Characterization of Physicochemical, Phenolic, and Volatile Profiles of Peach Wine Fermented by Different Saccharomyces and Non-Saccharomyces Yeast Strains
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Peaches
2.1.2. Yeast Strains
2.2. Methods
2.2.1. Peach Wine Preparation
2.2.2. Determination of Color Parameters
2.2.3. General Chemical Analysis
2.2.4. Higher Alcohols Analysis
2.2.5. Determination of Total Phenolic Content and Antioxidant Capacity
2.2.6. High-Performance Liquid Chromatography Analysis of Phenolic Profile
2.2.7. Gas Chromatography–Mass Spectrometry Analysis of Volatile Organic Compounds
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characteristics
3.1.1. Color Parameters
3.1.2. Ethanol, Total Acidity, Residual Sugar, and Sugar-Free Extract
3.1.3. Higher Alcohols
3.2. Phenolic Compounds and Antioxidant Capacity
3.2.1. Total Phenolic Content and Antioxidant Capacity
3.2.2. Phenolic Profile
3.3. Volatile Profile
3.3.1. General Composition of VOCs
3.3.2. Alcohols
3.3.3. Esters
3.3.4. Aldehydes
3.3.5. Ketones
3.3.6. Acids and Phenols
3.3.7. PCA Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bento, C.; Goncalves, A.C.; Silva, B.; Silva, L.R. Peach (Prunus persica): Phytochemicals and health benefits. Food Rev. Int. 2022, 38, 1703–1734. [Google Scholar] [CrossRef]
- Lijj, R.E.; O’Donoghue, E.M.; King, G.A. Postharvest physiology of peaches and nectarines. Hortic. Rev. 1989, 11, 413–452. [Google Scholar] [CrossRef]
- Qin, Q.; Wang, L.; Wang, Q.; Wang, R.; Li, C.; Qiao, Y.; Liu, H. Postharvest Flavor Quality Changes and Preservation Strategies for Peach Fruits: A Comprehensive Review. Plants 2025, 14, 1310. [Google Scholar] [CrossRef]
- Jagtap, U.B.; Bapat, V.A. Wines from fruits other than grapes: Current status and future prospectus. Food Biosci. 2015, 9, 80–96. [Google Scholar] [CrossRef]
- Suarez-Lepe, J.A.; Morata, A. New trends in yeast selection for winemaking. Trends Food Sci. Technol. 2012, 23, 39–50. [Google Scholar] [CrossRef]
- Luo, B.Z.; Yang, Y.X.; Lin, Q. Optimizing yeast strain selection for mulberry wine fermentation: A performance-based approach. Qual. Assur. Saf. Crops Foods 2024, 16, 60–68. [Google Scholar] [CrossRef]
- Roullier-Gall, C.; Bordet, F.; David, V.; Schmitt-Kopplin, P. Yeast interaction on Chardonnay wine composition: Impact of strain and inoculation time. Food Chem. 2022, 374, 131732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Xiong, X.Y.; Li, Y.L.; Huang, Y.G. Aromatic composition and sensory characteristics of passion fruit wine fermented by different indigenous non-Saccharomyces yeast strains. Food Biosci. 2025, 68, 106576. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yang, Z.; Chen, M.L.; Chen, G.G.; Lei, H.J.; Xu, H.D.; Yue, X.F. Effects of five different commercial strains of Saccharomyces cerevisiae on the physicochemical parameters, antioxidant activity, phenolic profiles and flavor components of jujube wine. LWT 2024, 198, 115989. [Google Scholar] [CrossRef]
- Lorenc, F.; Jarošová, M.; Bedrníček, J.; Nohejl, V.; Míková, E.; Smetana, P. Effect of Wine Yeast (Saccharomyces sp.) Strains on the Physicochemical, Sensory, and Antioxidant Properties of Plum, Apple, and Hawthorn Wines. Foods 2025, 14, 2844. [Google Scholar] [CrossRef]
