Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.1.1. Plant Material
2.1.2. Chemicals and Reagents
2.2. Methods
2.2.1. Ultrasound-Assisted Extraction
2.2.2. Soxhlet Method
2.3. Total Phenols Determination
2.4. Statistical Analysis
3. Results and Discussion
3.1. Influence of Solvent Type on UAE Efficiency Depending on the Tea Brand
| Solvent type | Solvent Percentage (% (v/v)) | Tea brand | Time (min) | Extract yield y (mg/g DM) | Total phenolic content z (mg GAE/g DM) |
|---|---|---|---|---|---|
| EtOH | 100 | A | 30 | 37.56 ± 0.51 | 2.25 ± 0.05 a |
| 60 | 63.86 ± 0.50 | 3.45 ± 0.16 b | |||
| 90 | 71.00 ± 0.73 | 6.52 ± 0.26 c | |||
| B | 30 | 76.54 ± 0.54 | 2.95 ± 0.07 ab | ||
| 60 | 99.82 ± 0.42 | 3.58 ± 0.15 bd | |||
| 90 | 105.33 ± 0.51 | 4.30 ± 0.13 de | |||
| C | 30 | 84.22 ± 0.32 | 7.54 ± 0.21 c | ||
| 60 | 92.63 ± 0.46 | 4.38 ± 0.04 de | |||
| 90 | 114.20 ± 0.25 | 4.69 ± 0.06 e | |||
| MeOH | 100 | A | 30 | 273.13 ± 0.79 | 11.86 ± 0.21 f |
| 60 | 295.08 ± 0.54 a | 16.15 ± 0.24 | |||
| 90 | 333.13 ± 0.64 b | 18.36 ± 0.29 | |||
| B | 30 | 293.65 ± 0.43 a | 12.06 ± 0.19 f | ||
| 60 | 325.70 ± 0.60 c | 12.33 ± 0.16 fg | |||
| 90 | 327.08 ± 0.64 c | 13.42 ± 0.22 g | |||
| C | 30 | 271.15 ± 0.43 | 11.91 ± 0.30 f | ||
| 60 | 308.03 ± 0.71 | 12.52 ± 0.21 fg | |||
| 90 | 333.80 ± 0.95 b | 13.26 ± 0.23 g | |||
| EtOH | 50 | A | 30 | 455.22 ± 0.61 | 21.58 ± 0.27 h |
| 60 | 500.38 ± 0.64 | 20.23 ± 0.46 i | |||
| 90 | 524.45 ± 0.62 d | 31.37 ± 0.49 | |||
| B | 30 | 407.98 ± 0.62 e | 20.28 ± 0.14 i | ||
| 60 | 523.88 ± 0.53 d | 21.70 ± 0.12 h | |||
| 90 | 578.96 ± 0.63 | 29.80 ± 0.19 j | |||
| C | 30 | 337.13 ± 0.78 | 26.26 ± 0.41 | ||
| 60 | 457.79 ± 0.80 | 29.88 ± 0.47 j | |||
| 90 | 463.07 ± 0.63 | 27.98 ± 0.18 | |||
| MeOH | 50 | A | 30 | 492.83 ± 0.84 f | 41.57 ± 0.30 l |
| 60 | 527.49 ± 0.78 | 48.42 ± 0.50 k | |||
| 90 | 542.81 ± 0.80 | 49.26 ± 0.52 k | |||
| B | 30 | 492.57 ± 0.42 f | 43.25 ± 0.29 m | ||
| 60 | 532.30 ± 0.89 | 42.12 ± 0.30 l | |||
| 90 | 617.01 ± 0.45 | 45.66 ± 0.23 n | |||
| C | 30 | 409.44 ± 0.39 e | 40.11 ± 0.31 | ||
| 60 | 436.55 ± 0.35 | 42.05 ± 0.49 lo | |||
| 90 | 467.49 ± 0.43 | 44.08 ± 0.41 m | |||
| Water | 100 | A | 30 | 404.23 ± 0.61 | 45.42 ± 0.33 n |
| 60 | 476.44 ± 0.64 | 47.34 ± 0.47 k | |||
| 90 | 548.76 ± 0.71 | 54.85 ± 0.59 | |||
| B | 30 | 537.91 ± 0.36 | 44.28 ± 0.21 m | ||
| 60 | 569.95 ± 0.67 | 43.75 ± 0.18 m | |||
| 90 | 619.37 ± 0.58 | 47.91 ± 0.34 k | |||
| C | 30 | 363.53 ± 0.37 | 42.39 ± 0.40 l m | ||
| 60 | 429.51 ± 0.62 | 42.68 ± 0.35 mo | |||
| 90 | 484.85 ± 0.59 | 48.59 ± 0.29 k |
3.2. Influence of Solvent Type on Soxhlet Method Efficiency Depending on the Tea Brand
| Solvent type | Solvent Percentage (% (v/v)) | Tea brand | Extract yield y (mg/g DM) | Total phenolic content z (mg GAE/g DM) |
|---|---|---|---|---|
| EtOH | 100 | A | 213.34 ± 0.57 | 16.63 ± 0.30 a |
| B | 187.31 ± 0.43 | 14.46 ± 0.27 b | ||
