The Effect of Different Particle Size Distribution on the Quality of Rice Flour
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Rice Flour Preparation
2.3. Chemical Compositions
2.4. Particle Size Distributions
2.5. Color Properties
2.6. Water Absorption, Water Solubility, Swelling Power
2.7. Scanning Electron Microscopy
2.8. Pasting Properties
2.9. Thermal Properties Measurement
2.10. Rheological Properties Measurement
2.11. X-Ray Diffraction (XRD)
2.12. Statistical Analysis
3. Results and Discussion
3.1. Particle Size Distributions of Rice Flours
3.2. Chemical Compositions
3.3. Color of Rice Flours
3.4. Hydration Properties Analysis
3.5. Pasting Properties
3.6. Thermal Properties
3.7. Rheological Properties
3.8. X-Ray
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bin Rahman, A.N.M.R.; Zhang, J. Trends in rice research: 2030 and beyond. Food Energy Secur. 2022, 12, e390. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, X. Understanding Global Rice Trade Flows: Network Evolution and Implications. Foods 2023, 12, 3298. [Google Scholar] [CrossRef]
- Ding, X.-L.; Wang, L.-J.; Li, T.-T.; Wang, F.; Quan, Z.-Y.; Zhou, M.; Huo, Z.-Y.; Qian, J.-Y. Pre-Gelatinisation of Rice Flour and Its Effect on the Properties of Gluten Free Rice Bread and Its Batter. Foods 2021, 10, 2648. [Google Scholar] [CrossRef] [PubMed]
- Akbari-Adergani, B.; Shahbazi, R.; Esfandiari, Z.; Kamankesh, M.; Vakili Saatloo, N.; Abedini, A.; Ramezankhani, R.; Sadighara, P. Acrylamide content of industrial and traditional popcorn collected from Tehran’s market, Iran: A risk assessment study. J. Food Prot. 2023, 86, 100001. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Tan, Y.; Luo, S.; Zhou, J.; Xu, T.; Zou, J.; Ke, L.; Yu, J.; Zhang, S.; Zhou, J.; et al. Food nanoparticles from rice vinegar: Isolation, characterization, and antioxidant activities. npj Sci. Food 2022, 6, 1. [Google Scholar] [CrossRef]
- Wang, G.; Yan, X.; Wang, B.; Hu, X.; Chen, X.; Ding, W. Effects of milling methods on the properties of rice flour and steamed rice cakes. LWT 2022, 167, 113848. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, F.; Xu, D.; Xu, X. Effects of milling methods on the properties of glutinous rice flour and sweet dumplings. J. Food Sci. Technol. 2020, 58, 1848–1857. [Google Scholar] [CrossRef]
- Cho, S.-H.; Lee, B.-H.; Eun, J.-B. Physicochemical properties of dry- and semi-wet-milled rice flours after fermentation by Lactobacillus amylovorus. J. Cereal Sci. 2019, 85, 15–19. [Google Scholar] [CrossRef]
- Fang, S.; Chen, M.; Xu, F.; Liu, F.; Zhong, F. The Possibility of Replacing Wet-Milling with Dry-Milling in the Production of Waxy Rice Flour for the Application in Waxy Rice Ball. Foods 2023, 12, 280. [Google Scholar] [CrossRef]
- Yan, X.; Liu, C.; Huang, A.; Chen, R.; Chen, J.; Luo, S. The nutritional components and physicochemical properties of brown rice flour ground by a novel low temperature impact mill. J. Cereal Sci. 2020, 92, 102927. [Google Scholar] [CrossRef]
