Molecularly Imprinted Electrochemical Sensor Based on Palladium@Yttrium Oxide@Boronnitride Nanocomposite for Determination of Glyphosate Herbicide in Drinking Water Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Synthesis of Boron Nitride Nanosheets and Pd/Y2O3@BN Nanocomposite
2.4. Preparation of Pd/Y2O3@BN Modified Glassy Carbon Electrode (Pd/Y2O3@BN/GCE)
2.5. Development of GLY Imprinted Electrode and GLY Removal
2.6. Sample Preparation
3. Results and Discussion
3.1. Characterizations of Pd/Y2O3@BN
3.2. Electrochemical Studies of Boronnitride Nanosheets, Y2O3@BN and Pd/Y2O3@BN Modified Electrodes
3.3. Development of GLY Imprinted Polymer on Pd/Y2O3@BN/GCE
3.4. Optimization
3.4.1. pH Effect
3.4.2. Mole Ratio GLY to Py Monomer Effect
3.4.3. Elution Time Effect
3.4.4. Scan Cycle Effect
3.5. Sensitivity of MIP/Pd/Y2O3@BN/GCE Electrode and Recovery Studies
3.6. Selectivity, Stability, Repeatability and Reproducibility of MIP/Pd/Y2O3@BN/GCE Electrode
3.7. The Greenness Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, B.; Singh, K. Microbial degradation of herbicides. Crit. Rev. Microbiol. 2016, 42, 245–261. [Google Scholar] [CrossRef]
- Annett, R.; Habibi, H.R.; Hontela, A. Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J. Appl. Toxicol. 2014, 34, 458–479. [Google Scholar] [CrossRef]
- Maqueda, C.; Undabeytia, T.; Villaverde, J.; Morillo, E. Behaviour of glyphosate in a reservoir and the surrounding agricultural soils. Sci. Total Environ. 2017, 593–594, 787–795. [Google Scholar] [CrossRef]
- Sviridov, A.V.; Shushkova, T.V.; Ermakova, I.T.; Ivanova, E.V.; Epiktetov, D.O.; Leont’evskii, A.A. Microbial degradation of glyphosate herbicides (review). Prikl. Biokhim. Mikrobiol. 2015, 51, 183–190. [Google Scholar]
- Masotti, F.; Garavaglia, B.S.; Gottig, N.; Ottado, J. Bioremediation of the herbicide glyphosate in polluted soils by plant-associated microbes. Curr. Opin. Microbiol. 2023, 73, 102290. [Google Scholar] [CrossRef]
- Wang, S.; Seiwert, B.; Kastner, M.; Miltner, A.; Schaffer, A.; Reemtsma, T.; Yang, Q.; Nowak, K.M. (Bio)degradation of glyphosate in water-sediment microcosms—A stable isotope co-labeling approach. Water Res. 2016, 99, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Shushkova, T.; Ermakova, I.; Leontievsky, A. Glyphosate bioavailability in soil. Biodegradation 2010, 21, 403–410. [Google Scholar] [CrossRef]
- Bai, S.H.; Ogbourne, S.M. Glyphosate: Environmental contamination, toxicity and potential risks to human health via food contamination. Environ. Sci. Pollut. Res. Int. 2016, 23, 18988–19001. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate. EFSA J. 2015, 13, 4302. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Datta, S.; Wani, A.B.; Dhanjal, D.S.; Romero, R.; Singh, J. Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: A review. Environ. Chem. Lett. 2020, 18, 663–702. [Google Scholar] [CrossRef]
- Niemann, L.; Sieke, C.; Pfeil, R.; Solecki, R. A critical review of glyphosate findings in human urine samples and comparison with the exposure of operators and consumers. J. Verbraucherschutz Leb. 2015, 10, 3–12. [Google Scholar] [CrossRef]
- Mink, P.J.; Mandel, J.S.; Lundin, J.I.; Sceurman, B.K. Epidemiologic studies of glyphosate and non-cancer health outcomes: A review. Regul. Toxicol. Pharmacol. 2011, 61, 172–184. [Google Scholar] [CrossRef]
