Effect of Additive Removal on the Physicochemical Properties of Gluten-Free Bread
Abstract
1. Introduction
2. Materials and Methods
2.1. Formulations and Ingredients
2.2. Dough Preparation and Baking Process
2.3. Pasting Properties (RVA Analysis)
2.4. Physicochemical Analysis
2.4.1. Baking Loss
2.4.2. Specific Volume
2.4.3. Moisture Content
2.4.4. Water Activity
2.4.5. Crumb Image Analysis
2.4.6. Color Analysis
2.5. Texture Analysis
2.6. Statistical Analyses
3. Results and Discussion
3.1. Effect of Additive Removal
3.1.1. Effect of Additive Removal on Pasting Properties
3.1.2. Physicochemical Analysis of Bread
3.2. Bread Staling During Storage
3.2.1. Texture
3.2.2. Color
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinay, G.M.; Pathiam, S.; Kumar, D.; Prakasha, R. Food Additives and Processing Aids Used in Bread-Making: An Overview. J. Sci. Res. Rep. 2025, 31, 19–36. [Google Scholar] [CrossRef]
- Codină, G.G.; Dabija, A. Trends in Grain Processing for Food Industry; MDPI—Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2025. [Google Scholar]
- Tariverdi, S.; Gharekhani, M. Effect of Sourdough Made With Lactobacillus Amylovorus and Lactobacillus Brevis Starters on the Quality Characteristics of Gluten-Free Bread Based on Corn Flour. J. Food Process. Preserv. 2025, 2025, 6662199. [Google Scholar] [CrossRef]
- Walayat, N.; Blanch, M.; Moreno, H.M. Surimi and Low-Salt Surimi Gelation: Key Components to Enhance the Physicochemical Properties of Gels. Gels 2025, 11, 142. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ali, I.; Manickam, S.; Goh, B.H.; Tao, Y.; Zhang, J.; Tang, S.Y.; Zhang, W. Ultrasound-induced Food Protein-stabilized Emulsions: Exploring the Governing Principles from the Protein Structural Perspective. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70162. [Google Scholar] [CrossRef]
- Pérez de la Lastra, J.M.; González-Acosta, S.; Otazo-Pérez, A.; Asensio-Calavia, P.; Rodríguez-Borges, V.M. Antimicrobial Peptides for Food Protection: Leveraging Edible Mushrooms and Nano-Innovation. Dietetics 2025, 4, 9. [Google Scholar] [CrossRef]
- Vargas, M.C.A.; Simsek, S. Clean Label in Bread. Foods 2021, 10, 2054. [Google Scholar] [CrossRef]
- Montemurro, M.; Pontonio, E.; Rizzello, C.G. Design of a “Clean-Label” Gluten-Free Bread to Meet Consumers Demand. Foods 2021, 10, 462. [Google Scholar] [CrossRef]
- Kajzer, M.; Diowksz, A. The Clean Label Concept: Novel Approaches in Gluten-Free Breadmaking. Appl. Sci. 2021, 11, 6129. [Google Scholar] [CrossRef]
- Akin, P.A.; Miller, R.A. Chemically Leavened Gluten Free Sorghum Bread; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Roman, L.; Belorio, M.; Gomez, M. Gluten-Free Breads: The Gap Between Research and Commercial Reality. Compr. Rev. Food Sci. Food Saf. 2019, 18, 690–702. [Google Scholar] [CrossRef]
- Cheung, P.C.K.; Mehta, B.M. (Eds.) Handbook of Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2015; Volume 11. [Google Scholar]
