One Health Approaches to Ethical, Secure, and Sustainable Food Systems and Ecosystems: Plant-Based Diets and Livestock in the African Context
Abstract
1. Introduction
2. Methodology
3. Addressing Food Systems Complexities and Ethical Food Consumption
4. Advancing Nutritional and Environmental Awareness
4.1. Key Methods of Knowledge Dissemination in Nutrition and Sustainability
4.2. Media and Digital Platforms: Social Media, Documentaries, and Awareness Campaigns
4.3. Public Policies and Food Labels: Helping People Make Greener Choices
4.4. Scientific Research and Public Engagement: Bridging the Gap Between Academia and the Public
5. Challenges in Spreading Nutritional and Environmental Knowledge
5.1. The Conflict Between Industry Narratives and Scientific Facts
5.2. Psychological Obstacles to Dietary Change
6. Economic and Political Influences on Food Systems
7. Raising Awareness About Animal Rights and Welfare
8. Encouraging Plant-Based Diets or Traditional Meat Proteins Through Education and Commercial Promotion
9. Supporting Agri-Food Reform by Informing Policymakers and Consumers
10. Promotion of Plant-Based Food Research, Commercialization, and Consumption
11. Fostering Social Inclusion and Positive Recognition of Vegan Identity
12. A Paradigm for a Sustainable and Healthy Future in Africa Through the One Health Approach
12.1. Regional Disparities and Trade-Offs in African Food Systems
12.2. Trade-Offs in Plant-Based Diets vs. Livestock Production
12.3. Impacts on Inequality and Social Division
| OH-JPA (2022–2026) Action Track | Name of the African Country | Main Focus(es) | Research Outcome(s) | Reference | |
|---|---|---|---|---|---|
| 1 | Improving the One Health approach to build stronger health systems | Uganda | One Health approach to health security | Investing in the funding gaps reinforces Uganda’s health security | [175] |
| Ethiopia | Implementation of the OH approach | Understaffing, underfunding of institutions, limitation of interdisciplinary cooperation, collaboration, and coordination among animal and human health practitioners are obstacles | [170] | ||
| 2 | Minimizing the widespread threats posed by new and recurring animal-borne diseases | All Africa | Urbanization, armed conflict, and deforestation | Increased risks of zoonotic infections on the environment, animal health, and human health | [171] |
| Limitations in the detection of new infectious disease outbreaks in the community, in rapid pathogen identification, and in proactive surveillance systems | Main gaps in public health readiness, detection, and response systems The main paradigm shift is required to develop an effective infrastructure and common frameworks | [199] | |||
| 3 | Manage and eradicate endemic zoonotic, neglected tropical, and vector-borne diseases | African Union member states | Controlling the continental strategy for zoonotic disease | Raising awareness, commitments, and creating policy influence | [172] |
| Sustainable and effective strategies for post-elimination control of neglected tropical diseases | Post-elimination control of NTDs remained as challenging | [174] | |||
| Sub-Saharan Africa | Urbanization, fast population growth, increased demand for animal food, and natural habitats invasions | Infectious disease outbreaks are caused by zoonotic pathogens | [176] | ||
| Interventions against neglected tropical diseases | Insecticide resistance, multiplicity of vector species, changes in vector behavior, and cost | [200] | |||
| Vector-borne helminthiases: onchocerciasis, lymphatic filariasis, loiasis, and mansonellosis | Onchocerciasis and lymphatic filariasis have established global elimination programs Loiasis and Mansonellosis have largely been neglected and do not have large-scale control programs | [201] | |||
| Zambia | Zoonotic transmission of vector-borne pathogens in humans | The occurrence of many vector-borne zoonotic pathogens circulating in vectors and animals | [202] | ||
| 4 | Enhancing food safety risk analysis, management, and communication | Sub-Saharan Africa | Food fraud threatens food safety and security | High production costs, weak regulatory systems, cultural practices, and technological limitations | [203] |
| Waste management practices by street vendors and factors influencing their mismanagement | A lack of recognition and comprehensive laws and regulations to monitor waste management | [204] | |||
| Effects of emerging technologies (genetically modified organisms, nanotechnology, and vertical farming) on food safety | Requirements of an integrated set of policy approaches, farmers’ food safety education, incorporate regulations, organizations, and multidisciplinary research | [173] | |||
| Meat value chains and prevalent risks | Limitations in policy actors and the incorporation of a participatory approach in the street-vending sector | [205] | |||
| Nigeria and Ghana | Harnessing food safety | Weak enforcement of food safety laws is contributing to complications in the food production chain | [206] | ||
| 5 | Combating the quiet crisis of antimicrobial resistance | Developing countries in Africa | Fundamental conflicts that complicate efforts to control the proliferation of antimicrobial resistance | Antimicrobial resistance policies and actions require balancing the interests of all relevant stakeholders, considering the interests and wellbeing of future generations | [207] |
| Sub-Saharan Africa | Antimicrobial resistance’s causes and challenges in implementing prevention measures | Weak antimicrobial resistance surveillance and absence of collaboration, irrational use of antibiotics, poor medicine regulatory systems, lack of infrastructural and institutional capacities, deficiency of human resources, and inefficient infection prevention and control (IPC) practices | [208] | ||
| 6 | Ensuring One Health and environmental integration | Sub-Saharan Africa | Integrated One Health on preventing and managing zoonotic and environmental health threats | Integrating One Health in national agendas and a unified continental framework is required | [209] |
| Push-pull technology to sustain vegetable production and maintain soil health and fertility, human and animal nutrition, and food safety | The cropping system could contribute to eradicating zoonotic diseases by incorporating companion plants that fend off disease vectors | [210] | |||
| Nigeria | One Health framework to mitigate cholera outbreaks through integration of human, animal, and environmental health | The One Health framework enables understanding of cholera dynamics and promotes sustainable solutions to deter future outbreaks | [211] | ||
13. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lang, T.; Mason, P. Sustainable diet policy development: Implications of multi-criteria and other approaches, 2008–2017. Proc. Nutr. Soc. 2018, 77, 331–346. [Google Scholar] [CrossRef]
- Gormaz, T.; Cortés, S.; Tiboni-Oschilewski, O.; Weisstaub, G. The Chilean Diet: Is It Sustainable? Nutrients 2022, 14, 3103. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Gustafson, D.; Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 2018, 9, 848. [Google Scholar] [CrossRef] [PubMed]
- Shariatmadary, H.; O’hara, S.; Graham, R.; Stuiver, M. Are Food Hubs Sustainable? An Analysis of Social and Environmental Objectives of U.S. Food Hubs. Sustainability 2023, 15, 2308. [Google Scholar] [CrossRef]
- Shafik, W. Sustainable Agriculture and Diet for Urban Development. In Sustainable Smart Cities and the Future of Urban Development; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 165–192. [Google Scholar]
- Parvathy, S.U.; Kolil, V.K.; Achuthan, K. Assessing Environmental Hotspots and Sustainable Development Goal Alignment in Food Production in India. Food Sci. Nutr. 2025, 13, e70573. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Zhang, H.; Shahid, M.; Ghazal, H.; Shah, A.R.; Niaz, M.; Naz, T.; Ghimire, K.; Goswami, N.; Shi, W.; et al. The Vital Roles of Agricultural Crop Residues and Agro-Industrial By-Products to Support Sustainable Livestock Productivity in Subtropical Regions. Animals 2025, 15, 1184. [Google Scholar] [CrossRef]