| C | 202.42 ± 0.52 | 15.01 ± 0.22 b | ||
| MeOH | 100 | A | 446.84 ± 0.62 | 27.08 ± 0.43 |
| B | 551.44 ± 0.69 | 24.63 ± 0.33 c | ||
| C | 486.13 ± 0.83 | 23.29 ± 0.26 c | ||
| EtOH | 50 | A | 153.35 ± 0.26 | 51.18 ± 0.81 |
| B | 159.82 ± 0.33 a | 43.83 ± 0.58 | ||
| C | 161.19 ± 0.35 a | 41.52 ± 0.30 | ||
| MeOH | 50 | A | 407.15 ± 0.98 | 59.69 ± 0.89 |
| B | 350.16 ± 0.48 | 57.26 ± 0.83 | ||
| C | 328.74 ± 0.63 | 48.69 ± 0.53 | ||
| Water | 100 | A | 566.02 ± 0.87 | 18.07 ± 0.39 a |
| B | 531.76 ± 0.77 | 13.24 ± 0.23 b | ||
| C | 462.55 ± 0.82 | 15.74 ± 0.14 ab |
4. Conclusions
Conflicts of Interest
References
- Davies, K.J. Oxidative stress: The paradox of aerobic life. Biochem. Soc. Symp. 1995, 61, 1–31. [Google Scholar]
- Buxiang, S.; Fukuhara, M. Effects of co-administration of butylatedhydroxytoluene, butylatedhydroxyanisole and flavonoide on the activation of mutagens and drug-metabolizing enzymes in mice. Toxicology 1997, 122, 61–72. [Google Scholar] [CrossRef]
- Hirose, M.; Takesada, Y.; Tanaka, H.; Tamano, S.; Kato, T.; Shirai, T. Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination and modulation of their effects in a rat medium-term multi-organ carcinogensis model. Carcinogenesis 1998, 19, 207–212. [Google Scholar] [CrossRef]
- Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of bran extracts from selected wheat varieties commercially available in Pakistan. LWT Food Sci. Technol. 2007, 40, 361–367. [Google Scholar] [CrossRef]
- Loliger, J. The Use of Antioxidants in Foods. In Free Radicals and Food Additives; Aruoma, O.I., Halliwell, B., Eds.; Taylor Francis: London, UK, 1991; pp. 121–150. [Google Scholar]
- Rababah, T.M.; Hettiarachy, N.S.; Horax, R. Total phenolics and antioxidant activities of feurgreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert-butylhrdroquinone. J. Agric. Food Chem. 2004, 52, 5183–5186. [Google Scholar] [CrossRef]
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar] [CrossRef]
- Potter, J.D.; Steinmetz, K. Vegetables, fruit and phytoestrogens as preventive agents. IARC Sci. Publ. 1996, 139, 61–90. [Google Scholar]
- Halliwell, B. Antioxidants and human disease: A general introduction. Nutr. Rev. 1997, 1, 44–49. [Google Scholar]
- Diplock, A.T.; Charleux, J.L.; Crozier-Willi, G.; Kok, F.J.; Rice-Evans, C.; Roberfroid, M.; Stahl, W.; Viña-Ribes, J. Functional food science and defence against reactive oxidative species. Br. J. Nutr. 1998, 80, 77–112. [Google Scholar] [CrossRef]
- Boots, W.A.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef]
- Valenzuela, A.; Nieto, S.; Cassels, B.K.; Speisky, H. Inhibitory effect of boldine on fish oil oxidation. J. Am. Oil Chem. Soc. 1991, 68, 935–937. [Google Scholar] [CrossRef]
- Halliwell, B.; Aeschbach, R.; Löliger, J.; Aruoma, O.I. The characterisation of antioxidants. Food Chem. Toxicol. 1995, 33, 601–617. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M. The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 1985, 8, 89–193. [Google Scholar] [CrossRef]