- Matallana, E.; Aranda, A. Biotechnological impact of stress response on wine yeast. Lett. Appl. Microbiol. 2017, 64, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Borren, E.; Tian, B. The Important Contribution of Non-Saccharomyces Yeasts to the Aroma Complexity of Wine: A Review. Foods 2021, 10, 13. [Google Scholar] [CrossRef]
- Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874. [Google Scholar] [CrossRef]
- Wang, X.; Fan, G.H.; Peng, Y.Y.; Xu, N.; Xie, Y.D.; Zhou, H.; Liang, H.M.; Zhan, J.C.; Huang, W.D.; You, Y.L. Mechanisms and effects of non-Saccharomyces yeast fermentation on the aromatic profile of wine. J. Food Compos. Anal. 2023, 124, 105660. [Google Scholar] [CrossRef]
- Liu, S.X.; Laaksonen, O.; Li, P.; Gu, Q.; Yang, B.R. Use of Non-Saccharomyces Yeasts in Berry Wine Production: Inspiration from Their Applications in Winemaking. J. Agric. Food Chem. 2022, 70, 736–750. [Google Scholar] [CrossRef]
- Li, S.Q.; Bi, P.F.; Sun, N.; Gao, Z.Y.; Chen, X.W.; Guo, J. Characterization of different non-Saccharomyces yeasts via mono-fermentation to produce polyphenol-enriched and fragrant kiwi wine. Food Microbiol. 2022, 103, 103867. [Google Scholar] [CrossRef]
- Xu, A.H.; Xie, L.F.; Ouyang, Y.R.; Liu, P.P.; Xiao, Y.W.; Wang, Y.; Liu, J.T.; Liu, B.; Gao, B.L.; Zhu, D. Synergistic co-fermentation of non-Saccharomyces yeasts enhanced fermentation performance and aroma characteristics of citrus wine. LWT 2025, 229, 118191. [Google Scholar] [CrossRef]
- Wang, R.; Yang, B.; Jia, S.; Dai, Y.; Lin, X.; Ji, C.; Chen, Y. The Antioxidant Capacity and Flavor Diversity of Strawberry Wine Are Improved Through Fermentation with the Indigenous Non-Saccharomyces Yeasts Hanseniaspora uvarum and Kurtzmaniella quercitrusa. Foods 2025, 14, 886. [Google Scholar] [CrossRef]
- dos Anjos, V.H.A.; Carvalho, A.J.D.A.; Dutra, M.D.P.; da Silva, M.C.C.; Neta, M.T.S.L.; Viana, A.C.; Lima, M.D. Effect of commercial Saccharomyces cerevisiae and non-Saccharomyces yeasts on the chemical composition and bioaccessibility of pineapple wine. Food Res. Int. 2024, 119, 114888. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.F.; Li, M.X.; Ren, T.; Wang, J.J.; Niu, C.T.; Zheng, F.Y.; Li, Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. LWT 2022, 155, 112993. [Google Scholar] [CrossRef]
- Liu, G.G.; Chen, Q.Q.; Gou, M.; Bi, J.F. Formation of key aroma-active and off-flavor components in concentrated peach puree. Food Chem. 2024, 450, 139375. [Google Scholar] [CrossRef]
- GB 5009.225-2023; Determination of Ethyl Alcohol Content in Wine and Edible Alcohol. Standards Press of China: Beijing, China, 2023.
- GB/T 15038-2006; Analytical Methods of Wine and Fruit Wine. Standards Press of China: Beijing, China, 2006.
- Fu, M.; Liu, H.; Yang, W.; Zhang, Q.; Lv, Z.; Nawaz, M.; Jiao, Z.; Liu, J. Virtual cold chain method with comprehensive evalu-ation to reveal the effects of temperature abuse on blueberry quality. Foods 2024, 13, 3731. [Google Scholar] [CrossRef]
- Han, Y.; Du, J.; Song, Z. Effects of the yeast endogenous β-glucosidase on hawthorn (Crataegus pinnatifida Bunge) wine ethyl carbamate and volatile compounds. J. Food Compos. Anal. 2021, 103, 104084. [Google Scholar] [CrossRef]
- GB/T 5009.48-2003; Methods for Analysis of Hygienic Standard of Distilled Wines and Mixed Wines. Standards Press of China: Beijing, China, 2003.