- Dejene, M.; Kehaliew, A.; Feyissa, F.; Kebede, G.; Kitaw, G.; Terefe, G.; Walelegne, M.; Mekonnen, B.; Biratu, K.; Geleti, D. Enhancing Production, Nutritional Qualities and Utilization of Fibrous Crop Residues in Smallholder Crop-Livestock Systems: Potential Intervention Options and Progress toward Sustainable Livestock Production. In Latest Scientific Findings in Ruminant Nutrition—Research for Practical Implementation; Babinszky, L., Ed.; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Kazemi, M. Recycling Agricultural Waste: Sustainable Solutions for Enhancing Livestock Nutrition. Vet. Med. Sci. 2025, 11, e70321. [Google Scholar] [CrossRef]
- Lackner, M.; Besharati, M. Agricultural Waste: Challenges and Solutions, a Review. Waste 2025, 3, 18. [Google Scholar] [CrossRef]
- Chetroiu, R.; Rodino, S.; Dragomir, V.; Turek-Rahoveanu, P.A.; Manolache, A.M. Economic Sustainability Foraging Scenarios for Ruminant Meat Production—A Climate Change Adapting Alternative. Sustainability 2024, 16, 9858. [Google Scholar] [CrossRef]
- Caradus, J.R.; Chapman, D.F.; Rowarth, J.S. Improving Human Diets and Welfare through Using Herbivore-Based Foods: 2. Environmental Consequences and Mitigations. Animals 2024, 14, 1353. [Google Scholar] [CrossRef]
- Rao, K.K.; Samal, S.K.; Kumar, S.; Singh, N.R.; Kumar, R.; Mondal, S.; Kumar, S.; Mishra, J.S.; Bhatt, B.P.; Ravisankar, N.; et al. Decade-long effects of integrated farming systems on soil aggregation and carbon dynamics in sub-tropical Eastern Indo-Gangetic plains. Front. Sustain. Food Syst. 2024, 8, 1384082. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, M.; Bhandari, B.; Gao, Z. Novel technologies in utilization of byproducts of animal food processing: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3420–3430. [Google Scholar] [CrossRef] [PubMed]
- Brar, P.S.; Mehta, N.; Singh, A.; Sivakumar, S.; Phand, S. Value Addition of Milk and Meat: A Push to Entrepreneurship [E-Book]; Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana & National Institute of Agricultural Extension Management: Hyderabad, India, 2021. [Google Scholar]
- Ahmadzai, H.; Tutundjian, S.; Elouafi, I. Policies for Sustainable Agriculture and Livelihood in Marginal Lands: A Review. Sustainability 2021, 13, 8692. [Google Scholar] [CrossRef]
- Darkoh, M. Regional perspectives on agriculture and biodiversity in the drylands of Africa. J. Arid. Environ. 2003, 54, 261–279. [Google Scholar] [CrossRef]
- Rapiya, M.; Truter, W.; Ramoelo, A. The Integration of Land Restoration and Biodiversity Conservation Practices in Sustainable Food Systems of Africa: A Systematic Review. Sustainability 2024, 16, 8951. [Google Scholar] [CrossRef]
- Amusa, T.O.; Avana-Tientcheu, M.L.; Awazi, N.P.; Chirwa, P.W. The Role of Non-Timber Forest Products for Sustainable Livelihoods in African Multifunctional Landscapes. In Trees in a Sub-Saharan Multi-Functional Landscape: Research, Management, and Policy; Chirwa, P.W., Syampungani, S., Mwamba, T.M., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 153–178. [Google Scholar] [CrossRef]
- Nwaogu, C.; Oti, N.N.; Enaruvbe, G.O.; Cherubin, M.R. Crop-Livestock-Forest System as Nature-Based Solutions to Combating Climate Change, and Achieving SDGs in Brazil. In Handbook of Nature-Based Solutions to Mitigation and Adaptation to Climate Change; Nagy, G.J., Ayal, D.Y., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 1561–1590. [Google Scholar] [CrossRef]
- Deliza, R.; Rodríguez, B.; Reinoso-Carvalho, F.; Lucchese-Cheung, T. Cultured meat: A review on accepting challenges and upcoming possibilities. Curr. Opin. Food Sci. 2023, 52, 101050. [Google Scholar] [CrossRef]
- Hocquette, J.-F.; Chriki, S.; Fournier, D.; Ellies-Oury, M.-P. Review: Will “cultured meat” transform our food system towards more sustainability? Animal 2025, 19, 101145. [Google Scholar] [CrossRef]
- Tavan, M.; Smith, N.W.; McNabb, W.C.; Wood, P. Reassessing the sustainability promise of cultured meat: A critical review with new data perspectives. Crit. Rev. Food Sci. Nutr. 2025, 65, 7201–7209. [Google Scholar] [CrossRef]
- Tuomisto, H.L. Challenges of assessing the environmental sustainability of cellular agriculture. Nat. Food 2022, 3, 801–803. [Google Scholar] [CrossRef]
- Qian, J.; Wu, Z.; Zhu, Y.; Liu, C. One Health: A holistic approach for food safety in livestock. Sci. One Health 2022, 1, 100015. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Rabinowitz, P.; Sipos, Y.; Wheat, E.E. Soil health: A common focus for one health and planetary health interventions. One Health 2024, 18, 100673. [Google Scholar] [CrossRef] [PubMed]
- van Heerden, N.; Grobbelaar, S.S.; Meyer, I.; Vermeulen, E. Emerging smallholder cattle farming from a One Health perspective: A system dynamics model of the highveld region of South Africa. Environ. Sci. Policy 2024, 152, 103646. [Google Scholar] [CrossRef]
- Voisin, R.; Horwitz, P.; Godrich, S.; Sambell, R.; Cullerton, K.; Devine, A. What goes in and what comes out: A scoping review of regenerative agricultural practices. Agroecol. Sustain. Food Syst. 2024, 48, 124–158. [Google Scholar] [CrossRef]
- Burke, D.T.; Hynds, P.; Priyadarshini, A. Assessing the One Health (ecosystem, animal and human health) impacts of current dietary patterns based on farm-to-fork life cycle assessment in the Republic of Ireland. Sci. Total. Environ. 2025, 975, 179313. [Google Scholar] [CrossRef]
- FAO. One Health and Agroecology Workshop. 2023. Available online: https://www.fao.org/one-health/resources/events/events-detail/one-health-and-agroecology-workshop/en (accessed on 15 December 2025).
- Jonas, T.; Trethewey, B. Agroecology for Structural One Health. Development 2023, 66, 238–244. [Google Scholar] [CrossRef]
- One Health High-Level Expert Panel (OHHLEP); Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Becerra, N.C.; Charron, D.F.; Chaudhary, A.; et al. One Health: A new definition for a sustainable and healthy future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar] [CrossRef]
- Maci, S.M. From Climate Change to Global Crises. The Perspective of UNO. In Critical Approaches to Polycrisis: Discourses of Conflict, Migration, Risk, and Climate; Parnell, T., Van Hout, T., Del Fante, D., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 209–251. [Google Scholar] [CrossRef]
- Neufeld, L.M.; Huang, J.; Badiane, O.; Caron, P.; Forsse, L.S. Advance Equitable Livelihoods. In Science and Innovations for Food Systems Transformation; von Braun, J., Afsana, K., Fresco, L.O., Hassan, M.H.A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 135–163. [Google Scholar] [CrossRef]
- Chaboud, G.; Daviron, B. Food losses and waste: Navigating the inconsistencies. Glob. Food Secur. 2017, 12, 1–7. [Google Scholar] [CrossRef]
- Salzano, A.; D’Occhio, M.J.; Balestrieri, A.; Bifulco, G.; Limone, A.; Campanile, G. Nutritional, environmental and social profiles of natural meat and food derived from cultured muscle cells: An overview. Meat Sci. 2025, 228, 109868. [Google Scholar] [CrossRef]
- Semba, R.D.; de Pee, S.; Kim, B.; McKenzie, S.; Nachman, K.; Bloem, M.W. Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions. Nat. Food 2020, 1, 481–484. [Google Scholar] [CrossRef]
- Li, Y.; He, P.; Shan, Y.; Li, Y.; Hang, Y.; Shao, S.; Ruzzenenti, F.; Hubacek, K. Reducing climate change impacts from the global food system through diet shifts. Nat. Clim. Change 2024, 14, 943–953. [Google Scholar] [CrossRef]
- Springer, N.P.; Hollander, A.D.; Huber, P.R.; Riggle, C.; Tomich, T.P. A malleable workflow for identifying the issues and indicators that define and measure sustainability in food systems. Front. Sustain. Food Syst. 2022, 6, 684831. [Google Scholar] [CrossRef]