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutat. Res. Rev. Mutat. Res. 2019, 781, 186–206. [Google Scholar] [CrossRef]
- Sheppard, L.; Shaffer, R.M. Re: Glyphosate Use and Cancer Incidence in the Agricultural Health Study. J. Natl. Cancer Inst. 2019, 111, 214–215. [Google Scholar] [CrossRef]
- Costas-Ferreira, C.; Duran, R.; Faro, L.R.F. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 4605. [Google Scholar] [CrossRef]
- Agostini, L.P.; Dettogni, R.S.; Dos Reis, R.S.; Stur, E.; Dos Santos, E.V.W.; Ventorim, D.P.; Garcia, F.M.; Cardoso, R.C.; Graceli, J.B.; Louro, I.D. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. Sci. Total Environ. 2020, 705, 135808. [Google Scholar] [CrossRef] [PubMed]
- Ospina, M.; Schutze, A.; Morales-Agudelo, P.; Vidal, M.; Wong, L.Y.; Calafat, A.M. Temporal trends of exposure to the herbicide glyphosate in the United States (2013–2018): Data from the National Health and Nutrition Examination Survey. Chemosphere 2024, 364, 142966. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Defarge, N.; Spiroux de Vendomois, J.; Seralini, G.E. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem. Toxicol. 2015, 84, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G., Jr. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef]
- Michalski, R.; Pecyna-Utylska, P. Ion chromatography for the analysis of glyphosate and its selected metabolites. A review. J. Sep. Sci. 2023, 46, e2300038. [Google Scholar] [CrossRef]
- Koskinen, W.C.; Marek, L.J.; Hall, K.E. Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil. Pest. Manag. Sci. 2016, 72, 423–432. [Google Scholar] [CrossRef]
- Yue, L.N.; Xiang, P.; Song, F.Y.; Yan, H. Analysis Methods of Common Herbicides in Biological Material and Research Progress. Fa Yi Xue Za Zhi 2021, 37, 248–255. [Google Scholar] [PubMed]
- Moldovan, H.; Imre, S.; Duca, R.C.; Farczadi, L. Methods and Strategies for Biomonitoring in Occupational Exposure to Plant Protection Products Containing Glyphosate. Int. J. Environ. Res. Public Health 2023, 20, 3314. [Google Scholar] [CrossRef]
- Chu, B.; Yu, Z.; Meng, L.; Xu, N. A magnetic molecular imprinting-based fluorescence probe for sensitive and selective detection of 2,4-D herbicide. Luminescence 2023, 39, e4662. [Google Scholar] [CrossRef] [PubMed]
- Fatah, M.A.A.; El-Moghny, M.G.A.; El-Deab, M.S.; El Nashar, R.M. Application of molecularly imprinted electrochemical sensor for trace analysis of Metribuzin herbicide in food samples. Food Chem. 2023, 404, 134708. [Google Scholar] [CrossRef]
- Li, C.; Begum, A.; Xue, J. Analytical methods to analyze pesticides and herbicides. Water Environ. Res. 2020, 92, 1770–1785. [Google Scholar] [CrossRef] [PubMed]
- Tucci, M.; Bombelli, P.; Howe, C.J.; Vignolini, S.; Bocchi, S.; Schievano, A. A Storable Mediatorless Electrochemical Biosensor for Herbicide Detection. Microorganisms 2019, 7, 630. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, H.; Zhao, J.; Wang, Y.; Zhao, G.; Zhang, Y.; Liu, X.; Wang, Y. Advances in the application of metal oxide nanozymes in tumor detection and treatment. Colloids Surf. B Biointerfaces 2024, 235, 113767. [Google Scholar] [CrossRef]
