Enhancement of Functional and Flavor Attributes of Soy Protein Isolate–Chitosan Coacervates via Ultrasonic Processing
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SPI–CS Complex Treated by Ultrasound
2.3. Particle Size and ζ-Potential
2.4. Surface Hydrophobicity (H0)
2.5. Fluorescence Spectroscopy
2.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.7. Free Sulfhydryl (F-SH) Content
2.8. Solubility Measurements
2.9. Volatile Compounds (Flavors) Analysis
2.10. Emulsifying Properties
2.11. Statistical Analysis
3. Results and Discussion
3.1. Particle Size and ζ-Potential of SPI-CS Under Ultrasonic Treatment
3.2. Surface Hydrophobicity (H0) of SPI-CS Under Ultrasonic Treatment
3.3. Fluorescence Spectroscopy of SPI-CS Under Ultrasonic Treatment
3.4. FTIR Spectroscopy and Protein Secondary Structure
3.5. F-SH
3.6. Solubility
3.7. Emulsifying Properties of SPI-CS Under Ultrasonic Treatment
3.8. Flavor Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Zhang, Q.; Zhang, N.; Bak, K.H.; Soladoye, O.P.; Aluko, R.E.; Fu, Y.; Zhang, Y. Insights into formation, detection and removal of the beany flavor in soybean protein. Trends Food Sci. Technol. 2021, 112, 336–347. [Google Scholar] [CrossRef]
- Li, J.; Shen, Q.; Albahi, A.; Liang, H.; Li, J.; Li, B. Chitosan mitigates the beany flavor and improves the functional properties of soy protein isolate via the electrostatic interaction. Food Hydrocoll. 2024, 155, 110164. [Google Scholar] [CrossRef]
- Gao, T.; Zhao, X.; Li, R.; Bassey, A.; Bai, Y.; Ye, K.; Deng, S.; Zhou, G. Synergistic effects of polysaccharide addition-ultrasound treatment on the emulsified properties of low-salt myofibrillar protein. Food Hydrocoll. 2022, 123, 107143. [Google Scholar] [CrossRef]
- Hu, G.; Wang, X.; Batool, Z.; He, H.; Wang, J.; Geng, F. Enhanced egg white powder through liquid-state ultrasound-heating pretreatment: Properties and digestibility. Food Chem. 2025, 468, 142533. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Xing, L.; Liu, S.; Liu, J.; Zhu, T.; Jiang, T.; Zheng, X.; Zhou, S.; Lu, J. Enhancing stability and flavor of mung bean-based milk through ultrasound treatment: Impacts on physical-chemical properties and protein structure. Int. J. Biol. Macromol. 2025, 286, 138465. [Google Scholar] [CrossRef] [PubMed]
- Yue, K.; Zenan, W.; Yanhui, L.; Zimeng, K.; Lu, W.; Fengying, X.; Dianyu, Y. Analyzing changes in volatile flavor compounds of soy protein isolate during ultrasonic-thermal synergistic treatments using electronic nose and HS-SPME-GC-MS combined with chemometrics. Food Chem. 2024, 445, 138795. [Google Scholar]
- Wei, Z.; Zhang, X.; Cao, T.; Luo, T.; Sun, Y.; Jin, Z.; Xue, C. Fabrication of core–shell–shell nanoparticles as co-encapsulation systems via ultrasonic treatment optimization: Encapsulation performance and programmed sequential release analyses. Food Hydrocoll. 2025, 164, 111199. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, M.; Wang, W.; Li, X.; Ding, X. Ultrasound assisted complexation of soybean peptide aggregates and soluble soybean polysaccharide: pH optimization, structure characterization, and emulsifying behavior. Food Res. Int. 2025, 201, 115546. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, L.; Sun, X.; Chen, F.; Zhu, T. Correlationship between self-assembly behavior and emulsion stabilization of pea protein-high methoxyl pectin complexes treated with ultrasound at pH 2.0. Ultrason. Sonochem. 2023, 100, 106596. [Google Scholar] [CrossRef]