- Hanasaki, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Adv. Exp. Med. Biol. 1994, 16, 845–850. [Google Scholar]
- Formica, J.V.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995, 33, 1061–1080. [Google Scholar] [CrossRef]
- Heitzer, T.; Schlinzig, T.; Krohn, K.; Meinertz, T.; Münzel, T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001, 104, 2673–2678. [Google Scholar] [CrossRef]
- Tapiero, H.; Tew, K.D.; Ba, G.N.; Mathé, G. Polyphenols: Do they play a role in the prevention of human pathologies. Biomed. Pharmacother. 2002, 56, 200–207. [Google Scholar] [CrossRef]
- Madamanchi, R.N.; Vendrov, A.; Runge, M.S. Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 29–38. [Google Scholar]
- Azad, N.; Rojanasakul, Y.; Vallyathan, V. Inflammation and lung cancer: Roles of reactive oxygen/nitrogen species. J. Toxicol. Environ. Health B Crit. Rev. 2008, 11, 1–15. [Google Scholar] [CrossRef]
- Davis, P.H. Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1972. [Google Scholar]
- Yeşilada, E. Biodiversity in Turkish Folk Medicine. In Biodiversity: Biomolecular Aspects of Biodiversity and Innovative Utilization; Sener, B., Ed.; Kluwer Academic/Plenum Publishers: London, UK, 2002; pp. 119–135. [Google Scholar]
- Chrubasik, C.; Roufogalis, B.D.; Müller-Ladner, U.; Chrubasik, S. A systematic review on the Rosa canina effect and efficacy profiles. Phytother. Res. 2008, 22, 725–733. [Google Scholar] [CrossRef]
- Barzana, E.; Rubio, D.; Santamaría, R.I.; Garcia-Correa, O.; García, F.; Ridaura-Sanz, V.E.; López-Munguía, A. Enzyme-mediated solvent extraction of carotenoids from mariglod flower (Tageteserecta). J. Agric. Food Chem. 2002, 50, 4491–4496. [Google Scholar]
- Peschel, W.; Sanchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzia, I.; Jimenez, D.; Lamuela-Raventos, R.; Buxaderas, S.; Codina, C. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 2006, 97, 137–150. [Google Scholar] [CrossRef]
- Gao, X.; Björk, L.; Trajkovski, V.; Uggla, M. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J. Sci. Food Agric. 2000, 80, 2021–2027. [Google Scholar] [CrossRef]
- Daels-Rakotoarison, D.A.; Gressier, B.; Trotin, F.; Brunet, C.; Luyckx, M.; Dine, T.; Bailleul, F.; Cazin, M.; Cazin, J.C. Effects of Rosa canina fruit extract on neutrophil respiratory burst. Phytother. Res. 2002, 16, 157–161. [Google Scholar] [CrossRef]
- Lattanzio, F.; Greco, E.; Carretta, D.; Cervellati, R.; Govoni, P.; Speroni, E. In vivo anti-inflammatory effect of Rosa canina L. extract. J. Ethnopharmacol. 2011, 137, 880–885. [Google Scholar]
- Wenzig, E.M.; Widowitz, U.; Kunert, O.; Chrubasik, S.; Bucara, F.; Knauder, F.; Bauer, R. Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) preparations. Phytomedicine 2008, 15, 826–835. [Google Scholar] [CrossRef]