- Röös, E.; Mayer, A.; Muller, A.; Kalt, G.; Ferguson, S.; Erb, K.-H.; Hart, R.; Matej, S.; Kaufmann, L.; Pfeifer, C.; et al. Agroecological practices in combination with healthy diets can help meet EU food system policy targets. Sci. Total Environ. 2022, 847, 157612. [Google Scholar] [CrossRef] [PubMed]
- Clapp, J.; Moseley, W.G.; Burlingame, B.; Termine, P. Viewpoint: The case for a six-dimensional food security framework. Food Policy 2022, 106, 102164. [Google Scholar] [CrossRef]
- Gaupp, F.; Laderchi, C.R.; Lotze-Campen, H.; DeClerck, F.; Bodirsky, B.L.; Lowder, S.; Popp, A.; Kanbur, R.; Edenhofer, O.; Nugent, R.; et al. Food system development pathways for healthy, nature-positive and inclusive food systems. Nat. Food 2021, 2, 928–934. [Google Scholar] [CrossRef]
- Mayton, H.; Beal, T.; Rubin, J.; Sanchez, A.; Heller, M.; Hoey, L.; de Haan, S.; Duong, T.T.; Huynh, T.; Burra, D.D.; et al. Conceptualizing sustainable diets in Vietnam: Minimum metrics and potential leverage points. Food Policy 2020, 91, 101836. [Google Scholar] [CrossRef]
- Amartya, S. The Idea of Justice; Penguin Books: London, UK, 2009. [Google Scholar]
- FAO; WHO. Sustainable Healthy Diets—Guiding Principles; FAO and WHO: Rome, Italy, 2019. [Google Scholar] [CrossRef]
- Reina-Usuga, L.; Parra-López, C.; de Haro-Giménez, T.; Carmona-Torres, C. Sustainability assessment of Territorial Short Food Supply Chains versus Large-Scale Food Distribution: The case of Colombia and Spain. Land Use Policy 2023, 126, 106529. [Google Scholar] [CrossRef]
- Tittonell, P.; El Mujtar, V.; Felix, G.; Kebede, Y.; Laborda, L.; Luján Soto, R.; de Vente, J. Regenerative agriculture—Agroecology without politics? Front. Sustain. Food Syst. 2022, 6, 844261. [Google Scholar] [CrossRef]
- Siddiqui, N.Z.; Wei, L.; Mackenbach, J.D.; Pinho, M.G.M.; Helbich, M.; Schoonmade, L.J.; Beulens, J.W.J. Global positioning system-based food environment exposures, diet-related, and cardiometabolic health outcomes: A systematic review and research agenda. Int. J. Health Geogr. 2024, 23, 3. [Google Scholar] [CrossRef]
- Varzakas, T.; Antoniadou, M. A Holistic Approach for Ethics and Sustainability in the Food Chain: The Gateway to Oral and Systemic Health. Foods 2024, 13, 1224. [Google Scholar] [CrossRef]
- Jose, H.; Jackson, E.L.; Duong, C.; Sung, B. Ethical food consumption in the digital age: Consumer attitudes towards digitally monitored animal welfare in pork products. Appetite 2025, 207, 107853. [Google Scholar] [CrossRef]
- Giersberg, M.F.; Meijboom, F.L.B. As if you were hiring a new employee: On pig veterinarians’ perceptions of professional roles and relationships in the context of smart sensing technologies in pig husbandry in the Netherlands and Germany. Agric. Hum. Values 2023, 40, 1513–1526. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, F.; Yang, R.; Wang, K. An Infrared Temperature Correction Method for the Skin Temperature of Pigs in Infrared Images. Agriculture 2023, 13, 520. [Google Scholar] [CrossRef]
- Chung, Y.; Oh, S.; Lee, J.; Park, D.; Chang, H.-H.; Kim, S. Automatic Detection and Recognition of Pig Wasting Diseases Using Sound Data in Audio Surveillance Systems. Sensors 2013, 13, 12929–12942. [Google Scholar] [CrossRef] [PubMed]
- Alameer, A.; Kyriazakis, I.; Dalton, H.A.; Miller, A.L.; Bacardit, J. Automatic recognition of feeding and foraging behaviour in pigs using deep learning. Biosyst. Eng. 2020, 197, 91–104. [Google Scholar] [CrossRef]
- Riekert, M.; Klein, A.; Adrion, F.; Hoffmann, C.; Gallmann, E. Automatically detecting pig position and posture by 2D camera imaging and deep learning. Comput. Electron. Agric. 2020, 174, 105391. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Khan, G.A.; Adhikari, B.; Barrow, C.J.; Finger, R. Sustainability and Environmental Footprints of AI-Supported Agrifood Systems. J. Agric. Food Chem. 2025, 73, 8675–8677. [Google Scholar] [CrossRef]
- Ektefaie, Y.; Shen, A.; Bykova, D.; Marin, M.G.; Zitnik, M.; Farhat, M. Evaluating generalizability of artificial intelligence models for molecular datasets. Nat. Mach. Intell. 2024, 6, 1512–1524. [Google Scholar] [CrossRef]
- Knudsen, E.R.; Rahbek, U. 8 Postcolonial Theory. Year’s Work. Crit. Cult. Theory 2021, 29, 118–137. [Google Scholar]
- Liu, Z.; Zhu, Y.; Shi, H.; Qiu, J.; Ding, X.; Kou, Y. Recent Progress in Rice Broad-Spectrum Disease Resistance. Int. J. Mol. Sci. 2021, 22, 11658. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Z.; Xiong, X.; Li, C.; Li, C.; Shen, E.; Wang, J.; Zha, W.; Wu, B.; Chen, H.; et al. Development of a multi-resistance and high-yield rice variety using multigene transformation and gene editing. Plant Biotechnol. J. 2024, 22, 3118–3120. [Google Scholar] [CrossRef]
- Rashid, A.; Whitehead, C. Applying postcolonial theory in academic medicine. J. R. Soc. Med. 2022, 115, 193–194. [Google Scholar] [CrossRef] [PubMed]
- Naylor, L. GMOs, the land grab, and epistemological enclosures. In Routledge Handbook of Global Land and Resource Grabbing; Routledge: London, UK, 2023; pp. 143–155. [Google Scholar]
- Pimbert, M.P.; Claeys, P. Food sovereignty. In Oxford Research Encyclopedia of Anthropology; Oxford University Press: Oxford, UK, 2024. [Google Scholar]
- Raimi, L.; Masri, M. Critical discourse on GMO agripreneurship for global food security: Bridging agricultural colonialism and food sovereignty perspectives. Int. J. Ethics Syst. 2025. ahead-of-print. [Google Scholar] [CrossRef]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Croney, C.; Swanson, J. Is meat eating morally defensible? Contemporary ethical considerations. Anim. Front. 2023, 13, 61–67. [Google Scholar] [CrossRef]
- Aubin, J.; Vieux, F.; Le Féon, S.; Tharrey, M.; Peyraud, J.; Darmon, N. Environmental trade-offs of meeting nutritional requirements with a lower share of animal protein for adult subpopulations. Animal 2025, 19, 101182. [Google Scholar] [CrossRef]
- Khangura, R.; Ferris, D.; Wagg, C.; Bowyer, J. Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health. Sustainability 2023, 15, 2338. [Google Scholar] [CrossRef]
- Ruane, J.; Restrepo, L. Proceedings of the FAO Global Conference on Sustainable Livestock Transformation: 25–27 September 2023; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- MLA. The Australian Red Meat Industry’s Carbon Neutral by 2030 Road Map. 2020. Available online: https://www.mla.com.au/contentassets/d4ed1406e6da4207bffaffc3e231ced2/2689-mla-cn30-roadmap_d7.pdf (accessed on 15 December 2025).
- McDonald, S.E.; Badgery, W.; Clarendon, S.; Orgill, S.; Sinclair, K.; Meyer, R.; Butchart, D.B.; Eckard, R.; Rowlings, D.; Grace, P.; et al. Grazing management for soil carbon in Australia: A review. J. Environ. Manag. 2023, 347, 119146. [Google Scholar] [CrossRef]
- Bai, M.; Prathap, P.; Elayadeth-Meethal, M.; Flavel, M.; Eckard, R.; Dunshea, F.R.; Osei-Amponsah, R.; Ashar, M.J.; Chen, D.; Chauhan, S. Polyphenol-Containing Feed Additive Polygain™ Reduces Methane Production and Intensity from Grazing Dairy Cows Measured Using an Inverse-Dispersion Technique. Animals 2025, 15, 926. [Google Scholar] [CrossRef]
- IPCC. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy; Earthscan: London, UK, 2011. [Google Scholar]
- Rose, D.; Heller, M.C.; Roberto, C.A. Position of the Society for Nutrition Education and Behavior: The Importance of Including Environmental Sustainability in Dietary Guidance. J. Nutr. Educ. Behav. 2019, 51, 3–15.e1. [Google Scholar] [CrossRef]
- Food-Based Dietary Guidelines Recommendations. 2024. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/food-based-dietary-guidelines-europe-source-documents-food_en (accessed on 15 December 2025).
- European Commission. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 15 December 2025).
- USDA 2015 Dietary Guidelines Advisory Committee (DGAC). Scientific Report of the 2015 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. 2015. Available online: https://ods.od.nih.gov/pubs/2015_dgac_scientific_report.pdf (accessed on 15 December 2025).