- Tong, L.-T.; Zhu, R.; Zhou, X.; Zhong, K.; Wang, L.; Liu, L.; Hu, X.; Zhou, S. Soaking time of rice in semidry flour milling was shortened by increasing the grains cracks. J. Cereal Sci. 2017, 74, 121–126. [Google Scholar] [CrossRef]
- Tong, L.T.; Gao, X.; Zhou, X.; Zhong, K.; Liu, L.; Wang, L.; Zhou, S. Milling of Glutinous Rice by Semidry Method to Produce Sweet Dumplings. J. Food Process Eng. 2015, 39, 330–334. [Google Scholar] [CrossRef]
- Lin, Z.; Geng, D.-H.; Qin, W.; Huang, J.; Wang, L.; Liu, L.; Tong, L.-T. Effects of damaged starch on glutinous rice flour properties and sweet dumpling qualities. Int. J. Biol. Macromol. 2021, 181, 390–397. [Google Scholar] [CrossRef]
- Qin, W.; Lin, Z.; Wang, A.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Wang, F.; Tong, L.-T. Influence of particle size on the properties of rice flour and quality of gluten-free rice bread. LWT 2021, 151, 112236. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, J.; Jin, Z.; Tian, Y.; Zhou, X.; Long, J. Improvement of rice bran modified by extrusion combined with ball milling on the quality of steamed brown rice cake. J. Cereal Sci. 2021, 99, 103229. [Google Scholar] [CrossRef]
- Kim, M.; Oh, I.; Jeong, S.; Lee, S. Particle size effect of rice flour in a rice-zein noodle system for gluten-free noodles slit from sheeted doughs. J. Cereal Sci. 2019, 86, 48–53. [Google Scholar] [CrossRef]
- Zhou, W.; Song, J.; Zhang, B.; Zhao, L.; Hu, Z.; Wang, K. The impacts of particle size on starch structural characteristics and oil-binding ability of rice flour subjected to dry heating treatment. Carbohydr. Polym. 2019, 223, 115053. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Chen, W.; Zhu, H.; Yi, C.; Yuan, J.; Liu, Y.; Li, Z.; Cheng, H. Digestibility of indica rice and structural changes of rice starch during fermentation by Lactobacillus plantarum. LWT 2023, 187, 115392. [Google Scholar] [CrossRef]
- Koksel, H.; Cetiner, B.; Shamanin, V.P.; Tekin-Cakmak, Z.H.; Pototskaya, I.V.; Kahraman, K.; Sagdic, O.; Morgounov, A.I. Quality, Nutritional Properties, and Glycemic Index of Colored Whole Wheat Breads. Foods 2023, 12, 3376. [Google Scholar] [CrossRef]
- Abebe, W.; Collar, C.; Ronda, F. Impact of variety type and particle size distribution on starch enzymatic hydrolysis and functional properties of tef flours. Carbohydr. Polym. 2015, 115, 260–268. [Google Scholar] [CrossRef]
- Pan, Z.; Huang, Z.; Ma, J.; Lei, M.; Tian, P.; Ai, Z. Effects of freezing treatments on the quality of frozen cooked noodles. J. Food Sci. Technol. 2019, 57, 1926–1935. [Google Scholar] [CrossRef]
- Zuo, Y.; Zou, F.; Yang, M.; Xu, G.; Wu, J.; Wang, L.; Wang, H. Effects of plasma-activated water combined with ultrasonic treatment of corn starch on structural, thermal, physicochemical, functional, and pasting properties. Ultrason. Sonochemistry 2024, 108, 106963. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, J.; Wang, C.; Li, Y.; Bai, Z.; Luo, D.; Hu, Y.; Chen, S. Effects of konjac glucomannan and freezing on thermal properties, rheology, digestibility and microstructure of starch isolated from wheat dough. LWT 2023, 177, 114588. [Google Scholar] [CrossRef]