- Malik, N.S.A.; Bradford, J.M. Changes in oleuropein levels during differenciation and development of floral buds in ‘Arbequina’ olives. Sci. Hortic. 2006, 110, 274–278. [Google Scholar] [CrossRef]
- Toma, M.; Vinatoru, M.; Paniwnyk, L.; Mason, T.J. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 2001, 8, 137–142. [Google Scholar] [CrossRef]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Velickovic, D.T.; Milenovic, D.M.; Ristic, M.S.; Veljkovic, V.B. Kinetics of ultrasonic extraction of extractive substances from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage. Ultrason. Sonochem. 2006, 13, 150–156. [Google Scholar] [CrossRef]
- Velickovic, D.T.; Milenovic, D.M.; Ristic, M.S.; Veljkovic, V.B. Ultrasonic extraction of waste solid residues from the Salvia sp. essential oil hydrodistillation. Biochem. Eng. J. 2008, 42, 97–104. [Google Scholar]
- Sultana, B.; Anwar, F.; Ashraf, M. Effects of extraction solvent/technique on the antioidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar]
- Lang, Q.; Wai, C.M. Supercritical fluid extraction in herbal and natural product studies—A practical review. Talanta 2001, 53, 771–782. [Google Scholar] [CrossRef]
- Lang, Q.; Wai, C.M. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Tech. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Spigno, G.; de Faveri, D.M. Microwave-assisted extraction of tea phenols: A phenomenological study. J. Food. Eng. 2009, 93, 210–217. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem. 2007, 104, 1106–1114. [Google Scholar] [CrossRef]
- Floch, F.L.; Tena, M.T.; Rios, A.; Valcarcel, M. Supercritical fluid extraction of phenol compounds from olive leaves. Talanta 1998, 46, 1123–1130. [Google Scholar] [CrossRef]
- Lee, M.R.; Lin, C.Y.; Li, Z.G.; Tsai, T.F. Simultaneous analysis of antioxidants and preservatives in cosmetics by supercritical fluid extraction combined with liquid chromatography-mass spectrometry. J. Chromatogr. A 2006, 1120, 244–251. [Google Scholar] [CrossRef]
- Szentmihalyi, K.; Vinkler, P.; Lakatos, B.; Illes, V.; Then, M. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresour. Technol. 2002, 82, 195–201. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
İlbay, Z.; Şahin, S.; Kirbaşlar, Ş.İ. Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study. Foods 2013, 2, 43-52. https://doi.org/10.3390/foods2010043
İlbay Z, Şahin S, Kirbaşlar Şİ. Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study. Foods. 2013; 2(1):43-52. https://doi.org/10.3390/foods2010043
Chicago/Turabian Styleİlbay, Zeynep, Selin Şahin, and Ş. İsmail Kirbaşlar. 2013. "Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study" Foods 2, no. 1: 43-52. https://doi.org/10.3390/foods2010043
APA Styleİlbay, Z., Şahin, S., & Kirbaşlar, Ş. İ. (2013). Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study. Foods, 2(1), 43-52. https://doi.org/10.3390/foods2010043