- US Department of Health and Human Services and USDA. Dietary Guidelines for Americans, 2015–2020; US Department of Health and Human Services and USDA: Washington, DC, USA, 2015. [Google Scholar]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Gussow, J.D. Dietary Guidelines for Sustainability: Twelve Years Later. J. Nutr. Educ. 1999, 31, 194–200. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W.; Yoganathan, V.; Osburg, V.-S. COVID-19 information overload and generation Z’s social media discontinuance intention during the pandemic lockdown. Technol. Forecast. Soc. Change 2021, 166, 120600. [Google Scholar] [CrossRef] [PubMed]
- Hartwell, M.; Torgerson, T.; Essex, R.; Campbell, B.; Belardo, D.; Vassar, M. Public awareness of a plant-based diet following the release of “Game Changers” and “What the Health” documentaries. Am. J. Lifestyle Med. 2022, 16, 190–196. [Google Scholar] [CrossRef]
- Brazier, J.C. Mobile Carbon Footprinting: Sensing and Shaping the Carbon Emissions of Daily Activities Using Digital Technologies; Massachusetts Institute of Technology: Cambridge, MA, USA, 2021. [Google Scholar]
- Hassoun, A.; Marvin, H.J.P.; Bouzembrak, Y.; Barba, F.J.; Castagnini, J.M.; Pallarés, N.; Rabail, R.; Aadil, R.M.; Bangar, S.P.; Bhat, R.; et al. Digital transformation in the agri-food industry: Recent applications and the role of the COVID-19 pandemic. Front. Sustain. Food Syst. 2023, 7, 1217813. [Google Scholar] [CrossRef]
- European Commission, Joint Research Centre; Sanye Mengual, E.; Boschiero, M.; Leite, J.; Casonato, C.; Fiorese, G.; Mancini, L.; Sinkko, T.; Wollgast, J.; Listorti, G.; et al. Sustainability Labelling in the EU Food Sector: Current Status and Coverage of Sustainability Aspects; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar] [CrossRef]
- Delpozo, B.; Pons-Gómez, A.; Besada, C. Eye-tracking study on the impact of ‘EU organic’ and ‘sustainable irrigation’ logos on consumer acceptance of olive oil. J. Sci. Food Agric. 2025, 105, 1864–1874. [Google Scholar] [CrossRef]
- Rainforest Alliance: A Case Study on Communicating Food Sustainability Information to Consumers. Available online: https://www.oneplanetnetwork.org/news-and-events/news/rainforest-alliance-case-study-communicating-food-sustainability-information (accessed on 15 December 2025).
- Carbon Trust. Available online: https://www.carbontrust.com/en-eu/what-we-do/carbon-footprint-labelling/product-carbon-footprint-label (accessed on 15 December 2025).
- Trust, C. Research Reveals Consumer Demand for Climate Change Labelling. 2020. Available online: https://www.carbontrust.com/news-and-insights/news/research-reveals-consumer-demand-for-climate-change-labelling (accessed on 15 December 2025).
- Ministry of Health of Brazil. Dietary Guidelines for the Brazilian Population; Ministry of Health of Brazil: Brasília, Brazil, 2014. [Google Scholar]
- Curran, M.A. Life Cycle Assessment: A review of the methodology and its application to sustainability. Curr. Opin. Chem. Eng. 2013, 2, 273–277. [Google Scholar] [CrossRef]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H.; Animal Production and Health Division. Greenhouse Gas Emissions from Ruminant Supply Chains–A Global Life Cycle Assessment. 2013. Available online: https://openknowledge.fao.org/items/bae73a89-364b-4fb4-bea3-908d9595e77b (accessed on 15 December 2025).
- McKenzie-Mohr, D. Fostering Sustainable Behavior: An Introduction to Community-Based Social Marketing. Available online: https://www3.uwsp.edu/cnr-ap/UWEXLakes/Documents/ecology/shoreland/marketing/fostering_sustainable_behavior_dmm.pdf (accessed on 15 December 2025).
- Lee, J.; Nguyen, J.; O’leary, F. Content, Quality and Accuracy of Online Nutrition Resources for the Prevention and Treatment of Dementia: A Review of Online Content. Dietetics 2022, 1, 148–163. [Google Scholar] [CrossRef]
- Wood, B.; Robinson, E.; Baker, P.; Paraje, G.; Mialon, M.; van Tulleken, C.; Sacks, G. What is the purpose of ultra-processed food? An exploratory analysis of the financialisation of ultra-processed food corporations and implications for public health. Glob. Health 2023, 19, 85. [Google Scholar] [CrossRef]
- Lourenco, C.E.; Nunes-Galbes, N.M.; Borgheresi, R.; Cezarino, L.O.; Martins, F.P.; Liboni, L.B. Psychological Barriers to Sustainable Dietary Patterns: Findings from Meat Intake Behaviour. Sustainability 2022, 14, 2199. [Google Scholar] [CrossRef]
- Reipurth, M.F.; Hørby, L.; Gregersen, C.G.; Bonke, A.; Cueto, F.J.P. Barriers and facilitators towards adopting a more plant-based diet in a sample of Danish consumers. Food Qual. Prefer. 2019, 73, 288–292. [Google Scholar] [CrossRef]
- American Action Forum. Agricultural Subsidies and Their Influence on the Composition of U.S. Food Supply. 2020. Available online: https://www.americanactionforum.org/research/primer-agriculture-subsidies-and-their-influence-on-the-composition-of-u-s-food-supply-and-consumption/ (accessed on 15 December 2025).
- Reuters, Trump Administration Cancels $3 Billion Climate-Friendly Farming Program. 2020. Available online: https://www.reuters.com/world/us/trump-administration-cancels-3-billion-climate-friendly-farming-program-2025-04-14/ (accessed on 15 December 2025).
- Graça, J.; Godinho, C.A.; Truninger, M. Reducing meat consumption and following plant-based diets: Current evidence and future directions to inform integrated transitions. Trends Food Sci. Technol. 2019, 91, 380–390. [Google Scholar] [CrossRef]
- Marshall, L. The Ghosts in Our Machine. 2013. Available online: https://www.theghostsinourmachine.com/ (accessed on 15 December 2025).
- Wired, Can Netflix’s Seaspiracy Really Shock People into Not Eating Fish? 2021. Available online: https://www.wired.com/story/seaspiracy-netflix-behaviour-change/ (accessed on 15 December 2025).
- Escobedo-Monge, M.F.; Parodi-Román, J.; Escobedo-Monge, M.A.; Marugán-Miguelsanz, J.M. The Biological Value of Proteins for Pediatric Growth and Development: A Narrative Review. Nutrients 2025, 17, 2221. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, C.; Gordon, S. Animal board invited review: The contribution of red meat to adult nutrition and health beyond protein. Animal 2024, 18, 101103. [Google Scholar] [CrossRef]
- Prates, J.A.M. The Role of Meat Lipids in Nutrition and Health: Balancing Benefits and Risks. Nutrients 2025, 17, 350. [Google Scholar] [CrossRef]
- Shokrollahi, B.; Park, M.; Jang, G.-S.; Jin, S.; Moon, S.-J.; Um, K.-H.; Jang, S.-S.; Baek, Y.-C. Maternal Overnutrition in Beef Cattle: Effects on Fetal Programming, Metabolic Health, and Postnatal Outcomes. Biology 2025, 14, 645. [Google Scholar] [CrossRef]
- Harris, S.; DePalma, J.; Barkoukis, H. Protein and Aging: Practicalities and Practice. Nutrients 2025, 17, 2461. [Google Scholar] [CrossRef]
- Brown, R.A. Implications of Growing Nutrient. PsychoNeuroImmunology Vol. 1 Integr. Psychol. Neurol. Immunol. 2025, 30, 247. [Google Scholar]
- Hu, B.; He, X.; Sun, H.; Hu, Y.; Li, F.; Sun, Y.; Sun, J.; Feng, L. Red and processed meat intake and risk of cardiovascular disease: A two-sample Mendelian randomization study. Clin. Nutr. ESPEN 2024, 60, 289–297. [Google Scholar] [CrossRef]
- Zandvakili, A.; Shiraseb, F.; Hosseininasab, D.; Aali, Y.; Santos, R.D.; Mirzaei, K. The association between consumption of red and processed meats with metabolic syndrome and its components in obese and overweight women: A cross-sectional study. BMC Women’s Health 2024, 24, 93. [Google Scholar] [CrossRef]
- Bianchi, F.; Dorsel, C.; Garnett, E.; Aveyard, P.; A Jebb, S. Interventions targeting conscious determinants of human behaviour to reduce the demand for meat: A systematic review with qualitative comparative analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 102. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, C.; McLeay, F. Should we stop meating like this? Reducing meat consumption through substitution. Food Policy 2016, 65, 74–89. [Google Scholar] [CrossRef]
- Plant-Based Market Overview: Retail Sales and Consumer Insights. 2023. Available online: https://www.marketsandmarkets.com/Market-Reports/plant-based-protein-market-14715651.html?gad_source=1&gad_campaignid=20911358783&gbraid=0AAAAADxY7Syp4d4H0SVSz9V8Pvu95kYDm&gclid=CjwKCAiA9aPKBhBhEiwAyz82JzWr509sjy5UFscIzp_idZg65SlPVcliSSbG6Lvj1zqoAqQm2stIwxoC2FMQAvD_BwE (accessed on 15 December 2025).