- Han, F.; Cheng, C.; Zhao, J.; Wang, H.; Zhao, G.; Zhang, Y.; Zhang, N.; Wang, Y.; Zhang, J.; Wei, Q. Single-atom nanozymes: Emerging talent for sensitive detection of heavy metals. Colloids Surf. B Biointerfaces 2024, 242, 114093. [Google Scholar] [CrossRef]
- Zhao, G.; Dong, X.; Du, Y.; Zhang, N.; Bai, G.; Wu, D.; Ma, H.; Wang, Y.; Cao, W.; Wei, Q. Enhancing Electrochemiluminescence Efficiency through Introducing Atomically Dispersed Ruthenium in Nickel-Based Metal–Organic Frameworks. Anal. Chem. 2022, 94, 10557–10566. [Google Scholar] [CrossRef]
- Cheng, C.; Han, F.; Zhou, H.; Wang, H.; Zhao, J.; Zhao, G.; Zhang, Y.; Zhang, N.; Wang, Y.; Luan, M.; et al. Construction of electrochemical immunosensors based on Au@MXene and Au@CuS nanocomposites for sensitive detection of carcinoembryonic antigen. Talanta 2025, 283, 127147. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wei, W.; Li, H.; Li, S.; Leng, L.; Zhang, M.; Horton, J.H.; Wang, D.; Sun, W.; Guo, C.; et al. Low-Temperature Synthesis of Single Palladium Atoms Supported on Defective Hexagonal Boron Nitride Nanosheet for Chemoselective Hydrogenation of Cinnamaldehyde. ACS Nano 2021, 15, 10175–10184. [Google Scholar] [CrossRef]
- Cheng, G.; Li, S.; Wu, K.; Deng, A.; Li, J. Highly sensitive competitive electrochemiluminescence immunosensor based on ABEI-H2O2 system with cobalt hydroxide nanosheets and bimetal PdAg as co-enhancer for detection of florfenicol. Microchim. Acta 2022, 189, 214. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.-J.; Kumar, E.A.; Duraisamy, N.; An-Ting, L. An electrochemical platform based on yttrium oxide/boron nitride nanocomposite for the detection of dopamine. Sens. Actuators B Chem. 2021, 349, 130787. [Google Scholar] [CrossRef]
- Hu, Y.; Men, Y.; Xu, S.; Feng, Y.; Wang, J.; Liu, K.; Zhang, Y. Modulating nickel precursors to construct highly active Ni/Y2O3 catalysts for CO2 methanation. Int. J. Hydrogen Energy 2024, 81, 1311–1321. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Chen, Y.; Tan, X.; Yang, C. α-Fe2O3/rGO composites for non-enzymatic electrochemical sensing of UA and Trp and mechanism study through DFT calculation. Diam. Relat. Mater. 2025, 156, 112413. [Google Scholar] [CrossRef]
- Li, Y.; Ren, F.; Li, J.; Chen, Y.; Liu, J.; Yang, C. 1D/2D SnO2/rGO composites-modified GCE for highly sensitive nonenzymatic electrochemical determination of chloramphenicol. J. Alloys Compd. 2025, 1014, 178637. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N. A novel detection approach for serotonin by graphene quantum dots/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer. Appl. Surf. Sci. 2018, 458, 648–655. [Google Scholar] [CrossRef]
- Meriç, Ç.S.; Deveci, H.A.; Kaya, M.M.; Deveci, A.; Özdemir, N.; Boyacıoğlu, H.; Yola, M.L. Determination of paclobutrazol using square wave voltammetry based on a molecularly imprinted polymer and boron-doped copper oxide/graphene nanocomposite. Anal. Methods 2025, 17, 1080–1089. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N. Gold Nanoparticles/Two-Dimensional (2D) Hexagonal Boron Nitride Nanosheets Including Diethylstilbestrol Imprinted Polymer: Electrochemical Detection in Urine Samples and Validation. J. Electrochem. Soc. 2018, 165, H897. [Google Scholar] [CrossRef]