- Ren, X.; Hou, T.; Liang, Q.; Zhang, X.; Hu, D.; Xu, B.; Chen, X.; Chalamaiah, M.; Ma, H. Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation. Food Chem. 2019, 279, 223–230. [Google Scholar] [CrossRef]
- Li, J.; Ye, S.; Zongo, A.W.-S.; Li, J.; Li, B. Basic amino acids treatment prior to spray drying improved the functional properties and flavor attributes of soy protein isolate. LWT-Food Sci. Technol. 2023, 188, 115447. [Google Scholar] [CrossRef]
- Shen, Q.; Li, J.; Shen, X.; Zhu, X.; Dai, J.; Tang, C.; Song, R.; Li, B.; Chen, Y. Linear and nonlinear interface rheological behaviors and structural properties of pea protein (vicilin, legumin, albumin). Food Hydrocoll. 2023, 139, 108500. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Q.; Liu, X.; Raza, H.; Ma, H.; Ren, X. Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates. LWT-Food Sci. Technol. 2022, 153, 112331. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Y.; Zhang, Z.; Wang, Y.; Mintah, B.K.; Dabbour, M.; Jiang, H.; He, R.; Ma, H. Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrason. Sonochem. 2020, 69, 105240. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, X.; Wang, W.; Wang, L.; Jiang, L.; Yu, D.; Xie, F. Effect of ultrasound on the properties of rice bran protein and its chlorogenic acid complex. Ultrason. Sonochem. 2021, 79, 105758. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yong, K.Y.A.; Zhou, Y.; Wang, Y.; Zhou, W. Improved in vitro bioaccessibility of quercetin by nanocomplexation with high-intensity ultrasound treated soy protein isolate. Food Chem. 2023, 406, 135004. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Q.; Liu, Y.; Rashid, A.; Qayum, A.; Ma, H.; Ren, X. Effects of multi-frequency ultrasound on sodium caseinate/pectin complex: Emulsifying properties, interaction force, structure and correlation. Int. J. Biol. Macromol. 2023, 242, 124801. [Google Scholar] [CrossRef]
- Yan, H.; Zou, H.; Li, S.; Sun, S.; Xu, Q.; Yu, C. Modification of functional properties of mussel actomyosin by ultrasound treatment and the appplication at O/W emulsion. LWT-Food Sci. Technol. 2022, 170, 114086. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Guo, Y.; Liu, C.; Liu, J.; Tan, B.; Guo, Z.; Wang, Z.; Jiang, L. Effects of ultrasound on the structural and emulsifying properties and interfacial properties of oxidized soybean protein aggregates. Ultrason. Sonochem. 2022, 87, 106046. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, J.; Zhang, Y.; Wang, X.; Lorenzo, J.M.; Zhong, J. Gelatins as emulsifiers for oil-in-water emulsions: Extraction, chemical composition, molecular structure, and molecular modification. Trends Food Sci. Technol. 2020, 106, 113–131. [Google Scholar] [CrossRef]
