Biol. 1994, 16, 845–850. [Google Scholar]
- Formica, J.V.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995, 33, 1061–1080. [Google Scholar] [CrossRef]
- Heitzer, T.; Schlinzig, T.; Krohn, K.; Meinertz, T.; Münzel, T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001, 104, 2673–2678. [Google Scholar] [CrossRef]
- Tapiero, H.; Tew, K.D.; Ba, G.N.; Mathé, G. Polyphenols: Do they play a role in the prevention of human pathologies. Biomed. Pharmacother. 2002, 56, 200–207. [Google Scholar] [CrossRef]
- Madamanchi, R.N.; Vendrov, A.; Runge, M.S. Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 29–38. [Google Scholar]
- Azad, N.; Rojanasakul, Y.; Vallyathan, V. Inflammation and lung cancer: Roles of reactive oxygen/nitrogen species. J. Toxicol. Environ. Health B Crit. Rev. 2008, 11, 1–15. [Google Scholar] [CrossRef]
- Davis, P.H. Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1972. [Google Scholar]
- Yeşilada, E. Biodiversity in Turkish Folk Medicine. In Biodiversity: Biomolecular Aspects of Biodiversity and Innovative Utilization; Sener, B., Ed.; Kluwer Academic/Plenum Publishers: London, UK, 2002; pp. 119–135. [Google Scholar]
- Chrubasik, C.; Roufogalis, B.D.; Müller-Ladner, U.; Chrubasik, S. A systematic review on the Rosa canina effect and efficacy profiles. Phytother. Res. 2008, 22, 725–733. [Google Scholar] [CrossRef]
- Barzana, E.; Rubio, D.; Santamaría, R.I.; Garcia-Correa, O.; García, F.; Ridaura-Sanz, V.E.; López-Munguía, A. Enzyme-mediated solvent extraction of carotenoids from mariglod flower (Tageteserecta). J. Agric. Food Chem. 2002, 50, 4491–4496. [Google Scholar]
- Peschel, W.; Sanchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzia, I.; Jimenez, D.; Lamuela-Raventos, R.; Buxaderas, S.; Codina, C. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 2006, 97, 137–150. [Google Scholar] [CrossRef]
- Gao, X.; Björk, L.; Trajkovski, V.; Uggla, M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food Agric. 2000, 80, 2021–2027. [Google Scholar] [CrossRef]
- Daels-Rakotoarison, D.A.; Gressier, B.; Trotin, F.; Brunet, C.; Luyckx, M.; Dine, T.; Bailleul, F.; Cazin, M.; Cazin, J.C. Effects of Rosa canina fruit extract on neutrophil respiratory burst. Phytother. Res. 2002, 16, 157–161. [Google Scholar] [CrossRef]
- Lattanzio, F.; Greco, E.; Carretta, D.; Cervellati, R.; Govoni, P.; Speroni, E. In vivo anti-inflammatory effect of Rosa canina L. extract. J. Ethnopharmacol. 2011, 137, 880–885. [Google Scholar]
- Wenzig, E.M.; Widowitz, U.; Kunert, O.; Chrubasik, S.; Bucara, F.; Knauder, F.; Bauer, R. Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) preparations. Phytomedicine 2008, 15, 826–835. [Google Scholar] [CrossRef]
- Malik, N.S.A.; Bradford, J.M. Changes in oleuropein levels during differenciation and development of floral buds in ‘Arbequina’ olives. Sci. Hortic. 2006, 110, 274–278. [Google Scholar] [CrossRef]
- Toma, M.; Vinatoru, M.; Paniwnyk, L.; Mason, T.J. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 2001, 8, 137–142. [Google Scholar] [CrossRef]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Velickovic, D.T.; Milenovic, D.M.; Ristic, M.S.; Veljkovic, V.B. Kinetics of ultrasonic extraction of extractive substances from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage. Ultrason. Sonochem. 2006, 13, 150–156. [Google Scholar] [CrossRef]
- Velickovic, D.T.; Milenovic, D.M.; Ristic, M.S.; Veljkovic, V.B. Ultrasonic extraction of waste solid residues from the Salvia sp. essential oil hydrodistillation. Biochem. Eng. J. 2008, 42, 97–104. [Google Scholar]
- Sultana, B.; Anwar, F.; Ashraf, M. Effects of extraction solvent/technique on the antioidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar]
- Lang, Q.; Wai, C.M. Supercritical fluid extraction in herbal and natural product studies—A practical review. Talanta 2001, 53, 771–782. [Google Scholar] [CrossRef]
- Lang, Q.; Wai, C.M. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Tech. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Spigno, G.; de Faveri, D.M. Microwave-assisted extraction of tea phenols: A phenomenological study. J. Food. Eng. 2009, 93, 210–217. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem. 2007, 104, 1106–1114. [Google Scholar] [CrossRef]
- Floch, F.L.; Tena, M.T.; Rios, A.; Valcarcel, M. Supercritical fluid extraction of phenol compounds from olive leaves. Talanta 1998, 46, 1123–1130. [Google Scholar] [CrossRef]
- Lee, M.R.; Lin, C.Y.; Li, Z.G.; Tsai, T.F. Simultaneous analysis of antioxidants and preservatives in cosmetics by supercritical fluid extraction combined with liquid chromatography-mass spectrometry. J. Chromatogr. A 2006, 1120, 244–251. [Google Scholar] [CrossRef]
- Szentmihalyi, K.; Vinkler, P.; Lakatos, B.; Illes, V.; Then, M. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresour. Technol. 2002, 82, 195–201. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
İlbay, Z.; Şahin, S.; Kirbaşlar, Ş.İ. Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study. Foods 2013, 2, 43-52. https://doi.org/10.3390/foods2010043
İlbay Z, Şahin S, Kirbaşlar Şİ. Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study. Foods. 2013; 2(1):43-52. https://doi.org/10.3390/foods2010043
Chicago/Turabian Styleİlbay, Zeynep, Selin Şahin, and Ş. İsmail Kirbaşlar. 2013. "Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study" Foods 2, no. 1: 43-52. https://doi.org/10.3390/foods2010043
APA Styleİlbay, Z., Şahin, S., & Kirbaşlar, Ş. İ. (2013). Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study. Foods, 2(1), 43-52. https://doi.org/10.3390/foods2010043