- Karaman, C.; Bölükbaşı, Ö.S.; Yola, B.B.; Karaman, O.; Atar, N.; Yola, M.L. Electrochemical neuron-specific enolase (NSE) immunosensor based on CoFe2O4@Ag nanocomposite and AuNPs@MoS2/rGO. Anal. Chim. Acta 2022, 1200, 339609. [Google Scholar] [CrossRef]
- Er Zeybekler, S. Polydopamine-coated hexagonal boron nitride-based electrochemical immunosensing of T-Tau as a marker of Alzheimer’s disease. Bioelectrochemistry 2023, 154, 108552. [Google Scholar] [CrossRef] [PubMed]
- Kunene, K.; Sayegh, S.; Weber, M.; Sabela, M.; Voiry, D.; Iatsunskyi, I.; Coy, E.; Kanchi, S.; Bisetty, K.; Bechelany, M. Smart electrochemical immunosensing of aflatoxin B1 based on a palladium nanoparticle-boron nitride-coated carbon felt electrode for the wine industry. Talanta 2023, 253, 124000. [Google Scholar] [CrossRef]
- Wang, R.; Qin, Y.; Liu, X.; Li, Y.; Lin, Z.; Nie, R.; Shi, Y.; Huang, H. Electrochemical Biosensor Based on Well-Dispersed Boron Nitride Colloidal Nanoparticles and DNA Aptamers for Ultrasensitive Detection of Carbendazim. ACS Omega 2021, 6, 27405–27411. [Google Scholar] [CrossRef] [PubMed]
- Mahmodnezhad, S.; Roushani, M.; Karazan, Z.M. An electrochemical sensor based on the molecularly imprinted polymer/single walled carbon nanotube-modified glassy carbon electrode for detection of zineb fungicide in food samples. Food Control 2025, 168, 110919. [Google Scholar] [CrossRef]
- Ali, N.M.; Roushani, M.; Karazan, Z.M. Novel Electrochemical Sensor Based on Polydopamine Molecularly Imprinted Polymer for Selective Determination of Methylergonovine Maleate. IEEE Sens. J. 2024, 24, 1140–1146. [Google Scholar] [CrossRef]
- Hamzah, N.A.J.; Roushani, M.; Karazan, Z.M. The First Electrochemical Evaluation of Crizotinib Anticancer Drug Based on Carbon Felt Modified with Molecularly Imprinted Poly(pyrogallol). Electrocatalysis 2025, 16, 871–882. [Google Scholar] [CrossRef]
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef]
- Uzun, L.; Turner, A.P.F. Molecularly-imprinted polymer sensors: Realising their potential. Biosens. Bioelectron. 2016, 76, 131–144. [Google Scholar] [CrossRef]
- Turiel, E.; Martín-Esteban, A. Molecularly imprinted polymers for sample preparation: A review. Anal. Chim. Acta 2010, 668, 87–99. [Google Scholar] [CrossRef]
- Wackerlig, J.; Schirhagl, R. Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward Industrial Use: A Review. Anal. Chem. 2016, 88, 250–261. [Google Scholar] [CrossRef]
- Sharma, M.K.; Narayanan, J.; Pardasani, D.; Srivastava, D.N.; Upadhyay, S.; Goel, A.K. Ultrasensitive electrochemical immunoassay for surface array protein, a Bacillus anthracis biomarker using Au–Pd nanocrystals loaded on boron-nitride nanosheets as catalytic labels. Biosens. Bioelectron. 2016, 80, 442–449. [Google Scholar] [CrossRef]
- Singh, D.; Gupta, M.; Pardasani, D.; Upadhyay, S.; Goel, A.K.; Sharma, M.K. Label-free electrochemical immunosensor for anthrax biomarker surface array protein based on palladium/yttrium oxide@boronnitride nanocatalysts. Electrochim. Acta 2025, 537, 146880. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N.; Qureshi, M.S.; Üstündağ, Z.; Solak, A.O. Electrochemically grafted etodolac film on glassy carbon for Pb (II) determination. Sens. Actuators B Chem. 2012, 171–172, 1207–1215. [Google Scholar] [CrossRef]