- Ma, X.; Yan, T.; Hou, F.; Chen, W.; Miao, S.; Liu, D. Formation of soy protein isolate (SPI)-citrus pectin (CP) electrostatic complexes under a high-intensity ultrasonic field: Linking the enhanced emulsifying properties to physicochemical and structural properties. Ultrason. Sonochem. 2019, 59, 04748. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, Y.; Zhou, C.; Liu, L.; Wang, L.; Cao, J.; Sun, Y.; He, J.; Pan, D.; Cai, Z.; et al. Tunability of Pickering particle features of whey protein isolate via remodeling partial unfolding during ultrasonication-assisted complexation with chitosan/chitooligosaccharide. Carbohydr. Polym. 2024, 325, 121583. [Google Scholar] [CrossRef]
- Zhao, C.; Miao, Z.; Yan, J.; Liu, J.; Chu, Z.; Yin, H.; Zheng, M.; Liu, J. Ultrasound-induced red bean protein–lutein interactions and their effects on physicochemical properties, antioxidant activities and digestion behaviors of complexes. LWT-Food Sci. Technol. 2022, 160, 113322. [Google Scholar] [CrossRef]
- Jialu, N.; Kuiyou, W.; Deyang, Y.; Mingqian, T. Pickering emulsions stabilized by Chlorella pyrenoidosa protein-chitosan complex for lutein encapsulation. Food Funct. 2023, 14, 2807–2821. [Google Scholar]
- Min, L.; Yanfei, X.; Xuan, H.; Changwei, H.; Zheng, Z. Phosphorylated walnut protein/chitosan nanocomplexes as promising carriers for encapsulation of caffeic acid phenethyl ester. J. Sci. Food Agric. 2023, 103, 5770–5781. [Google Scholar] [CrossRef]
- Ding, S.; Zhao, J.; Jiang, Z.; Mu, J.; Huang, L.; Dai, C. Fabrication of whey protein isolate/chitosan complexes and its protective effect on allicin. J. Appl. Polym. Sci. 2023, 140, e53576. [Google Scholar] [CrossRef]
- Junmiao, Z.; Hengjun, D.; Ning, M.; Lei, Z.; Gaoxing, M.; Fei, P.; Hui, C.; Qiuhui, H. Effect of ionic strength and mixing ratio on complex coacervation of soy protein isolate/Flammulina velutipes polysaccharide. Food Sci. Hum. Wellness 2023, 12, 183–191. [Google Scholar] [CrossRef]
- Sun, X.; Ding, L.; Zhang, L.; Lai, S.; Chen, F. Interaction mechanisms of peanut protein isolate and high methoxyl pectin with ultrasound treatment: The effect of ultrasound parameters, biopolymer ratio, and pH. Food Chem. 2023, 429, 136810. [Google Scholar] [CrossRef] [PubMed]
- Tingting, T.; Ninh, L.T.; Junhua, L.; Yujie, S.; Luping, G.; Cuihua, C.; Yanjun, Y. Immunomodulatory activity of ovotransferrin-chlorogenic acid complexes enhanced by high-intensity ultrasound (HIU): A structure-function relationship study. Int. J. Biol. Macromol. 2024, 278, 134635. [Google Scholar]
- Xue, Y.; Zhuojia, L.; Cuiping, H.; Junfang, Z.; Yujie, D.; Qingxin, G. Stability and encapsulation properties of daidzein in zein/carrageenan/sodium alginate nanoparticles with ultrasound treatment. Int. J. Biol. Macromol. 2024, 262, 130070. [Google Scholar]
- Rafe, A.; Razavi, S.M.A. Effect of Thermal Treatment on Chemical Structure of B-Lactoglobulin and Basil Seed Gum Mixture at Different States by ATR-FTIR Spectroscopy. Int. J. Food Prop. 2015, 18, 2652–2664. [Google Scholar]
- Zhao, R.; Liu, X.; Liu, W.; Liu, Q.; Zhang, L.; Hu, H. Effect of high-intensity ultrasound on the structural, rheological, emulsifying and gelling properties of insoluble potato protein isolates. Ultrason. Sonochem. 2022, 85, 105969. [Google Scholar] [PubMed]
- Kangyi, Z.; Qingyu, W.; Tianqi, L.; Yufei, W.; Yu, Z.; Denglin, L. Comparative study of the effects of ultrasonic power on the structure and functional properties of gliadin in wheat and green wheat. J. Food Sci. 2022, 87, 1020–1034. [Google Scholar] [CrossRef]