- Yang, M.; Chang, L.; Jiang, F.; Zhao, N.; Zheng, P.; Simbo, J.; Yu, X.; Du, S.-k. Structural, physicochemical and rheological properties of starches isolated from banana varieties (Musa spp.). Food Chem. X 2022, 16, 100473. [Google Scholar] [CrossRef]
- Pozo, C.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.; Restrepo, I. Study of the structural order of native starch granules using combined FTIR and XRD analysis. J. Polym. Res. 2018, 25, 266. [Google Scholar] [CrossRef]
- Asmeda, R.; Noorlaila, A.; Norziah, M.H. Relationships of damaged starch granules and particle size distribution with pasting and thermal profiles of milled MR263 rice flour. Food Chem. 2016, 191, 45–51. [Google Scholar] [CrossRef]
- Yu, D.; Chen, J.; Ma, J.; Sun, H.; Yuan, Y.; Ju, Q.; Teng, Y.; Yang, M.; Li, W.; Fujita, K.; et al. Effects of different milling methods on physicochemical properties of common buckwheat flour. LWT 2018, 92, 220–226. [Google Scholar] [CrossRef]
- Barrera, G.N.; Tadini, C.C.; León, A.E.; Ribotta, P.D. Use of alpha-amylase and amyloglucosidase combinations to minimize the bread quality problems caused by high levels of damaged starch. J. Food Sci. Technol. 2016, 53, 3675–3684. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, L.; Zheng, X. A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chem. 2020, 315, 126267. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Prasad, K. Effect of grinding methods for flour characterisation of Pusa 1121 basmati rice brokens. J. Food Meas. Charact. 2015, 10, 80–87. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Jassar, S.; Thomas, L. A comparison in rheological, thermal, and structural properties between Indian Basmati and Egyptian Giza rice flour dispersions as influenced by particle size. Food Hydrocoll. 2015, 48, 72–83. [Google Scholar] [CrossRef]



| Rice Sample | D10 (μm) | D50 (μm) | D90 (μm) | Fat (%) | Ash (%) | Protein (%) | Total Starch (%) | Amylose (%) | AI (%) |
|---|---|---|---|---|---|---|---|---|---|
| A | 47.40 ± 0.05 a | 97.19 ± 0.69 a | 166.34 ± 0.78 a | 0.60 ± 0.00 a | 0.62 ± 0.01 a | 9.03 ± 0.13 a | 80.87 ± 0.10 a | 21.47 ± 0.01 a | 82.48 ± 0.37 e |
| B | 45.44 ± 0.28 b | 90.78 ± 0.59 b | 154.18 ± 0.92 b | 0.62 ± 0.04 a | 0.59 ± 0.00 a | 8.97 ± 0.04 a | 80.49 ± 0.58 a | 21.14 ± 0.17 a | 83.68 ± 0.13 d |
| C | 44.61 ± 0.22 b | 87.63 ± 0.49 c | 149.37 ± 0.98 c | 0.60 ± 0.030 a | 0.61 ± 0.01 a | 8.95 ± 0.01 a | 80.09 ± 0.32 a | 21.75 ± 0.01 a | 85.23 ± 0.15 c |
| D | 37.63 ± 1.35 c | 76.26 ± 1.43 d | 131.5 ± 1.61 d | 0.61 ± 0.01 a | 0.61 ± 0.05 a | 8.91 ± 0.05 a | 80.76 ± 0.36 a | 21.86 ± 0.54 a | 87.47 ± 0.03 b |
| E | 35.01 ± 0.13 d | 68.56 ± 0.13 e | 118.65 ± 1.83 e | 0.63 ± 0.02 a | 0.65 ± 0.01 a | 8.87 ± 0.05 a | 80.31 ± 0.43 a | 21.81 ± 0.4 a | 88.74 ± 0.06 a |
| Rice Sample | WAI (g/g) | WS (%) | SP (g/g) | L* | a* | b* | Whiteness | |||