- Make Sustainable and Healthy Food the Easy Choice. 2023. Available online: https://research-and-innovation.ec.europa.eu/news/all-research-and-innovation-news/make-sustainable-and-healthy-food-easy-choice-says-group-chief-scientific-advisors-2023-06-28_en (accessed on 15 December 2025).
- Reisch, L.A. Shaping healthy and sustainable food systems with behavioural food policy. Eur. Rev. Agric. Econ. 2021, 48, 665–693. [Google Scholar] [CrossRef]
- Andreani, G.; Sogari, G.; Marti, A.; Froldi, F.; Dagevos, H.; Martini, D. Plant-Based Meat Alternatives: Technological, Nutritional, Environmental, Market, and Social Challenges and Opportunities. Nutrients 2023, 15, 452. [Google Scholar] [CrossRef]
- McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2018, 251, 55–79. [Google Scholar] [CrossRef]
- Ge, J.; Sun, C.; Corke, H.; Gul, K.; Gan, R.; Fang, Y. The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: Current status, challenges, and perspectives. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1835–1876. [Google Scholar] [CrossRef]
- Nasrabadi, M.N.; Goli, S.A.H.; Doost, A.S.; Dewettinck, K.; Van der Meeren, P. Bioparticles of flaxseed protein and mucilage enhance the physical and oxidative stability of flaxseed oil emulsions as a potential natural alternative for synthetic surfactants. Colloids Surf. B Biointerfaces 2019, 184, 110489. [Google Scholar] [CrossRef]
- Ścieszka, S.; Klewicka, E. Algae in food: A general review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef]
- Available online: https://www.marketsandmarkets.com/Market-Reports/near-field-communication-nfc-market-520.html (accessed on 1 October 2021).
- Ambika, H.D.; Hema Vijayan, P.U. Bio-green Evolution: The Journey of Microalgae Products from Lab to Market—An Overview of Microalgae-Based Processes and Products—Part I. In Microalgae Horizons: Fundamentals, Innovations, and Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2025; pp. 185–275. [Google Scholar]
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal proteins: Production strategies and nutritional and functional properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef]
- Grossmann, L.; Ebert, S.; Hinrichs, J.; Weiss, J. Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides. Algal Res. 2018, 29, 266–276. [Google Scholar] [CrossRef]
- Grossmann, L.; Hinrichs, J.; Weiss, J. Solubility of extracted proteins from Chlorella sorokiniana, Phaeodactylum tricornutum, and Nannochloropsis oceanica: Impact of pH-value. LWT 2019, 105, 408–416. [Google Scholar] [CrossRef]
- Liu, Y.; Aimutis, W.R.; Drake, M. Dairy, Plant, and Novel Proteins: Scientific and Technological Aspects. Foods 2024, 13, 1010. [Google Scholar] [CrossRef] [PubMed]
- Michel, F.; Knaapila, A.; Hartmann, C.; Siegrist, M. A multi-national comparison of meat eaters’ attitudes and expectations for burgers containing beef, pea or algae protein. Food Qual. Prefer. 2021, 91, 104195. [Google Scholar] [CrossRef]
- Van der Stricht, H.; Hung, Y.; Fischer, A.R.; Verbeke, W. Consumer segments less or more willing to adopt foods with microalgae proteins. Food Qual. Prefer. 2024, 113, 105047. [Google Scholar] [CrossRef]
- Mellor, C.; Embling, R.; Neilson, L.; Randall, T.; Wakeham, C.; Lee, M.D.; Wilkinson, L.L. Consumer Knowledge and Acceptance of “Algae” as a Protein Alternative: A UK-Based Qualitative Study. Foods 2022, 11, 1703. [Google Scholar] [CrossRef]
- Lafarga, T.; Rodríguez-Bermúdez, R.; Morillas-España, A.; Villaró, S.; García-Vaquero, M.; Morán, L.; Sánchez-Zurano, A.; González-López, C.V.; Acién-Fernández, F.G. Consumer knowledge and attitudes towards microalgae as food: The case of Spain. Algal Res. 2021, 54, 102174. [Google Scholar] [CrossRef]
- Morgenstern, S.; Redwood, M.; Herby, A. An Innovative Program for Hospital Nutrition. Am. J. Lifestyle Med. 2025, 19, 320–323. [Google Scholar] [CrossRef]
- Babich, J.S.; McMacken, M.; Correa, L.; Polito-Moller, K.; Chen, K.; Adams, E.; Morgenstern, S.; Katz, M.; Long, T.G.; Joshi, S.; et al. Advancing Lifestyle Medicine in New York City’s Public Health Care System. Mayo Clin. Proc. Innov. Qual. Outcomes 2024, 8, 279–292. [Google Scholar] [CrossRef]
- Breggin, L.; Myers, B.; Backer, S.; RaoShah, T. More than a Hill O’Beans: A Typology for Incorporating Plant-Based Protein Measures into Municipal Climate Action Plans. Geo. Env’t L. Rev. 2024, 37, 61. [Google Scholar]
- Sadler, I.; Bauer, A.; Kassam, S. How Sustainable Are Hospital Menus in the United Kingdom? Identifying Untapped Potential Based on a Novel Scoring System for Plant-Based Provisions. J. Hum. Nutr. Diet. 2025, 38, e70019. [Google Scholar] [CrossRef]
- Baig, M.A.; Ajayi, F.F.; Hamdi, M.; Baba, W.; Brishti, F.H.; Khalid, N.; Zhou, W.; Maqsood, S. Recent Research Advances in Meat Analogues: A Comprehensive Review on Production, Protein Sources, Quality Attributes, Analytical Techniques Used, and Consumer Perception. Food Rev. Int. 2025, 41, 236–267. [Google Scholar] [CrossRef]
- Shanthakumar, P.; Klepacka, J.; Bains, A.; Chawla, P.; Dhull, S.B.; Najda, A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022, 27, 5354. [Google Scholar] [CrossRef] [PubMed]
- Gohara-Beirigo, A.K.; Matsudo, M.C.; Cezare-Gomes, E.A.; de Carvalho, J.C.M.; Danesi, E.D.G. Microalgae trends toward functional staple food incorporation: Sustainable alternative for human health improvement. Trends Food Sci. Technol. 2022, 125, 185–199. [Google Scholar] [CrossRef]
- Dhiman, S.; Kaur, S.; Thakur, B.; Singh, P.; Tripathi, M. Nutritional Enhancement of Plant-Based Fermented Foods: Microbial Innovations for a Sustainable Future. Fermentation 2025, 11, 346. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Zafar, T.; Benyathiar, P.; Nasir, M. Production, Processing, and Nutritional Profile of Chickpeas and Lentils, in Dry Beans and Pulses. Dry Beans Pulses Prod. Process. Nutr. 2022, 383–407. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, C.; Bao, Y.; Liu, F.; Wang, H.; Wang, Y. Oat: Current state and challenges in plant-based food applications. Trends Food Sci. Technol. 2023, 134, 56–71. [Google Scholar] [CrossRef]
- Wanasundara, J.P.; Kumagai, H.; Kasch, A.P.; Van Gels, L.; Peirce, S. Chapter 3—Rice: A Source of Plant Protein with Many Valuable Processing Co-products. In Sustainable Protein Sources, 2nd ed.; Nadathur, S., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 55–75. [Google Scholar] [CrossRef]
- Nissen, L.; Casciano, F.; Babini, E.; Gianotti, A. Chapter 10—Industrial hemp foods and beverages and product properties. In Industrial Hemp; Pojić, M., Tiwari, B.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 219–246. [Google Scholar] [CrossRef]
- Stone, A.K.; Shi, D.; Marinangeli, C.P.F.; Carlin, J.; Nickerson, M.T. Current review of faba bean protein fractionation and its value-added utilization in foods. Sustain. Food Proteins 2024, 2, 101–124. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Schneider, R.G. The Role of Amaranth, Quinoa, and Millets for the Development of Healthy, Sustainable Food Products—A Concise Review. Foods 2022, 11, 2442. [Google Scholar] [CrossRef]
- Bedsaul-Fryer, J.R.; Monroy-Gomez, J.; van Zutphen-Küffer, K.G.; Kraemer, K. An Introduction to Traditional and Novel Alternative Proteins for Low- and Middle-Income Countries. Curr. Dev. Nutr. 2023, 8 (Suppl. 1), 102014. [Google Scholar] [CrossRef]