- Mediwaththe, A.; Bogahawaththa, D.; Grewal, M.K.; Chandrapala, J.; Vasiljevic, T. Structural changes of native milk proteins subjected to controlled shearing, and heating. Food Res. Int. 2018, 114, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wei, X.; Nie, R.; Xiang, C.; Hui, T.; Li, S.; Wang, Z.; Zhang, D. Molecular docking simulation combining with multi-spectroscopy techniques clarify how small molecule ligands bind to biomacromolecule: Myosin and aldehydes as a case study. LWT-Food Sci. Technol. 2022, 155, 112977. [Google Scholar] [CrossRef]
- Ghorbani, A.; Rafe, A.; Hesarinejad, M.A.; Lorenzo, J.M. Effect of pH and protein to polysaccharide ratio on coacervation of sesame protein isolate-Tragacanth gum: Structure-rheology function. Int. J. Biol. Macromol. 2025, 311, 143911. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y.; Wang, J.; Ahmad, H.N.; Zhu, J. Modification of low-salt myofibrillar protein using combined ultrasound pre-treatment and konjac glucomannan for improving gelling properties: Intermolecular interaction and filling effect. Int. J. Biol. Macromol. 2023, 250, 126195. [Google Scholar]
- Liu, H.; Zhang, H.; Liu, Q.; Chen, Q.; Kong, B. Solubilization and stable dispersion of myofibrillar proteins in water through the destruction and inhibition of the assembly of filaments using high-intensity ultrasound. Ultrason. Sonochem. 2020, 67, 105160. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Xue, F.; Adhikari, B. Application of ultrasound treatment to improve the technofunctional properties of hemp protein isolate. Future Foods 2022, 6, 100176. [Google Scholar] [CrossRef]
- Xie, Y.; Ding, J.; Li, Y.; Wei, P.; Liu, S.; Yang, R. The Formation of Protein-Chitosan Complexes: Their Interaction, Applications, and Challenges. Foods 2024, 13, 3572. [Google Scholar] [CrossRef]
- Li, M.-F.; Chen, L.; Xu, M.-Z.; Zhang, J.-L.; Wang, Q.; Zeng, Q.-Z.; Wei, X.-C.; Yuan, Y. The formation of zein-chitosan complex coacervated particles: Relationship to encapsulation and controlled release properties. Int. J. Biol. Macromol. 2018, 116, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Shao, S.; Guo, M. Ultrasound-induced changes in physical and functional properties of whey proteins. Int. J. Food Sci. Technol. 2017, 52, 381–388. [Google Scholar] [CrossRef]
- Ma, X.; Hou, F.; Zhao, H.; Wang, D.; Chen, W.; Miao, S.; Liu, D. Conjugation of soy protein isolate (SPI) with pectin by ultrasound treatment. Food Hydrocoll. 2020, 108, 106056. [Google Scholar] [CrossRef]
- Tian, L.; Roos, Y.H.; Biliaderis, C.G.; Miao, S. Effect of ultrasound on the interactions and physicochemical properties of the whey protein isolate-Tremella fuciformis polysaccharide system. Food Hydrocoll. 2024, 157, 110375. [Google Scholar] [CrossRef]
- Junlu, G.A.O.; Xuezhi, T.; Zhiying, W.; Yi, Z.; Fusheng, Z. Effects of ultrasonic treatment on rheological property and structure of konjac glucomannan and peanut protein complex system. Food Ferment. Ind. 2023, 49, 207–215. [Google Scholar]