- Liu, J.C.; Yang, W.B.; Lv, Z.Z.; Liu, H.; Zhang, C.L.; Jiao, Z.G. Effects of different pretreatments on physicochemical properties and phenolic compounds of hawthorn wine. CyTA-J. Food 2020, 18, 518–526. [Google Scholar] [CrossRef]
- Yang, W.B.; Liu, J.C.; Zhang, Q.; Liu, H.; Lv, Z.Z.; Zhang, C.L.; Jiao, Z.G. Changes in nutritional composition, volatile organic compounds and antioxidant activity of peach pulp fermented by lactobacillus. Food Biosci. 2022, 49, 101894. [Google Scholar] [CrossRef]
- Wu, B.M.; Liu, J.C.; Yang, W.B.; Zhang, Q.; Yang, Z.Y.; Liu, H.; Lv, Z.Z.; Zhang, C.L.; Jiao, Z.G. Nutritional and flavor properties of grape juice as affected by fermentation with lactic acid bacteria. Int. J. Food Prop. 2021, 24, 906–922. [Google Scholar] [CrossRef]
- Choi, J.S.; Seong, G.U.; Shin, H.R.; Lee, S.H.; Choi, K.T.; Cho, J.S.; Lee, S.B. Fermentation and quality characteristics of peach wine with nectarine addition. Ital. J. Food Sci. 2025, 37, 168–179. [Google Scholar] [CrossRef]
- Wu, J.L.; Fan, J.Q.; Li, Y.; Cao, K.; Chen, C.W.; Wang, X.W.; Fang, W.C.; Zhu, G.R.; Wang, L.R. Characterizing of carotenoid diversity in peach fruits affected by the maturation and varieties. J. Food Compos. Anal. 2022, 113, 104711. [Google Scholar] [CrossRef]
- Tomic, D.; Grigorakis, S.; Loupassaki, S.; Makris, D.P. Implementation of kinetics and response surface methodology reveals contrasting effects of catechin and chlorogenic acid on the development of browning in wine model systems containing either ascorbic acid or sulphite. Eur. Food Res. Technol. 2017, 243, 565–574. [Google Scholar] [CrossRef]
- Ferreira, A.C.S.; Monteiro, J.; Oliveira, C.; de Pinho, P.G. Study of major aromatic compounds in Port wines from carotenoid degradation. Food Chem. 2008, 110, 83–87. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Chen, M.; Lu, J. The Saccharomyces cerevisiae through increasing the expression of membrane transporter to produce more GSH inhibit the browning of pear wine. Food Biosci. 2004, 58, 103689. [Google Scholar] [CrossRef]
- Giménez, P.; Just-Borras, A.; Pons, P.; Gombau, J.; Heras, J.M.; Sieczkowski, N.; Canals, J.M.; Zamora, F. Biotechnological tools for reducing the use of sulfur dioxide in white grape must and preventing enzymatic browning: Glutathione; inactivated dry yeasts rich in glutathione; and bioprotection with Metschnikowia pulcherrima. Eur. Food Res. Technol. 2023, 249, 1491–1501. [Google Scholar] [CrossRef]
- Bonilla, F.; Mayen, M.; Merida, J.; Medina, M. Yeasts Used as Fining Treatment to Correct Browning in White Wines. J. Agric. Food Chem. 2001, 49, 1928–1933. [Google Scholar] [CrossRef]
- Razmkhab, S.; Lopez-Toledano, A.; Ortega, J.M.; Mayen, M.; Merida, J.; Medina, M. Adsorption of phenolic compounds and browning products in white wines by yeasts and their cell walls. J. Agric. Food Chem. 2002, 50, 7432–7437. [Google Scholar] [CrossRef]