- Gélinas, P. Inventions on Phosphates for Chemical Leavening. Int. J. Food Sci. Technol. 2022, 57, 2840–2861. [Google Scholar] [CrossRef]
- Enax, J.; Meyer, F.; Schulze zur Wiesche, E.; Epple, M. On the Application of Calcium Phosphate Micro- and Nanoparticles as Food Additive. Nanomaterials 2022, 12, 4075. [Google Scholar] [CrossRef] [PubMed]
- Ritz, E.; Hahn, K.; Ketteler, M.; Kuhlmann, M.K.; Mann, J. Gesundheitsrisiko Durch Phosphatzusätze in Nahrungsmitteln. Dtsch. Arztebl. Int. 2012, 109, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Monié, A.; David, A.; Clemens, K.; Malet-Martino, M.; Balayssac, S.; Perez, E.; Franceschi, S.; Crepin, M.; Delample, M. Enzymatic Hydrolysis of Rapeseed Oil with a Non-GMO Lipase: A Strategy to Substitute Mono- and Diglycerides of Fatty Acids and Improve the Softness of Sponge Cakes. LWT 2021, 137, 110405. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Schmidt, Š. Significance of Emulsifiers and Hydrocolloids in Bakery Industry. Acta Chim. Slovaca 2009, 2, 46–61. [Google Scholar]
- Pareyt, B.; Finnie, S.M.; Putseys, J.A.; Delcour, J.A. Lipids in Bread Making: Sources, Interactions, and Impact on Bread Quality. J. Cereal Sci. 2011, 54, 266–279. [Google Scholar] [CrossRef]
- Stampfli, L.; Nersten, B. Emulsifiers in Bread Making; Wiley: Hoboken, NJ, USA, 1995; Volume 52. [Google Scholar]
- Guven, O.; Sensoy, I.; De Leyn, I.; Dewettinck, K.; Van Bockstaele, F. Psyllium and Monogylceride Addition in Breadmaking: Molecular Interactions, Nano- and Micro-Structural Characterization, Physical Properties, Sensory Properties, and Starch Digestibility. Food Hydrocoll. 2025, 163, 111123. [Google Scholar] [CrossRef]
- Kaur, K.; Singh, N. Amylose-Lipid Complex Formation during Cooking of Rice Flour. Food Chem. 2000, 71, 511–517. [Google Scholar] [CrossRef]
- Lai, H.M. Effects of Rice Properties and Emulsifiers on the Quality of Rice Pasta. J. Sci. Food Agric. 2002, 82, 203–216. [Google Scholar] [CrossRef]
- Chao, C.; Cai, J.; Yu, J.; Copeland, L.; Wang, S.; Wang, S. Toward a Better Understanding of Starch-Monoglyceride-Protein Interactions. J. Agric. Food Chem. 2018, 66, 13253–13259. [Google Scholar] [CrossRef]
- Sawa, K.; Inoue, S.; Lysenko, E.; Edwards, N.M.; Preston, K.R. Effects of Purified Monoglycerides on Canadian Short Process and Sponge and Dough Mixing Properties, Bread Quality and Crumb Firmness during Storage. Food Chem. 2009, 115, 884–890. [Google Scholar] [CrossRef]
- Jyotsna, R.; Soumya, C.; Swati, S.; Prabhasankar, P. Rheology, Texture, Quality Characteristics and Immunochemical Validation of Millet Based Gluten Free Muffins. J. Food Meas. Charact. 2016, 10, 762–772. [Google Scholar] [CrossRef]
- Yeşil, S.; Levent, H. The Effects of Emulsifiers on Quality and Staling Characteristics of Gluten-Free Bread Containing Fermented Buckwheat, Quinoa, and Amaranth. J. Food Process. Preserv. 2022, 46. [Google Scholar] [CrossRef]