- Zeng, C.; Sun, X.; Liu, X.; Pan, Y.; Tian, J. Effect of pH value and volume ratio on the electrostatic interaction between soybean protein isolates and Houttuynia cordata polysaccharides. Int. J. Food Sci. Technol. 2025, 60, vvae088. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Y.; Wu, X.; Lu, Y.; Yi, J. Colloidal characteristics, emulsifying activities, and interfacial properties of α-lactalbumin-chitosan electrostatic complexes: Effects of mass ratio and pH. Food Funct. 2020, 11, 1740–1753. [Google Scholar] [CrossRef]
- Fuyun, J.; Zijun, W.; Xiaohui, B.; Yanyan, Z.; Xiyang, Z.; Shuizhong, L.; Yizhong, S.; Shaotong, J.; Zhi, Z. Ultrasound-treated soy protein fibrils: A potential vehicle for curcumin with improved water solubility, antioxidant activity and sustained-release property. Food Hydrocoll. 2023, 143, 108929. [Google Scholar]
- Shima, S. Off-Flavors in Pulses and Grain Legumes and Processing Approaches for Controlling Flavor-Plant Protein Interaction: Application Prospects in Plant-Based Alternative Foods. Food Bioprocess Technol. 2024, 17, 1141–1182. [Google Scholar]
- Xiaocao, Z.; Jun, Q.; Chaoxia, F.; Bo, W.; Cong, Y.; Dengyong, L. Ultrasound treatment enhanced the ability of the porcine myofibrillar protein to bind furan compounds: Investigation of underlying mechanisms. Food Chem. 2022, 384, 132472. [Google Scholar] [CrossRef] [PubMed]
- Jun, Q.; Wen-Wen, Z.; Xian-Chao, F.; Jia-Hang, Y.; Min-Yi, H.; Shao-Lin, D.; Guang-Hong, Z.; Hu-Hu, W.; Xing-Lian, X. Thermal degradation of gelatin enhances its ability to bind aroma compounds: Investigation of underlying mechanisms. Food Hydrocoll. 2018, 83, 497–510. [Google Scholar] [CrossRef]






| F-SH Content (μmol/g) | |||
|---|---|---|---|
| A-20% | A-50% | A-80% | |
| Control | 7.21 ± 0.38 Aa | 7.21 ± 0.38 Aa | 7.21 ± 0.38 Aa |
| SPI–CS | 5.69 ± 0.43 Ab | 5.69 ± 0.43 Abc | 5.69 ± 0.43 Abc |
| 2 min | 6.03 ± 0.41 Ab | 5.99 ± 0.26 Ab | 6.23 ± 0.22 Ab |
| 5 min | 5.52 ± 0.12 Bb | 5.62 ± 0.07 Bbc | 5.83 ± 0.08 Abc |
| 10 min | 5.50 ± 0.47 Ab | 5.37 ± 0.30 Ac | 5.54 ± 0.21 Ac |
| Solubility (%) | |||
|---|---|---|---|
| A-20% | A-50% | A-80% | |
| Control | 46.29 ± 1.28 Aa | 46.29 ± 1.28 Aa | 46.29 ± 1.28 Aa |
| SPI–CS | 38.96 ± 0.84 Ab | 38.96 ± 0.84 Ac | 38.96 ± 0.84 Ac |
| 2 min | 39.82 ± 2.08 Ab | 39.60 ± 3.75 Ac | 43.81 ± 0.19 Aab |
| 5 min | 40.20 ± 1.96 Ab | 41.15 ± 1.43 Abc | 40.51 ± 4.17 Abc |
| 10 min | 45.77 ± 4.08 Aa | 44.74 ± 3.38 Aab | 33.36 ± 1.83 Bd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, J.; Luo, C.; Li, C.; Li, B. Enhancement of Functional and Flavor Attributes of Soy Protein Isolate–Chitosan Coacervates via Ultrasonic Processing. Foods 2026, 15, 25. https://doi.org/10.3390/foods15010025
Li J, Luo C, Li C, Li B. Enhancement of Functional and Flavor Attributes of Soy Protein Isolate–Chitosan Coacervates via Ultrasonic Processing. Foods. 2026; 15(1):25. https://doi.org/10.3390/foods15010025
Chicago/Turabian StyleLi, Jing, Can Luo, Changchun Li, and Bin Li. 2026. "Enhancement of Functional and Flavor Attributes of Soy Protein Isolate–Chitosan Coacervates via Ultrasonic Processing" Foods 15, no. 1: 25. https://doi.org/10.3390/foods15010025
APA StyleLi, J., Luo, C., Li, C., & Li, B. (2026). Enhancement of Functional and Flavor Attributes of Soy Protein Isolate–Chitosan Coacervates via Ultrasonic Processing. Foods, 15(1), 25. https://doi.org/10.3390/foods15010025