- Liu, S.X.; Laaksonen, O.; Yang, B.R. Volatile composition of bilberry wines fermented with non-Saccharomyces and Saccharomyces yeasts in pure, sequential and simultaneous inoculations. Food Microbiol. 2019, 80, 25–39. [Google Scholar] [CrossRef]
- Silva, P. Low-Alcohol and Nonalcoholic Wines: From Production to Cardiovascular Health, along with Their Economic Effects. Beverages 2024, 10, 49. [Google Scholar] [CrossRef]
- Morata, A.; Benito, S.; Loira, L.; Palomero, E.; González, M.C.; Suárez-Lepe, J.A. Formation of pyranoanthocyanins by Schizosaccharomyces pombe during the fermentation of red must. Int. J. Food Microbiol. 2012, 159, 47–53. [Google Scholar] [CrossRef]
- Redzepovic, S.; Orlic, S.; Majdak, A.; Kozina, B.; Volschenk, H.; Viljoen-Bloom, M. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. Int. J. Food Microbiol. 2003, 83, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Villar, N.; Pérez-Nevado, F.; Andrés, A.I.; Ramírez, M.; Valdés, M.E.; Moreno, D. Influence of yeast inoculum (Saccharomyces cerevisiae and Torulaspora delbrueckii) on the production of rosé wines from high hydrostatic pressure-treated musts. Eur. Food Res. Technol. 2025, 251, 467–482. [Google Scholar] [CrossRef]
- Cameleyre, M.; Lytra, G.; Tempere, S.; Barbe, J.C. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. J. Agric. Food Chem. 2015, 63, 9777–9788. [Google Scholar] [CrossRef]
- Lian, W.; Lei, J.; Han, C.; Wu, J.; Liu, Z.; Liu, W.; Jiapaer, A.; Su, H.; Xu, Y.; Chen, Y.; et al. Effect of Different Yeasts on the Higher Alcohol Content of Mulberry Wine. Foods 2024, 13, 1788. [Google Scholar] [CrossRef]
- Huang, D.; Zhong, Y.; Liu, Y.L.; Song, Y.Y.; Zhao, X.X.; Qin, Y. Reducing higher alcohols by integrating indigenous Saccharomyces cerevisiae, nitrogen compensation, and chaptalization methods during fermentation of kiwifruit wine. LWT 2023, 184, 115059. [Google Scholar] [CrossRef]
- Lai, Y.T.; Yuan, J.F.; Chen, Z.Y.; Wang, D.H.; Sun, J.R.; Ma, J.L. Microwave irradiation: Reduction of higher alcohols in wine and the effect mechanism by employing model wine. LWT 2023, 181, 114765. [Google Scholar] [CrossRef]
- Zhang, Q.A.; Xu, B.W.; Chen, B.Y.; Zhao, W.Q.; Xue, C.H. Ultrasound as an effective technique to reduce higher alcohols of wines and its influencing mechanism investigation by employing a model wine. Ultrason. Sonochem. 2020, 61, 104813. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Ma, W.; Meng, Y.Q.; Zhang, Y.F.; Jin, G.; Fang, Z.X. Wine phenolic profile altered by yeast: Mechanisms and influences. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3579–3619. [Google Scholar] [CrossRef]
- Belda, I.; Conchillo, L.B.; Ruiz, J.; Navascués, E.; Marquina, D.; Santos, A. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Int. J. Food Microbiol. 2016, 223, 1–8. [Google Scholar] [CrossRef]
- Gaensly, F.; Agustini, B.C.; Silva, G.A.; Picheth, G.; Bonfim, T.M.B. Autochthonous yeasts with β-glucosidase activity increase resveratrol concentration during the alcoholic fermentation of Vitis labrusca grape must. J. Funct. Foods 2015, 19, 288–295. [Google Scholar] [CrossRef]