- Torres-Pérez, R.; Martínez-García, E.; Siguero-Tudela, M.M.; García-Segovia, P.; Martínez-Monzó, J.; Igual, M. Enhancing Gluten-Free Bread Production: Impact of Hydroxypropyl Methylcellulose, Psyllium Husk Fiber, and Xanthan Gum on Dough Characteristics and Bread Quality. Foods 2024, 13, 1691. [Google Scholar] [CrossRef] [PubMed]
- AACC International. Method 61-02.01: Viscosity Measurement with the Rapid Visco Analyzer; Cereals & Grains Association: Saint Paul, MN, USA, 2000. [Google Scholar]
- Oliveira, D.; Starowicz, M.; Ostaszyk, A.; Łopusiewicz, Ł.; Ferreira, I.M.P.L.V.O.; Pinto, E.; Krupa-Kozak, U. The Improved Quality of Gluten-Free Bread Due to the Use of Flaxseed Oil Cake: A Comprehensive Study Evaluating Nutritional Value, Technological Properties, and Sensory Quality. Foods 2023, 12, 4320. [Google Scholar] [CrossRef] [PubMed]
- AACC International. Method 10-05.01: Guidelines for Measurement of Volume by Rapeseed Displacement; Cereals & Grains Association: Saint Paul, MN, USA, 2010. [Google Scholar]
- AOAC International. AOAC International Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2020. [Google Scholar]
- Sciarini, L.S.; Ribotta, P.D.; León, A.E.; Pérez, G.T. Effect of Hydrocolloids on Gluten-Free Batter Properties and Bread Quality. Int. J. Food Sci. Technol. 2010, 45, 2306–2312. [Google Scholar] [CrossRef]
- Bourne, M.C. Food Texture and Viscosity: Concept and Measurement, 2nd ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Cornejo, F.; Rosell, C.M. Physicochemical Properties of Long Rice Grain Varieties in Relation to Gluten Free Bread Quality. LWT 2015, 62, 1203–1210. [Google Scholar] [CrossRef]
- Acquistucci, R.; Melini, V.; Cecconi, S.; Mecozzi, M. Evaluation of Rheological Properties of Four Italian Rice Samples and Starch Thereof by Rva and Ftir Spectroscopy Supported by Double Two-Dimensional Correlation Analysis: Evidence of Lipid-Carbohydrate Interactions. Cereal Chem. 2016, 93, 456–464. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, G.G. Effects of Phosphate Salts on the PH Values and Rapid Visco Analyser (RVA) Pasting Parameters of Wheat Flour Suspensions. Cereal Chem. 2012, 89, 38–43. [Google Scholar] [CrossRef]
- Karim, A.A.; Nadiha, M.Z.; Chen, F.K.; Phuah, Y.P.; Chui, Y.M.; Fazilah, A. Pasting and Retrogradation Properties of Alkali-Treated Sago (Metroxylon sagu) Starch. Food Hydrocoll. 2008, 22, 1044–1053. [Google Scholar] [CrossRef]
- Lai, L.N.; Karim, A.A.; Norziah, M.H.; Seow, C.C. Effects of Na2CO3 and NaOH on Pasting Properties of Selected Native Cereal Starches. J. Food Sci. 2004, 69, FCT249–FCT256. [Google Scholar] [CrossRef]
- Rafiq, S.I.; Singh, S.; Saxena, D.C. Effect of Alkali-Treatment on Physicochemical, Pasting, Thermal, Morphological and Structural Properties of Horse Chestnut (Aesculus indica) Starch. J. Food Meas. Charact. 2016, 10, 676–684. [Google Scholar] [CrossRef]
- Xiao, W.; Ding, Y.; Cheng, Y.; Xu, S.; Lin, L. Effect of Sodium Bicarbonate on the Physicochemical Properties of Fermented Rice Flour and Quality Characteristics of Fermented Semi-Dried Rice Noodles. Front. Nutr. 2023, 10, 1100422. [Google Scholar] [CrossRef] [PubMed]