- Maseko, K.H.; Regnier, T.; Bartels, P.; Meiring, B. Mushroom mycelia as sustainable alternative proteins for the production of hybrid cell-cultured meat: A review. J. Food Sci. 2025, 90, e70060. [Google Scholar] [CrossRef]
- Takács, K.; Végh, R.; Mednyánszky, Z.; Haddad, J.; Allaf, K.; Du, M.; Chen, K.; Kan, J.; Cai, T.; Molnár, P.; et al. New Insights into Duckweed as an Alternative Source of Food and Feed: Key Components and Potential Technological Solutions to Increase Their Digestibility and Bioaccessibility. Appl. Sci. 2025, 15, 884. [Google Scholar] [CrossRef]
- Wang, O.; Scrimgeour, F. Willingness to adopt a more plant-based diet in China and New Zealand: Applying the theories of planned behaviour, meat attachment and food choice motives. Food Qual. Prefer. 2021, 93, 104294. [Google Scholar] [CrossRef]
- Bolderdijk, J.W.; Cornelissen, G. “How do you know someone’s vegan?” They won’t always tell you. An empirical test of the do-gooder’s dilemma. Appetite 2022, 168, 105719. [Google Scholar] [CrossRef] [PubMed]
- Gregson, R.; Piazza, J.; Boyd, R.L. ‘Against the cult of veganism’: Unpacking the social psychology and ideology of anti-vegans. Appetite 2022, 178, 106143. [Google Scholar] [CrossRef] [PubMed]
- Khara, T.; Riedy, C.; Ruby, M.B. A cross cultural meat paradox: A qualitative study of Australia and India. Appetite 2021, 164, 105227. [Google Scholar] [CrossRef]
- McKeown, P.; Dunn, R.A. A ‘Life-Style Choice’ or a Philosophical Belief?: The Argument for Veganism and Vegetarianism to be a Protected Philosophical Belief and the Position in England and Wales. Liverp. Law Rev. 2021, 42, 207–241. [Google Scholar] [CrossRef]
- Miller, C.J.; Dickstein, J. Jain Veganism: Ancient Wisdom, New Opportunities. Religions 2021, 12, 512. [Google Scholar] [CrossRef]
- Fresán, U.; Errendal, S.; Craig, W.J. Influence of the Socio-Cultural Environment and External Factors in Following Plant-Based Diets. Sustainability 2020, 12, 9093. [Google Scholar] [CrossRef]
- Siebertz, M.; Schroter, F.A.; Portele, C.; Jansen, P. Affective explicit and implicit attitudes towards vegetarian and vegan food consumption: The role of mindfulness. Appetite 2022, 169, 105831. [Google Scholar] [CrossRef]
- Bryant, C.J. Plant-based animal product alternatives are healthier and more environmentally sustainable than animal products. Futur. Foods 2022, 6, 100174. [Google Scholar] [CrossRef]
- Brouwer, A.R.; D’SOuza, C.; Singaraju, S.; Arango-Soler, L.A. Value attitude behaviour and social stigma in the adoption of veganism: An integrated model. Food Qual. Prefer. 2022, 97, 104479. [Google Scholar] [CrossRef]
- D’SOuza, E.; Sardesai, S.J. Assessing Consumer Perceptions and Intentions Toward Plant-Based Meat: Scale Development and Exploration. Int. J. Curr. Sci. Res. Rev. 2025, 8, 3873–3885. [Google Scholar] [CrossRef]
- Urbanovich, T.; Bevan, J.L. Promoting Environmental Behaviors: Applying the Health Belief Model to Diet Change. Environ. Commun. 2020, 14, 657–671. [Google Scholar] [CrossRef]
- Shah, S.; Joshi, H.T. Factors shaping the adoption of sustainable vegan diets. Int. J. Consum. Stud. 2024, 48, e13034. [Google Scholar] [CrossRef]
- Hever, J. Plant-Based Diets: A Physician’s Guide. Perm. J. 2016, 20, 15-082. [Google Scholar] [CrossRef]
- World Health Organization; UNEP United Nations Environment Programme; World Organisation for Animal Health. One Health Joint Plan of Action (2022–2026). Working Together for the Health of Humans, Animals, Plants and the Environment. 2022. Available online: https://www.who.int/publications/i/item/9789240059139 (accessed on 15 December 2025).
- Traore, T.; Shanks, S.; Haider, N.; Ahmed, K.; Jain, V.; Rüegg, S.R.; Razavi, A.; Kock, R.; Erondu, N.; Rahman-Shepherd, A.; et al. How prepared is the world? Identifying weaknesses in existing assessment frameworks for global health security through a One Health approach. Lancet 2023, 401, 673–687. [Google Scholar] [CrossRef]
- Zinsstag, J.; Kaiser-Grolimund, A.; Heitz-Tokpa, K.; Sreedharan, R.; Lubroth, J.; Caya, F.; Stone, M.; Brown, H.; Bonfoh, B.; Dobell, E.; et al. Advancing One human–animal–environment Health for global health security: What does the evidence say? Lancet 2023, 401, 591–604. [Google Scholar] [CrossRef]
- Fasina, F.O.; Bett, B.; Dione, M.; Mutua, F.; Roesel, K.; Thomas, L.; Kwoba, E.; Ayebazibwe, C.; Mtika, N.; Gebeyehu, D.T.; et al. One Health gains momentum in Africa but room exists for improvement. One Health 2022, 15, 100428. [Google Scholar] [CrossRef]
- Lorusso, V. Parasitology and One Health—Perspectives on Africa and Beyond. Pathogens 2021, 10, 1437. [Google Scholar] [CrossRef]
- Zhao, H.-Q.; Fei, S.-W.; Yin, J.-X.; Li, Q.; Jiang, T.-G.; Guo, Z.-Y.; Xue, J.-B.; Han, L.-F.; Zhang, X.-X.; Xia, S.; et al. Assessment of performance for a key indicator of One Health: Evidence based on One Health index for zoonoses in Sub-Saharan Africa. Infect. Dis. Poverty 2022, 11, 74–86. [Google Scholar] [CrossRef]
- Nyokabi, N.S.; Moore, H.; Berg, S.; Lindahl, J.; Phelan, L.; Gimechu, G.; Mihret, A.; Wood, J.L.N. Implementing a one health approach to strengthen the management of zoonoses in Ethiopia. One Health 2023, 16, 100521. [Google Scholar] [CrossRef] [PubMed]
- Otu, A.; Effa, E.; Meseko, C.; Cadmus, S.; Ochu, C.; Athingo, R.; Namisango, E.; Ogoina, D.; Okonofua, F.; Ebenso, B. Africa needs to prioritize One Health approaches that focus on the environment, animal health and human health. Nat. Med. 2021, 27, 943–946. [Google Scholar] [CrossRef]
- Alimi, Y.; Wabacha, J. Strengthening coordination and collaboration of one health approach for zoonotic diseases in Africa. One Health Outlook 2023, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Chukwugozie, D.C.; Victoria, A.F.; Onawo, U.G.; Kawino, D.A.; Mazi, I.M.; Onyeaka, H. Assessing the Impact of New Agricultural Technologies on Food Safety in Sub-Saharan Africa. Mod. Agric. 2025, 3, 10. [Google Scholar] [CrossRef]
- Chotun, N.; Eaton, J.; Anagbogu, I.A.; Tesfahunei, H.A.; Shawa, S.; Karutu, C.; Bolarinwa, A.; Mohammed, A. Sustaining success through strategies for post-elimination management of neglected tropical diseases in African Union Member States. Front. Trop. Dis. 2024, 5, 1421522. [Google Scholar] [CrossRef]
- Bakiika, H.; Obuku, E.A.; Bukirwa, J.; Nakiire, L.; Robert, A.; Nabatanzi, M.; Robert, M.; Moses, M.; Achan, M.I.; Kibanga, J.B.; et al. Contribution of the one health approach to strengthening health security in Uganda: A case study. BMC Public Health 2023, 23, 1498. [Google Scholar] [CrossRef]
- Moyo, E.; Mhango, M.; Moyo, P.; Dzinamarira, T.; Chitungo, I.; Murewanhema, G. Emerging infectious disease outbreaks in Sub-Saharan Africa: Learning from the past and present to be better prepared for future outbreaks. Front. Public Health 2023, 11, 1049986. [Google Scholar] [CrossRef]
- O’Neill, A. Gross Domestic Product (GDP) per capita in South Africa from 1980 to 2030. Available online: https://www.statista.com/statistics/578853/gross-domestic-product-gdp-per-capita-in-south-africa/?srsltid=AfmBOooevvP--g9doQcbT7fg1OaYyoAZAw_CijfbSDE6P0LE2b5GJLpQ (accessed on 15 December 2025).