- Liu, S.X.; Zhao, Y.; Li, Y.X.; Lou, Y.; Feng, X.J.; Yang, B.R. Comparison of phenolic profiles of albino bilberry (Vaccinium myrtillus L.) wines fermented by non-Saccharomyces yeasts. Food Biosci. 2023, 55, 102980. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Zhang, R.G.; Sirisena, S.; Gan, R.Y.; Fang, Z.X. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A mini-review. Food Microbiol. 2021, 100, 103859. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Chmielewska, J.; Nofer, J. Effect of Different Yeast Strains and Temperature of Fermentation on Basic Enological Parameters, Polyphenols and Volatile Compounds of Aurore White Wine. Foods 2019, 8, 599. [Google Scholar] [CrossRef]
- Martín-Gómez, J.; García-Martínez, T.; Varo, M.A.; Mérida, J.; Serratosa, M.P. Phenolic compounds, antioxidant activity and color in the fermentation of mixed blueberry and grape juice with different yeasts. LWT 2021, 146, 111661. [Google Scholar] [CrossRef]
- Kelanne, N.; Yang, B.R.; Liljenbäck, L.; Laaksonen, O. Phenolic Compound Profiles in Alcoholic Black Currant Beverages Produced by Fermentation with Saccharomyces and Non-Saccharomyces Yeasts. J. Agric. Food Chem. 2020, 68, 10128–10141. [Google Scholar] [CrossRef]
- Nenadis, N.; Paraskevopoulou, A. Browning susceptibility of commercial monovarietal white wines under accelerated oxidation conditions: Correlation with compositional data and effect on total phenol content and radical scavenging activity. Eur. Food Res. Technol. 2016, 242, 1821–1828. [Google Scholar] [CrossRef]
- Petronilho, S.; Lopez, R.; Ferreira, V.; Coimbra, M.A.; Rocha, S.M. Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines. Molecules 2022, 25, 272. [Google Scholar] [CrossRef]
- Sam, F.E.; Ma, T.; Wang, J.; Liang, Y.; Sheng, W.; Li, J.; Jiang, Y.; Zhang, B. Aroma improvement of dealcoholized Merlot red wine using edible flowers. Food Chem. 2023, 404, 134711. [Google Scholar] [CrossRef]
- Arcari, S.G.; Caliari, V.; Sganzerla, M.; Godoy, H.T. Volatile composition of merlot red wine and its contribution to the aroma: Optimization and validation of analytical method. Talanta 2017, 174, 752–766. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef]
- Tian, L.; Wang, J.; Yuan, Q.; Lei, Y.; Peng, W.; Zhang, M.; Li, X.; Sun, X.; Ma, T. Evaluation of the color and aroma characteristics of commercially available Chinese kiwi wines via intelligent sensory technologies and gas chromatography-mass spectrometry. Food Chem. X 2022, 15, 100427. [Google Scholar] [CrossRef]
- Campo, E.; Ferreira, V.; Escuderoa, A.; Marqués, J.C.; Cacho, J. Quantitative gas chromatography-olfactometry and chemical quantitative study of the aroma of four Madeira wines. Anal. Chim. Acta 2006, 563, 180–187. [Google Scholar] [CrossRef]














| Yeasts | L* | a* | b* | h*(°) | C* |
|---|---|---|---|---|---|