- Zhang, R.; Lin, Z.; Chen, N.; Zhao, D.; Chen, Q. Oxygen vacancy-enriched Y2O3 nanoparticles having reactive facets for selective sensing of methyl ethyl ketone peroxide explosive. Sens. Actuators B Chem. 2024, 403, 135138. [Google Scholar] [CrossRef]
- Renganathan, V.; Balaji, R.; Chen, S.-M.; Kokulnathan, T. Coherent design of palladium nanostructures adorned on the boron nitride heterojunctions for the unparalleled electrochemical determination of fatal organophosphorus pesticides. Sens. Actuators B Chem. 2020, 307, 127586. [Google Scholar] [CrossRef]
- Bahari, M.B.; Setiabudi, H.D.; Duy Nguyen, T.; Phuong, P.T.T.; Duc Truong, Q.; Abdul Jalil, A.; Ainirazali, N.; Vo, D.-V.N. Insight into the influence of rare-earth promoter (CeO2, La2O3, Y2O3, and Sm2O3) addition toward methane dry reforming over Co/mesoporous alumina catalysts. Chem. Eng. Sci. 2020, 228, 115967. [Google Scholar] [CrossRef]
- Özkan, A.; Atar, N.; Yola, M.L. Enhanced surface plasmon resonance (SPR) signals based on immobilization of core-shell nanoparticles incorporated boron nitride nanosheets: Development of molecularly imprinted SPR nanosensor for anticancer drug, etoposide. Biosens. Bioelectron. 2019, 130, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Knežević, S.; Jovanović, N.T.; Vlahović, F.; Ajdačić, V.; Costache, V.; Vidić, J.; Opsenica, I.; Stanković, D. Direct glyphosate soil monitoring at the triazine-based covalent organic framework with the theoretical study of sensing principle. Chemosphere 2023, 341, 139930. [Google Scholar] [CrossRef]
- Romano, R.M.; de Oliveira, J.M.; de Oliveira, V.M.; de Oliveira, I.M.; Torres, Y.R.; Bargi-Souza, P.; Martino Andrade, A.J.; Romano, M.A. Could Glyphosate and Glyphosate-Based Herbicides Be Associated with Increased Thyroid Diseases Worldwide? Front. Endocrinol. 2021, 12, 627167. [Google Scholar] [CrossRef]
- Novakovic, Z.; Vasiljevic, Z.Z.; Nikolic, M.V.; Tadic, N.B.; Djordjevic, T.; Radovic, M.; Gadjanski, I.; Papović, S.; Vlahovic, F.; Stankovic, D.; et al. ZnO-nanostructured electrochemical sensor for efficient detection of glyphosate in water. Talanta Open 2025, 12, 100481. [Google Scholar] [CrossRef]
- Ding, S.; Lyu, Z.; Li, S.; Ruan, X.; Fei, M.; Zhou, Y.; Niu, X.; Zhu, W.; Du, D.; Lin, Y. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosens. Bioelectron. 2021, 191, 113434. [Google Scholar] [CrossRef]
- Yang, Y.; Li, L.; Lin, L.; Wang, X.; Li, J.; Liu, H.; Liu, X.; Huo, D.; Hou, C. A dual-signal sensing strategy based on ratiometric fluorescence and colorimetry for determination of Cu2+ and glyphosate. Anal. Bioanal. Chem. 2022, 414, 2619–2628. [Google Scholar] [CrossRef]
- Do, M.H.; Dubreuil, B.; Peydecastaing, J.; Vaca-Medina, G.; Nhu-Trang, T.-T.; Jaffrezic-Renault, N.; Behra, P. Chitosan-Based Nanocomposites for Glyphosate Detection Using Surface Plasmon Resonance Sensor. Sensors 2020, 20, 5942. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, X.; Lu, Y.; Li, H.; Xu, X. Performance of CuAl-LDH/Gr Nanocomposite-Based Electrochemical Sensor with Regard to Trace Glyphosate Detection in Water. Sensors 2020, 20, 4146. [Google Scholar] [CrossRef] [PubMed]