- Belorio, M.; Marcondes, G.; Gómez, M. Influence of Psyllium versus Xanthan Gum in Starch Properties. Food Hydrocoll. 2020, 105, 105843. [Google Scholar] [CrossRef]
- Mancebo, C.M.; San Miguel, M.Á.; Martínez, M.M.; Gómez, M. Optimisation of Rheological Properties of Gluten-Free Doughs with HPMC, Psyllium and Different Levels of Water. J. Cereal Sci. 2015, 61, 8–15. [Google Scholar] [CrossRef]
- Collar, C.; Conte, P.; Fadda, C.; Piga, A. Gluten-Free Dough-Making of Specialty Breads: Significance of Blended Starches, Flours and Additives on Dough Behaviour. Food Sci. Technol. Int. 2015, 21, 523–536. [Google Scholar] [CrossRef]
- Chaisawang, M.; Suphantharika, M. Pasting and Rheological Properties of Native and Anionic Tapioca Starches as Modified by Guar Gum and Xanthan Gum. Food Hydrocoll. 2006, 20, 641–649. [Google Scholar] [CrossRef]
- Zhou, Z.; Robards, K.; Helliwell, S.; Blanchard, C. Effect of the Addition of Fatty Acids on Rice Starch Properties. Food Res. Int. 2007, 40, 209–214. [Google Scholar] [CrossRef]
- Hager, A.S.; Arendt, E.K. Influence of Hydroxypropylmethylcellulose (HPMC), Xanthan Gum and Their Combination on Loaf Specific Volume, Crumb Hardness and Crumb Grain Characteristics of Gluten-Free Breads Based on Rice, Maize, Teff and Buckwheat. Food Hydrocoll. 2013, 32, 195–203. [Google Scholar] [CrossRef]
- Cepeda, M.; Waniska, R.D.; Rooney, L.W.; Bejosano, F.P. Effects of Leavening Acids and Dough Temperature in Wheat Flour Tortillas. Cereal Chem. 2000, 77, 489–494. [Google Scholar] [CrossRef]
- Hellsten, A. Attempt to Increasing Freshness in Gluten-Free Tin Bread by Adding Distilled Monoglycerides, α-Amylase and Glucose Oxidase. Master’s Thesis, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden, 2019. [Google Scholar]
- Nunes, M.H.B.; Moore, M.M.; Ryan, L.A.M.; Arendt, E.K. Impact of Emulsifiers on the Quality and Rheological Properties of Gluten-Free Breads and Batters. Eur. Food Res. Technol. 2009, 228, 633–642. [Google Scholar] [CrossRef]
- Gómez, M.; del Real, S.; Rosell, C.M.; Ronda, F.; Blanco, C.A.; Caballero, P.A. Functionality of Different Emulsifiers on the Performance of Breadmaking and Wheat Bread Quality. Eur. Food Res. Technol. 2004, 219, 145–150. [Google Scholar] [CrossRef]
- Blanco, C.A.; Ronda, F.; Pérez, B.; Pando, V. Improving Gluten-Free Bread Quality by Enrichment with Acidic Food Ad-ditives. Food Chem. 2011, 127, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Ndjang, M.M.N.; Klang, J.M.; Njapndounke, B.; Foko, M.E.K.; Dongmo, J.R.; Kamdem, M.H.K.; Tonga, J.L.; Mmutlane, E.M.; Ndinteh, D.T.; Kayitesi, E.; et al. Effect of Gum Extracts on the Bread-Making and Textural Properties of Dough and Bread Made from Sour Cassava Starch (Manihot esculenta), Peanut (Arachis hypogaea) and Cowpea Flour (Vigna unguiculata). Food Hydrocoll. Health 2024, 5, 100179. [Google Scholar] [CrossRef]
- Mezaize, S.; Chevallier, S.; Le Bail, A.; De Lamballerie, M. Optimization of Gluten-Free Formulations for French-Style Breads. J. Food Sci. 2009, 74, E140–E146. [Google Scholar] [CrossRef]