| Sc1796 | 19.29 ± 2.17 a | −0.06 ± 0.21 bc | 12.68 ± 0.01 a | 89.31 ± 0.54 a | 12.68 ± 0.01 a |
| EC1118 | 19.53 ± 0.69 a | −0.34 ± 0.34 cdef | 8.67 ± 1.20 cde | 87.73 ± 1.75 bcd | 8.68 ± 1.21 cde |
| Sc1458 | 19.17 ± 0.90 a | −0.01 ± 0.20 b | 10.09 ± 0.37 bc | 89.15 ± 0.52 ab | 10.09 ± 0.37 bc |
| Sb1465 | 18.73 ± 1.10 a | −0.75 ± 0.20 h | 11.22 ± 1.65 ab | 86.17 ± 1.01 ef | 11.25 ± 1.66 ab |
| Schp1260 | 18.64 ± 1.69 a | 0.51 ± 0.01 a | 8.16 ± 1.47 de | 86.33 ± 0.6 def | 8.17 ± 1.47 de |
| Sc71B | 19.99 ± 0.83 a | −0.15 ± 0.20 bcde | 9.38 ± 1.05 cd | 88.81 ± 1.14 abc | 9.38 ± 1.05 cd |
| Ck1273 | 19.99 ± 1.18 a | −0.11 ± 0.01 bcd | 7.51 ± 1.04 e | 89.12 ± 0.13 ab | 7.51 ± 1.04 de |
| Io31129 | 18.91 ± 0.05 a | −0.65 ± 0.06 gh | 8.69 ± 0.67 cde | 85.69 ± 0.05 f | 8.71 ± 0.67 cde |
| Pf33372 | 19.83 ± 0.50 a | −0.41 ± 0.06 efg | 8.58 ± 0.76 cde | 87.21 ± 0.65 de | 8.59 ± 0.76 cde |
| Rm33374 | 20.16 ± 0.68 a | −0.38 ± 0.18 defg | 8.65 ± 0.94 cde | 87.47 ± 1.26 cde | 8.66 ± 0.94 cde |
| Hu32337 | 19.47 ± 2.34 a | −0.57 ± 0.1 fgh | 9.07 ± 0.12 cde | 86.4 ± 0.67 def | 9.08 ± 0.12 cde |
| Sc2 | 19.60 ± 0.43 a | −0.57 ± 0.11 fgh | 8.38 ± 0.88 de | 86.14 ± 0.49 ef | 8.40 ± 0.89 de |
| Yeasts | Ethanol (%, v/v) | Total Acidity (g/L) | Sugar-Free Extract (g/L) | Residual Sugar (g/L) |
|---|---|---|---|---|
| Sc1796 | 11.80 ± 0.26 ab | 6.25 ± 0.14 c | 26.81 ± 2.65 cde | 5.32 ± 0.29 de |
| EC1118 | 12.43 ± 0.21 a | 4.39 ± 0.27 e | 22.73 ± 1.50 e | 4.97 ± 1.34 de |
| Sc1458 | 11.97 ± 0.49 ab | 4.82 ± 0.24 de | 21.87 ± 2.92 e | 4.80 ± 0.54 de |
| Sb1465 | 12.33 ± 0.12 a | 5.03 ± 1.32 cde | 22.91 ± 2.68 de | 3.75 ± 2.12 e |
| Schp1260 | 11.13 ± 0.06 bcd | 10.89 ± 0.65 a | 32.19 ± 1.82 abc | 8.54 ± 0.93 ab |
| Sc71B | 11.27 ± 1.15 bcd | 6.74 ± 1.87 bc | 28.38 ± 4.8 bcde | 4.64 ± 0.25 de |
| Ck1273 | 10.50 ± 1.04 d | 6.09 ± 0.61 cd | 34.64 ± 6.96 ab | 7.66 ± 1.59 bc |
| Io31129 | 11.03 ± 0.96 bcd | 7.08 ± 0.21 bc | 38.61 ± 8.94 a | 6.39 ± 0.27 cd |
| Pf33372 | 11.30 ± 0.36 bcd | 5.75 ± 1.30 cd | 30.42 ± 3.10 bcd | 5.08 ± 1.52 de |
| Rm33374 | 11.60 ± 0.30 abc | 6.02 ± 0.72 cd | 31.22 ± 4.55 abc | 5.81 ± 0.31 cde |
| Hu32337 | 10.80 ± 0.53 cd | 8.08 ± 0.49 b | 34.76 ± 5.83 ab | 10.31 ± 0.78 a |
| Sc2 | 11.97 ± 0.06 ab | 4.34 ± 0.04 e | 20.80 ± 0.82 e | 5.46 ± 0.62 de |
| Yeasts | Protocatechuic Acid | Catechin | Vanillic Acid | Chlorogenic Acid | Syringic Acid | Epicatechin | Procyanidin C1 | p-Coumaric Acid | Cinnamic Acid | Isorhamnetin |
|---|---|---|---|---|---|---|---|---|---|---|
| Sc1796 | 2.52 ± 0.12 ef | 3.13 ± 0.04 bcd | 1.55 ± 0.78 ef | 6.21 ± 0.29 ab | 5.27 ± 0.4 abcd | 23.75 ± 0.5 bc | 2.88 ± 0.11 bcd | 0.45 ± 0.06 bcd | 0.05 ± 0.02 cd | 0.64 ± 0.05 cd |
| EC1118 | 2.44 ± 0.11 f | 3.19 ± 0.15 bc | 2.11 ± 0.04 bcd | 6.17 ± 0.21 ab | 6.05 ± 1.29 ab | 24.45 ± 0.9 bc | 5.04 ± 0.79 a | 0.44 ± 0.05 cd | 0.09 ± 0.01 a | 0.78 ± 0.04 c |