- Duong, S.T.D.; Jang, C.-H. Detection of glyphosate residues in agricultural products using liquid-crystal-based sensor exploiting competitive binding of glyphosate and Cu2+ at the aqueous/LC interface and capillary tube test strip. Colloids Surf. B Biointerfaces 2024, 234, 113726. [Google Scholar] [CrossRef] [PubMed]
- Salek Maghsoudi, A.; Rezaei Akmal, M.; Julian McClements, D.; Alizadeh Sani, M.; Torabi, R.; Ataei, M.; Reza Ganjali, M.; Abdollahi, M.; Hassani, S. Determination of glyphosate using electrochemical aptamer-based label-free voltammetric biosensing platform. Microchem. J. 2024, 203, 110897. [Google Scholar] [CrossRef]
- Guo, Z.-X.; Cai, Q.; Yang, Z. Determination of glyphosate and phosphate in water by ion chromatography—Inductively coupled plasma mass spectrometry detection. J. Chromatogr. A 2005, 1100, 160–167. [Google Scholar] [CrossRef] [PubMed]







| Method | Linear Range (M) | LOD (M) | Real Sample | Ref. |
|---|---|---|---|---|
| MIPNs | 1.5 × 10−2–6.0 × 10−3 | 1.2 × 10−2 | Orange juice | [62] |
| Fluorescence silicon nanoparticles (SiNPs) | 8.9 × 10−7–8.9 × 10−6 | 1.8 × 10−8 | Tap water and rice | [63] |
| CS/ZnO/SPR | 0–6.0 × 10−7 | 8.0 × 10−9 | - | [64] |
| CuAl-LDH/Gr NCs | 3.0 × 10−9–1.2 × 10−6 | 1.0 × 10−9 | Surface water | [65] |
| Liquid crystal (DOPG/Cu2+) | 1.0 × 10−9–3.0 × 10−7 | 2.6 × 10−10 | - | [66] |
| Electrochemical aptasensing: Differential pulse voltammetry | 1.0 × 10−9–5.0 × 10−6 | 6.7 × 10−10 | - | [67] |
| MIP/Pd/Y2O3@BN/GCE | 1.0 × 10−9–1.0 × 10−8 | 3.3 × 10−10 | Drinking water | This study |
| MIP/Pd/Y2O3@BN/GCE | ICP/MS | ||||
|---|---|---|---|---|---|
| Sample | Added GLY (nmol L−1) | Found GLY (nmol L−1) | * Recovery (%) | Found GLY (nmol L−1) | * Recovery (%) |
| Drinking water | - | 2.47 ± 0.06 | - | 2.46 ± 0.04 | - |
| 2.00 | 4.48 ± 0.05 | 100.22 ± 0.01 | 4.46 ± 0.08 | 100.00 ± 0.06 | |
| 4.00 | 6.46 ± 0.02 | 99.85 ± 0.04 | 6.45 ± 0.05 | 99.85 ± 0.07 | |
| 6.00 | 8.47 ± 0.04 | 100.00 ± 0.02 | 8.47 ± 0.04 | 100.12 ± 0.03 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bankoğlu Yola, B.; Bekerecioğlu, S.; Polat, İ.; Alptekin, Ü.M.; Atar, N.; Yola, M.L. Molecularly Imprinted Electrochemical Sensor Based on Palladium@Yttrium Oxide@Boronnitride Nanocomposite for Determination of Glyphosate Herbicide in Drinking Water Samples. Foods 2026, 15, 7. https://doi.org/10.3390/foods15010007
Bankoğlu Yola B, Bekerecioğlu S, Polat İ, Alptekin ÜM, Atar N, Yola ML. Molecularly Imprinted Electrochemical Sensor Based on Palladium@Yttrium Oxide@Boronnitride Nanocomposite for Determination of Glyphosate Herbicide in Drinking Water Samples. Foods. 2026; 15(1):7. https://doi.org/10.3390/foods15010007
Chicago/Turabian StyleBankoğlu Yola, Bahar, Sena Bekerecioğlu, İlknur Polat, Ülkü Melike Alptekin, Necip Atar, and Mehmet Lütfi Yola. 2026. "Molecularly Imprinted Electrochemical Sensor Based on Palladium@Yttrium Oxide@Boronnitride Nanocomposite for Determination of Glyphosate Herbicide in Drinking Water Samples" Foods 15, no. 1: 7. https://doi.org/10.3390/foods15010007
APA StyleBankoğlu Yola, B., Bekerecioğlu, S., Polat, İ., Alptekin, Ü. M., Atar, N., & Yola, M. L. (2026). Molecularly Imprinted Electrochemical Sensor Based on Palladium@Yttrium Oxide@Boronnitride Nanocomposite for Determination of Glyphosate Herbicide in Drinking Water Samples. Foods, 15(1), 7. https://doi.org/10.3390/foods15010007