- Molina-Montero, C.; Vicente-Jurado, D.; Igual, M.; Martínez-Monzó, J.; García-Segovia, P. Fiber Enrichment of 3D Printed Apricot Gel Snacks with Orange By-Products. Gels 2023, 9, 569. [Google Scholar] [CrossRef]
- Heenan, S.P.; Hamid, N.; Dufour, J.P.; Harvey, W.; Delahunty, C.M. Consumer Freshness Perceptions of Breads, Biscuits and Cakes. Food Qual. Prefer. 2009, 20, 380–390. [Google Scholar] [CrossRef]
- Carson, L.; Sun, X.S. Creep-Recovery of Bread and Correlation to Sensory Measurements of Textural Attributes. Cereal Chem. 2001, 78, 101–104. [Google Scholar] [CrossRef]
- Mahdi Seyedain Ardebili, S.; Hassan Asadi, G.; Larijani, K.; Zolfaghari, M. Evaluating the Effects of Sourdough, Bakery Yeast and Sodium Bicarbonate on Texture, Volatile Compounds and Staling of Barbari Bread. Hacet. J. Biol. Chem. 2015, 4, 283–293. [Google Scholar] [CrossRef]
- Zolfaghari, M.S.; Asadi, G.; Ardebili, S.M.S.; Larijani, K. Evaluation and Comparison of Different Dough Leavening Agents on Quality of Lavash Bread. J. Food Meas. Charact. 2017, 11, 93–98. [Google Scholar] [CrossRef]
- Nami, Y.; Gharekhani, M.; Aalami, M.; Hejazi, M.A. Lactobacillus-Fermented Sourdoughs Improve the Quality of Gluten-Free Bread Made from Pearl Millet Flour. J. Food Sci. Technol. 2019, 56, 4057–4067. [Google Scholar] [CrossRef]
- Chinachoti, P. Preventing Bread Staling. In Bread Making: Improving Quality; Woodhead Publishing: Cambridge, UK, 2003; pp. 562–574. [Google Scholar] [CrossRef]
- Roman, L.; Gomez, M.; Martinez, M.M. Mesoscale Structuring of Gluten-Free Bread with Starch. Curr. Opin. Food Sci. 2021, 38, 189–195. [Google Scholar] [CrossRef]
- He, H.; Hoseney, R.C. Changes in Bread Firmness and Moisture During Long-Term Storage. Cereal Chem. 1990, 67, 603–605. [Google Scholar]
- Gray, J.A.; Bemiller, J.N. Bread Staling: Molecular Basis and Control. Compr. Rev. Food Sci. Food Saf. 2003, 2, 1–21. [Google Scholar] [CrossRef]
- Besbes, E.; Jury, V.; Monteau, J.Y.; Le Bail, A. Effect of Baking Conditions and Storage with Crust on the Moisture Profile, Local Textural Properties and Staling Kinetics of Pan Bread. LWT 2014, 58, 658–666. [Google Scholar] [CrossRef]






| Formulation | ||||
|---|---|---|---|---|
| Ingredient | RF | FA | FB | FC |
| Gluten-free bread mix | 100 | 100 | 100 | 100 |
| Monocalcium phosphate | 1 | 0 | 0 | 0 |
| Sodium bicarbonate | 0.7 | 0.7 | 0 | 0 |
| Mono- and diglycerides of fatty acids | 0.3 | 0.3 | 0.3 | 0 |
| Formulation | RF | FA | FB | FC |
|---|---|---|---|---|
| Pasting Temperature (°C) | 73.50 ± 1.13 b | 74 ± 2 b | 74 ± 3 b | 50.19 ± 0.06 a |
| Peak Time (min) | 4.84 ± 0.05 a | 5.1 ± 0.5 a | 5.3 ± 0.3 a | 4.71 ± 0.05 a |
| Peak Viscosity (cP) | 4186 ± 416 a | 4025 ± 159 a | 3907 ± 7 a | 4153 ± 15 a |
| Trough (cP) | 2219 ± 130 a | 2733 ± 143 b | 2412 ± 312 ab | 2562 ± 31 ab |
| Breakdown (cP) | 1967 ± 286 b | 1292 ± 16 a | 1496 ± 305 ab | 1592 ± 46 ab |
| Final Viscosity (cP) | 3026 ± 302 a | 3659 ± 507 a | 3384 ± 118 a | 3408 ± 21 a |