- World-Bank-Group. GDP per Capita (Current US$)—Sub-Saharan Africa. 2024. Available online: https://data.worldbank.org/country/sub-saharan-africa (accessed on 15 December 2025).
- AGRA. New Report Calls for Bold Action to Transform Africa’s Agriculture. Available online: https://agra.org/news/new-report-calls-for-bold-action-to-transform-africas-agriculture/ (accessed on 15 December 2025).
- Tom Tabler, T.O.R.; Chibanga, J.F.; Thornton, T.; Maharjan, P. Circular Bioeconomy and Sustainable Food Systems Across Africa: Impacts, Challenges, and Possibilities. University of Tennessee Institute of Agriculture. 2025. Available online: https://utia.tennessee.edu/publications/wp-content/uploads/sites/269/2025/10/W1346.pdf (accessed on 15 December 2025).
- Twum-Dei, B.; Lutterodt, H.E.; Annan, R.A.; Aduku, L.N.E. Study protocol: Post-harvest losses of fruits and vegetables and their relationship with the nutritional status of women and children. Front. Public Health 2025, 13, 1654786. [Google Scholar] [CrossRef]
- Lefe, Y.D.H.; Njong, A.M.; Edeme, R.K. A vision of achieving food security: Does physical infrastructure matter? A Sub-Saharan African perspective. Cogent Food Agric. 2024, 10, 2350146. [Google Scholar] [CrossRef]
- Olabiyi, O.M.; Adedokun, A.S. Impact of Community-Level Infrastructure on Household Food Insecurity in Africa. J. Trop. Futures 2024, 1, 25–55. [Google Scholar] [CrossRef]
- Wang, W.; Mensah, I.A.; Atingabili, S.; Omari-Sasu, A.Y.; Nouwati, E.; Kunkuaboor, C.Y.; Qiao, M. The nexus between food security, health outcomes, and climate change: A multisectoral approach to sustainable development in Africa. BMC Public Health 2025, 25, 2319. [Google Scholar] [CrossRef] [PubMed]
- Manamela, M.G.; Choung, M.E. Public healthcare disparities in Africa: The food production systems and its dichotomy in a South African context. J. Health Popul. Nutr. 2024, 43, 75. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, I.B. Poverty, policies, and politics: A rights-based approach to food insecurity in Africa. Afr. Hum. Rights Yearb. 2022, 6, 249–272. [Google Scholar] [CrossRef]
- Ogutu, F.; Okiko, G.; Wanjala, G.; Luvitaa, S.; O Obong’O, B.; Vriesekoop, F.; Munialo, C.D. Unlocking the potential of plant-based foods in sub-Saharan Africa: A review of the opportunities and challenges. Int. J. Food Sci. Technol. 2024, 59, 5326–5342. [Google Scholar] [CrossRef]
- Oniang’o, R.; Maingi, Z.; Jaika, S.; Konyole, S. Africa’s contribution to global sustainable and healthy diets: A scoping review. Front. Nutr. 2025, 12, 1519248. [Google Scholar] [CrossRef]
- Salmon, G.; Teufel, N.; Baltenweck, I.; van Wijk, M.; Claessens, L.; Marshall, K. Trade-offs in livestock development at farm level: Different actors with different objectives. Glob. Food Secur. 2018, 17, 103–112. [Google Scholar] [CrossRef]
- Oguche, M.; Kariuki, J.; Birner, R.; Chagunda, M. Is there unrecognized potential in neglected livestock species in Sub-Saharan Africa? A systematic review of four selected species. Food Secur. 2025, 17, 161–183. [Google Scholar] [CrossRef]
- Deng, Z.; Hu, Y.; Wang, X.; Li, C.; Wang, J.; He, P.; Wang, Z.; Bryan, B.A. Transitioning to healthy and sustainable diets has higher environmental and affordability trade-offs for emerging and developing economies. Nat. Commun. 2025, 16, 3948. [Google Scholar] [CrossRef]
- African Union Commission. Africa Regional Overview of Food Security and Nutrition 2020: Transforming Food Systems for Affordable Healthy Diets; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Volume 1. [Google Scholar]
- Kariuki, J.; Yameogo, V.; Daum, T.; Birner, R.; Chagunda, M. Do African Livestock Policies Address Sustainability Trade-Offs? Evidence from Kenya, Zambia, and Burkina Faso. 2022. Available online: https://research4agrinnovation.org/publication/sustainability-trade-offs/ (accessed on 15 December 2025).
- Bennett, J.; Marandure, T.; Hawkins, H.-J.; Mapiye, C.; Palmer, A.; Lemke, S.; Wu, L.; Moradzadeh, M. A conceptual framework for understanding ecosystem trade-offs and synergies, in communal rangeland systems. Ecosyst. Serv. 2023, 61, 101533. [Google Scholar] [CrossRef]
- Stehl, J.; Depenbusch, L.; Vollmer, S. Global poverty and the cost of a healthy diet. Food Policy 2025, 132, 101533. [Google Scholar] [CrossRef]
- Kiribou, R.; Bedadi, B.; Dimobe, K.; Ndemere, J.; Neya, T.; Ouedraogo, V.; Dejene, S.W. Urban farming system and food security in sub-Saharan Africa: Analysis of the current status and challenges. Urban Agric. Reg. Food Syst. 2024, 9, e70007. [Google Scholar] [CrossRef]
- World-Resources-Institute-Africa, WRI Africa Food Strategy (2024–2027): Accelerating Food Systems Transformation in Africa for People, Nature and Climate. 2024. Available online: https://africa.wri.org/sites/default/files/2025-05/wri-africa-food-strategy-2024-2027.pdf (accessed on 15 December 2025).
- B20-South-Africa, Sustainable Food Systems and Agriculture. 2025. Available online: https://www.b20southafrica.org/wp-content/uploads/2025/09/B20_Sustainable_Food_-Systems__Agriculture_Digital_Version.pdf (accessed on 15 December 2025).