|---|---|---|---|---|---|---|---|---|---|---|
| 25 °C | 100 °C | 25 °C | 100 °C | 25 °C | 100 °C | |||||
| A | 2.07 ± 0.15 a | 9.82 ± 0.10 c | 3.44 ± 0.16 a | 13.65 ± 0.60 b | 2.16 ± 0.17 a | 11.37 ± 0.04 d | 90.48 ± 0.06 d | 3.24 ± 0.01 b | 0.09 ± 0.04 a | 89.94 ± 0.05 d |
| B | 2.19 ± 0.08 a | 10.60 ± 0.07 b | 3.57 ± 0.17 a | 14.86 ± 1.28 ab | 2.27 ± 0.09 a | 12.45 ± 0.11 c | 90.77 ± 0.02 c | 3.27 ± 0.01 a | −0.29 ± 0.01 b | 90.20 ± 0.02 c |
| C | 2.23 ± 0.03 a | 10.89 ± 0.03 a | 3.74 ± 0.34 a | 14.24 ± 0.13 ab | 2.31 ± 0.04 a | 12.70 ± 0.06 bc | 90.82 ± 0.12 bc | 3.24 ± 0.01 b | −0.36 ± 0.06 b | 90.26 ± 0.11 bc |
| D | 2.36 ± 0.06 a | 11.00 ± 0.19 a | 3.84 ± 0.23 a | 15.64 ± 0.26 a | 2.44 ± 0.06 a | 13.04 ± 0.19 a | 90.96 ± 0.04 ab | 3.24 ± 0.00 b | −0.61 ± 0.03 c | 90.37 ± 0.03 ab |
| E | 2.33 ± 0.26 a | 10.96 ± 0.04 a | 4.07 ± 0.73 a | 14.65 ± 0.25 ab | 2.43 ± 0.28 a | 12.84 ± 0.01 ab | 91.12 ± 0.04 a | 3.25 ± 0.01 b | −0.63 ± 0.01 c | 90.52 ± 0.03 a |
| Rice Sample | PV (cP) | TV (cP) | BV (cP) | FV (cP) | SV (cP) | PT (°C) | To (°C) | TP (°C) | TC (°C) | ΔH (J/g) |
|---|---|---|---|---|---|---|---|---|---|---|
| A | 3768.50 ± 23.33 a | 2858.51 ± 30.41 a | 910.00 ± 7.07 a | 5785.52 ± 2.12 a | 2927.01 ± 32.53 a | 81.53 ± 0.67 a | 73.62 ± 0.08 a | 77.90 ± 0.18 a | 86.58 ± 0.09 a | 11.12 ± 0.06 a |
| B | 3625.52 ± 43.13 b | 2843.30 ± 206.48 a | 782.53 ± 163.34 a | 5600.51 ± 149.20 a | 2757.51 ± 57.28 b | 81.10 ± 0.00 ab | 73.39 ± 0.21 ab | 77.79 ± 0.28 ab | 86.36 ± 0.13 a | 10.91 ± 0.08 a |
| C | 3528.0 ± 63.64 bc | 2727.03 ± 0.00 a | 801.06 ± 63.64 ab | 4953.53 ± 9.19 b | 2216.52 ± 23.33 c | 79.93 ± 0.53 b | 73.09 ± 0.04 b | 77.40 ± 0.01 b | 86.36 ± 0.34 a | 10.49 ± 0.05 b |
| D | 3482.05 ± 0.00 c | 2806.51 ± 68.59 a | 675.51 ± 68.59 b | 4831.50 ± 2.12 b | 2025.02 ± 70.71 d | 80.30 ± 0.07 b | 73.16 ± 0.04 b | 77.37 ± 0.13 b | 86.34 ± 0.11 a | 9.15 ± 0.13 c |
| E | 3531.51 ± 60.10 bc | 2867.02 ± 38.18 a | 664.51 ± 21.92 b | 4925.51 ± 86.97 b | 2058.50 ± 48.79 d | 79.90 ± 0.57 b | 73.18 ± 0.24 b | 77.50 ± 0.03 ab | 85.46 ± 0.25 b | 8.29 ± 0.23 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yue, Q.; Song, X.; Yang, Y.; Qin, J.; Li, Y.; Wang, X.; Lin, J. The Effect of Different Particle Size Distribution on the Quality of Rice Flour. Foods 2026, 15, 204. https://doi.org/10.3390/foods15020204
Yue Q, Song X, Yang Y, Qin J, Li Y, Wang X, Lin J. The Effect of Different Particle Size Distribution on the Quality of Rice Flour. Foods. 2026; 15(2):204. https://doi.org/10.3390/foods15020204
Chicago/Turabian StyleYue, Qinghua, Xiya Song, Yuxia Yang, Jingwen Qin, Yue Li, Xunda Wang, and Jiangtao Lin. 2026. "The Effect of Different Particle Size Distribution on the Quality of Rice Flour" Foods 15, no. 2: 204. https://doi.org/10.3390/foods15020204
APA StyleYue, Q., Song, X., Yang, Y., Qin, J., Li, Y., Wang, X., & Lin, J. (2026). The Effect of Different Particle Size Distribution on the Quality of Rice Flour. Foods, 15(2), 204. https://doi.org/10.3390/foods15020204