| Setback (cP) | 807 ± 432 a | 926 ± 364 a | 972 ± 430 a | 846 ± 10 a |
| Formulation | RF | FA | FB | FC |
|---|---|---|---|---|
| Bake Loss (%) | 8 ± 3 a | 10 ± 2 a | 9.2 ± 1.9 a | 9 ± 3 a |
| Specific volume (cm3/g) | 3.0 ± 0.2 b | 2.9 ± 0.3 ab | 2.8 ± 0.2 a | 3.3 ± 0.4 c |
| Bread CM (%) | 44.8 ± 0.4 ab | 45.2 ± 0.3 b | 43.4 ± 1.8 a | 45.0 ± 1.5 ab |
| Bread aw | 0.984 ± 0.005 a | 0.986 ± 0.007 a | 0.988 ± 0.003 a | 0.986 ± 0.004 a |
| Total Cells | 969 ± 102 a | 1058 ± 103 b | 1048 ± 46 ab | 983 ± 57 ab |
| Area cell media (mm2) | 0.73 ± 0.07 b | 0.73 ± 0.09 b | 0.64 ± 0.03 a | 0.71 ± 0.06 ab |
| Small cells | 907 ± 107 a | 991 ± 116 ab | 1002 ± 53 b | 928 ± 59 ab |
| Large cells | 62 ± 12 b | 68 ± 14 b | 47 ± 8 a | 55 ± 12 ab |
| Void Fraction (%) | 28 ± 2 a | 30.4 ± 1.8 b | 27.0 ± 0.5 a | 28 ± 2 a |
| Formulation | RF | FA | FB | FC | |
|---|---|---|---|---|---|
| Crumb | L* | 70 ± 3 ab | 69 ± 2 a | 72.8 ± 1.2 b | 70 ± 4 ab |
| a* | −0.5 ± 0.3 a | 1.2 ± 0.6 b | −0.2 ± 0.3 a | −0.3 ± 0.4 a | |
| b* | 11 ± 2 ab | 14.4 ± 1.4 c | 12.8 ± 0.9 bc | 10.8± 1.4 a | |
| ∆E1* | - | 3.9 ± 1.8 a | 3.6 ± 0.8 a | 3.1 ± 1.8 a | |
| Crust | L* | 53 ± 5 a | 53 ± 3 a | 55 ± 2 ab | 58 ± 4 b |
| a* | 8.98 ± 1.13 a | 10.8 ± 1.4 ab | 12 ± 2 b | 10 ± 3 ab | |
| b* | 20.8 ± 0.6 a | 26 ± 5 ab | 29 ± 5 b | 26 ± 6 ab | |
| ∆E1* | - | 7 ± 3 a | 10 ± 3 a | 9 ± 3 a | |
| Parameter | RF | FA | FB | FC |
|---|---|---|---|---|
| Crumb Hardness (N) | 18 ± 4 a | 30 ± 4 c | 37.9 ± 1.2 d | 22 ± 4 b |
| Crumb Cohesiveness | 0.66 ± 0.03 ab | 0.68 ± 0.08 b | 0.62 ± 0.02 a | 0.66 ± 0.03 ab |
| Crumb Springiness | 0.95 ± 0.02 ab | 0.939 ± 0.013 ab | 0.97 ± 0.02 a | 0.98 ± 0.02 b |
| Crumb Chewiness (N) | 11 ± 2 a | 19.7 ± 4.0 c | 22.0 ± 0.8 c | 14.3 ± 1.9 b |
| Crumb Gumminess (N) | 12 ± 2 a | 21 ± 4 c | 23.5± 1.2 d | 14.8 ± 1.9 b |
| Crust Puncture Force (N) | 1.21 ± 0.16 ab | 1.58 ± 0.19 c | 1.4 ± 0.3 bc | 1.2 ± 0.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Torres-Pérez, R.; Siguero-Tudela, M.M.; Doménech, T.; García-Segovia, P.; Martínez-Monzó, J.; Igual, M. Effect of Additive Removal on the Physicochemical Properties of Gluten-Free Bread. Foods 2026, 15, 338. https://doi.org/10.3390/foods15020338
Torres-Pérez R, Siguero-Tudela MM, Doménech T, García-Segovia P, Martínez-Monzó J, Igual M. Effect of Additive Removal on the Physicochemical Properties of Gluten-Free Bread. Foods. 2026; 15(2):338. https://doi.org/10.3390/foods15020338
Chicago/Turabian StyleTorres-Pérez, Ramón, Marta Maravilla Siguero-Tudela, Tania Doménech, Purificación García-Segovia, Javier Martínez-Monzó, and Marta Igual. 2026. "Effect of Additive Removal on the Physicochemical Properties of Gluten-Free Bread" Foods 15, no. 2: 338. https://doi.org/10.3390/foods15020338
APA StyleTorres-Pérez, R., Siguero-Tudela, M. M., Doménech, T., García-Segovia, P., Martínez-Monzó, J., & Igual, M. (2026). Effect of Additive Removal on the Physicochemical Properties of Gluten-Free Bread. Foods, 15(2), 338. https://doi.org/10.3390/foods15020338