- Nachega, J.B.; Nsanzimana, S.; Rawat, A.; A Wilson, L.; Rosenthal, P.J.; Siedner, M.J.; Varma, J.K.; Kilmarx, P.H.; Mutesa, L.; Tanner, M.; et al. Advancing detection and response capacities for emerging and re-emerging pathogens in Africa. Lancet Infect. Dis. 2023, 23, e185–e189. [Google Scholar] [CrossRef] [PubMed]
- Boakye, D.A.; de Souza, D.K.; Bockarie, M. Alternative Interventions Against Neglected Tropical Diseases in SSA: Vector Control. In Neglected Tropical Diseases—Sub-Saharan Africa; Gyapong, J.O., Boatin, B.A., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 505–522. [Google Scholar] [CrossRef]
- Kamgno, J.; Adeleke, M.; Basáñez, M.-G.; Coulibaly, Y.; de Souza, D.K.; Debrah, L.B.; Debrah, A.Y.; Diggle, P.J.; Nana-Djeunga, H.C.; Domché, A.; et al. Vector-borne helminthiases: A road map for current and future research to support control and elimination in sub-Saharan Africa. Lancet Infect. Dis. 2025, 25, e555–e604. [Google Scholar] [CrossRef] [PubMed]
- Mubemba, B.; Mburu, M.M.; Changula, K.; Muleya, W.; Moonga, L.C.; Chambaro, H.M.; Kajihara, M.; Qiu, Y.; Orba, Y.; Hayashida, K.; et al. Current knowledge of vector-borne zoonotic pathogens in Zambia: A clarion call to scaling-up “One Health” research in the wake of emerging and re-emerging infectious diseases. PLoS Neglected Trop. Dis. 2022, 16, e0010193. [Google Scholar] [CrossRef] [PubMed]
- Chukwugozie, D.C.; Njoagwuani, E.I.; David, K.; Okonji, B.A.; Milovanova, N.; Akinsemolu, A.A.; Mazi, I.M.; Onyeaka, H.; Winnall, L.; Ghosh, S. Combatting food fraud IN SUB-SAHARAN Africa: Strategies for Strengthened safety and security. Trends Food Sci. Technol. 2024, 150, 104575. [Google Scholar] [CrossRef]
- Grangxabe, X.S.; Madonsela, B.S.; Maphanga, T.; Gqomfa, B.; Phungela, T.T.; Malakane, K.C. An overview of waste management practices of street vendors in sub-saharan africa: A meta-analysis. J. Environ. Manag. 2024, 364, 121464. [Google Scholar] [CrossRef]
- Birgen, B.J.; Njue, L.G.; Kaindi, D.W.M.; Ogutu, F.O.; Owade, J.O. Quantitative versus qualitative risk assessment of meat and its products: What is feasible for Sub-Saharan African countries? Crit. Rev. Food Sci. Nutr. 2022, 62, 106–118. [Google Scholar] [CrossRef]
- Cudjoe, D.C.; Balali, G.I.; Titus, O.O.; Osafo, R.; Taufiq, M. Food Safety in Sub-Sahara Africa, An insight into Ghana and Nigeria. Environ. Health Insights 2022, 16, 11786302221142484. [Google Scholar] [CrossRef]
- Pokharel, S.; Adhikari, B.; Johnson, T.; Cheah, P.Y. Interventions to address antimicrobial resistance: An ethical analysis of key tensions and how they apply in low- income and middle-income countries. BMJ Glob. Health 2024, 9, e012874. [Google Scholar] [CrossRef]
- Moyo, P.; Moyo, E.; Mangoya, D.; Mhango, M.; Mashe, T.; Imran, M.; Dzinamarira, T. Prevention of antimicrobial resistance in sub-Saharan Africa: What has worked? What still needs to be done? J. Infect. Public Health 2023, 16, 632–639. [Google Scholar] [CrossRef]
- Gashema, P.; Sesonga, P.; Iradukunda, P.G.; Muvunyi, R.; Mugisha, J.C.; Ndayisenga, J.; Musafiri, T.; Habimana, R.; Bigirimana, R.; Kabanda, A.; et al. Enhancing Global Health Security in Sub-Saharan Africa: The case for integrated One Health surveillance against zoonotic diseases and environmental threats. One Health 2025, 21, 101136. [Google Scholar] [CrossRef]
- Chidawanyika, F.; Muriithi, B.; Niassy, S.; Ouya, F.O.; Pittchar, J.O.; Kassie, M.; Khan, Z.R. Sustainable intensification of vegetable production using the cereal ‘push-pull technology’: Benefits and one health implications. Environ. Sustain. 2023, 6, 25–34. [Google Scholar] [CrossRef]
- Aborode, A.T.; Adesola, R.O.; Onifade, I.A.; Adesiyan, R.; Ibiam, V.A.; Jinadu, N.A.; Bakre, A.A. Outbreak of cholera in Nigeria: The role of One Health. Discov. Public Health 2025, 22, 125. [Google Scholar] [CrossRef]
- Yan, Z.; Xiong, C.; Liu, H.; Singh, B.K. Sustainable agricultural practices contribute significantly to One Health. J. Sustain. Agric. Environ. 2022, 1, 165–176. [Google Scholar] [CrossRef]
- Caroprese, M. Use of Agricultural By-Products in Animal Feeding. Topic Collection in Animals MDPI. Animals 2025. Available online: https://www.mdpi.com/journal/animals/topical_collections/Use_of_Agricultural_By_Products_in_Animal_Feeding (accessed on 16 December 2025).




| Method | Key Strengths | Target Audience | Example Tools/Initiatives |
|---|---|---|---|
| Education Systems | Builds lifelong habits and awareness | Students, educators | School gardens, integrated sustainability curricula |
| Media and Digital Platforms | Fast, broad reach, and cultural influence | General public, youth | Social media campaigns, documentaries |
| Public Policy and Labeling | Structural change informs purchasing | Consumers, institutions | Eco-labels, national dietary guidelines |
| Scientific Engagement | Credibility, evidence-based advocacy | Researchers, policymakers | LCA models, citizen science, public lectures |
| Plant Source | Main Processing Methods | Functional Applications | Commercialization Level | Consumer Acceptance/Trends | Reference |
|---|---|---|---|---|---|
| Soy | Soaking, milling, extrusion, fermentation | Meat/dairy analogs, protein isolate | Widely commercialized | High in Asia and Western countries | [137] |
| Pea | Protein extraction, emulsification, film formation | Protein drinks, meat analogs, emulsifiers | Rapid growth, global brands use it | Growing due to hypoallergenic nature | [138] |
| Algae (e.g., Spirulina, Chlorella) | Drying, homogenization, protein extraction | Functional foods, supplements, meat analogs | Niche but growing | Moderate; increasing interest as “superfoods” | [139] |
| Lentils/Legumes | Milling, fermentation, extrusion | Plant protein blends, textured proteins | Well-established | Stable consumption; eco-conscious markets | [140] |
| Chickpeas | Roasting, fermentation, drying | Hummus, dairy alternatives, baked goods | Expanding | Popular in Middle East and now globally | [141] |
| Oats | Milling, enzymatic hydrolysis | Oat milk, cereal bars, dairy alternatives | Very high | Very high, especially in oat milk | [142] |
| Rice protein | Alkaline extraction, filtration | Beverages, protein blends | Mid-stage commercialization | Growing in sports and allergen-free markets | [143] |
| Hemp | Cold pressing, decortication, protein extraction | Beverages, protein powders, bakery products | Niche, expanding post-legalization | Growing among health-conscious consumers | [144] |
| Fava Beans | Dehulling, air classification, dry fractionation | Snacks, meat alternatives | Rising | Good acceptance in EU | [145] |
| Quinoa/Amaranth | Milling, extrusion, puffing | Cereal mixes, meat/dairy alternatives | Early stage | Trendy in functional food segments | [146] |
| Jackfruit | Minimal | Whole-food meat alternative | Small-scale commercialization | Positive trend in vegan cuisines | [147] |
| Mushroom/Mycelium | Fermentation, mycelium cultivation | Meat substitutes, umami enhancers | Experimental to emerging | High for health and sustainability appeal | [148] |
| Duckweed (Lemna) | Wet biomass processing, centrifugation | Protein isolate, smoothies | R&D/Start-up stage | Low; education needed | [149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hosseini, E.; Tsegay, Z.T.; Smaoui, S.; Elfalleh, W.; Antoniadou, M.; Varzakas, T.; Caraher, M. One Health Approaches to Ethical, Secure, and Sustainable Food Systems and Ecosystems: Plant-Based Diets and Livestock in the African Context. Foods 2026, 15, 85. https://doi.org/10.3390/foods15010085
Hosseini E, Tsegay ZT, Smaoui S, Elfalleh W, Antoniadou M, Varzakas T, Caraher M. One Health Approaches to Ethical, Secure, and Sustainable Food Systems and Ecosystems: Plant-Based Diets and Livestock in the African Context. Foods. 2026; 15(1):85. https://doi.org/10.3390/foods15010085
Chicago/Turabian StyleHosseini, Elahesadat, Zenebe Tadesse Tsegay, Slim Smaoui, Walid Elfalleh, Maria Antoniadou, Theodoros Varzakas, and Martin Caraher. 2026. "One Health Approaches to Ethical, Secure, and Sustainable Food Systems and Ecosystems: Plant-Based Diets and Livestock in the African Context" Foods 15, no. 1: 85. https://doi.org/10.3390/foods15010085
APA StyleHosseini, E., Tsegay, Z. T., Smaoui, S., Elfalleh, W., Antoniadou, M., Varzakas, T., & Caraher, M. (2026). One Health Approaches to Ethical, Secure, and Sustainable Food Systems and Ecosystems: Plant-Based Diets and Livestock in the African Context. Foods, 15(1), 85. https://doi.org/10.3390/foods15010085