| Sc1458 | 2.97 ± 0.38 ef | 3.67 ± 0.12 a | 2.29 ± 0.13 b | 6.60 ± 0.37 a | 6.27 ± 0.79 a | 24.39 ± 3.35 bc | 3.09 ± 0.15 b | 0.42 ± 0.07 cde | 0.08 ± 0.01 b | 0.81 ± 0.12 c |
| Sb 1465 | 2.42 ± 0.10 f | 3.21 ± 0.11 bc | 2.23 ± 0.08 bc | 6.23 ± 0.05 ab | 5.78 ± 0.1 abc | 24.64 ± 0.11 b | 2.92 ± 0.01 bc | 0.39 ± 0.00 def | 0.07 ± 0.00 b | 1.22 ± 0.01 ab |
| Schp1260 | 3.48 ± 0.22 e | 3.51 ± 0.07 a | 1.09 ± 0.41 f | 5.56 ± 0.08 c | 4.61 ± 0.2 d | 24.01 ± 0.28 bc | 2.93 ± 0.06 bc | 0.30 ± 0.01 g | 0.07 ± 0.00 b | 0.76 ± 0.13 cd |
| Sc71B | 2.09 ± 0.06 f | 3.39 ± 0.41 ab | 1.99 ± 0.26 bcde | 6.17 ± 0.33 b | 5.58 ± 1.26 abcd | 24.49 ± 0.51 bc | 2.56 ± 0.22 cde | 0.33 ± 0.03 fg | 0.06 ± 0.02 bc | 0.60 ± 0.06 d |
| Ck1273 | 6.68 ± 0.18 c | 2.87 ± 0.05 d | 1.72 ± 0.22 de | 5.52 ± 0.23 c | 5.65 ± 0.35 abcd | 23.37 ± 0.75 bc | 2.46 ± 0.02 e | 0.53 ± 0.05 ab | 0.04 ± 0.00 d | 1.29 ± 0.09 a |
| Io31129 | 8.41 ± 0.18 ab | 3.12 ± 0.2 bcd | 1.68 ± 0.08 de | 5.39 ± 0.27 c | 5.15 ± 0.04 bcd | 23.31 ± 0.22 bc | 2.45 ± 0.01 e | 0.49 ± 0.01 abc | 0.04 ± 0.00 d | 1.11 ± 0.03 b |
| Pf33372 | 4.61 ± 0.03 d | 2.87 ± 0.08 d | 1.64 ± 0.1 de | 6.46 ± 0.43 ab | 5.77 ± 0.31 abc | 23.19 ± 0.95 bc | 2.50 ± 0.07 de | 0.47 ± 0.10 bcd | 0.04 ± 0.00 d | 1.18 ± 0.01 ab |
| Rm33374 | 8.64 ± 0.07 a | 3.02 ± 0.09 cd | 1.81 ± 0.04 cde | 6.58 ± 0.02 ab | 5.85 ± 0.32 abc | 22.61 ± 0.35 c | 2.45 ± 0.01 e | 0.56 ± 0.04 a | 0.04 ± 0.00 d | 1.07 ± 0.09 b |
| Hu32337 | 7.61 ± 2.01 bc | 3.05 ± 0.04 cd | 1.61 ± 0.04 e | 5.68 ± 0.25 c | 5.21 ± 0.21 bcd | 22.85 ± 1.18 bc | 2.48 ± 0.03 de | 0.46 ± 0.01 bcd | 0.04 ± 0.00 d | 1.07 ± 0.05 b |
| Sc2 | 2.65 ± 0.1 ef | 3.39 ± 0.3 ab | 4.09 ± 0.07 a | 5.62 ± 0.16 c | 4.87 ± 0.46 cd | 32.67 ± 0.58 a | 2.50 ± 0.04 de | 0.35 ± 0.01 efg | 0.02 ± 0.01 e | 1.31 ± 0.24 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, X.; Lv, Z.; Yang, W.; Liu, H.; Zhang, Q.; Liu, J.; Jiao, Z. Characterization of Physicochemical, Phenolic, and Volatile Profiles of Peach Wine Fermented by Different Saccharomyces and Non-Saccharomyces Yeast Strains. Foods 2026, 15, 56. https://doi.org/10.3390/foods15010056
Zhang X, Lv Z, Yang W, Liu H, Zhang Q, Liu J, Jiao Z. Characterization of Physicochemical, Phenolic, and Volatile Profiles of Peach Wine Fermented by Different Saccharomyces and Non-Saccharomyces Yeast Strains. Foods. 2026; 15(1):56. https://doi.org/10.3390/foods15010056
Chicago/Turabian StyleZhang, Xiaoqing, Zhenzhen Lv, Wenbo Yang, Hui Liu, Qiang Zhang, Jiechao Liu, and Zhonggao Jiao. 2026. "Characterization of Physicochemical, Phenolic, and Volatile Profiles of Peach Wine Fermented by Different Saccharomyces and Non-Saccharomyces Yeast Strains" Foods 15, no. 1: 56. https://doi.org/10.3390/foods15010056
APA StyleZhang, X., Lv, Z., Yang, W., Liu, H., Zhang, Q., Liu, J., & Jiao, Z. (2026). Characterization of Physicochemical, Phenolic, and Volatile Profiles of Peach Wine Fermented by Different Saccharomyces and Non-Saccharomyces Yeast Strains. Foods, 15(1), 56. https://doi.org/10.3390/foods15010056

