Advancing the Analysis of Fatty Acid Composition in Animal-Based Marine Oils Through the Integration of Raman and IR Spectroscopy with Chemometrics
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparations
2.2. FAME Compositions
2.3. Spectral Measurements
2.3.1. Raman Analysis
2.3.2. ATR-Infrared Analysis
2.4. Spectral Pre-Processing
2.5. Chemometric Analysis
2.5.1. Principal Component Analysis
2.5.2. Data Fusion
2.5.3. Partial Least Squares Regression
3. Results and Discussion
3.1. Fatty Acid Composition Using GC-MS
3.2. Fatty Acid Analysis Using Raman Spectroscopy
3.3. Fatty Acid Analysis Using Infrared Spectroscopy
3.4. Quantitative Analysis of Major Fatty Acid
3.5. Spectroscopic Quantification of ω-3 Fatty Acids
3.6. Spectroscopic Quantification of Other Fatty Acids
- The fused model outperformed both individual techniques, indicating that complementary information was provided by each technique to build a better model.
- The fused model gave a similar performance to the best-performing technique, indicating no additional advantage with the inclusion of the second technique.
- The fused model performance was intermediate to the individual techniques, indicating the model is effectively an average of the two models’ performance.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raposo, F.; Borja, R.; Cacho, J.A.; Mumme, J.; Mohedano, A.F.; Battimelli, A.; Bolzonella, D.; Schuit, A.D.; Noguerol-Arias, J.; Frigon, J.C.; et al. Harmonization of the quantitative determination of volatile fatty acids profile in aqueous matrix samples by direct injection using gas chromatography and high-performance liquid chromatography techniques: Multi-laboratory validation study. J. Chromatogr. A 2015, 1413, 94–106. [Google Scholar] [CrossRef]
- Luna, P.; Juárez, M.; De la Fuente, M. Validation of a rapid milk fat separation method to determine the fatty acid profile by gas chromatography. J. Dairy Sci. 2005, 88, 3377–3381. [Google Scholar] [CrossRef] [PubMed]
- Ahmmed, M.K.; Bunga, S.; Stewart, I.; Tian, H.; Carne, A.; Bekhit, A.E.A. Simple and Efficient One-Pot Extraction Method for Phospholipidomic Profiling of Total Oil and Lecithin by Phosphorus-31 Nuclear Magnetic Resonance Measurements. J. Agric. Food Chem. 2020, 68, 14286–14296. [Google Scholar] [CrossRef]
- Ahmmed, M.K.; Carne, A.; Ahmmed, F.; Stewart, I.; Sabrina Tian, H.; Bekhit, A.E.A. Positional distribution of fatty acids and phospholipid composition in King salmon (Oncorhynchus tshawytscha) head, roe and skin using nuclear magnetic resonance spectroscopy. Food Chem. 2021, 363, 130302. [Google Scholar] [CrossRef]
- Cozzolino, D.; Murray, I.; Chree, A.; Scaife, J.R. Multivariate determination of free fatty acids and moisture in fish oils by partial least-squares regression and near-infrared spectroscopy. LWT-Food Sci. Technol. 2005, 38, 821–828. [Google Scholar] [CrossRef]
- Killeen, D.P.; Card, A.; Gordon, K.C.; Perry, N.B. First use of handheld Raman spectroscopy to analyze omega-3 fatty acids in Intact Fish Oil Capsules. Appl. Spectrosc. 2019, 74, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Killeen, D.P.; Marshall, S.N.; Burgess, E.J.; Gordon, K.C.; Perry, N.B. Raman spectroscopy of fish oil capsules: Polyunsaturated fatty acid quantitation plus detection of ethyl esters and oxidation. J. Agric. Food Chem. 2017, 65, 3551–3558. [Google Scholar] [CrossRef]
- Kim, T.S.; Yeo, J.; Kim, J.Y.; Kim, M.J.; Lee, J. Determination of the degree of oxidation in highly-oxidised lipids using profile changes of fatty acids. Food Chem. 2013, 138, 1792–1799. [Google Scholar] [CrossRef]
- Afseth, N.K.; Wold, J.P.; Segtnan, V.H. The potential of Raman spectroscopy for characterisation of the fatty acid unsaturation of salmon. Anal. Chim. Acta 2006, 572, 85–92. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, Y.; Zhang, B.; Wang, X. Rapid prediction of fatty acid composition of vegetable oil by Raman spectroscopy coupled with least squares support vector machines. J. Raman Spectrosc. 2013, 44, 1739–1745. [Google Scholar] [CrossRef]
- Olsen, E.F.; Rukke, E.O.; Flatten, A.; Isaksson, T. Quantitative determination of saturated-, monounsaturated- and polyunsaturated fatty acids in pork adipose tissue with non-destructive Raman spectroscopy. Meat Sci. 2007, 76, 628–634. [Google Scholar] [CrossRef]
- Ahmmed, F.; Gordon, K.C.; Killeen, D.P.; Fraser-Miller, S.J. Detection and quantification of adulteration in krill oil with Raman and infrared spectroscopic methods. Molecules 2023, 28, 3695. [Google Scholar] [CrossRef] [PubMed]
- Ozen, B.; Cavdaroglu, C.; Tokatli, F. Trends in authentication of edible oils using vibrational spectroscopic techniques. Anal. Meth. 2024, 16, 4216–4233. [Google Scholar] [CrossRef] [PubMed]
- Salah, W.A.; Nofal, M. Review of some adulteration detection techniques of edible oils. J. Sci. Food Agric. 2021, 101, 811–819. [Google Scholar] [CrossRef]
- Srigley, C.T.; Rader, J.I. Content and composition of fatty acids in marine oil omega-3 supplements. J. Agric. Food Chem. 2014, 62, 7268–7278. [Google Scholar] [CrossRef]
- Albert, B.B.; Derraik, J.G.B.; Cameron-Smith, D.; Hofman, P.L.; Tumanov, S.; Villas-Boas, S.G.; Garg, M.L.; Cutfield, W.S. Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA. Sci. Rep. 2015, 5, 7928. [Google Scholar] [CrossRef] [PubMed]
- Araujo, P.; Tilahun, E.; Zeng, Y. A novel strategy for discriminating marine oils by using the positional distribution (sn-1, sn-2, sn-3) of omega-3 polyunsaturated fatty acids in triacylglycerols. Talanta 2018, 182, 32–37. [Google Scholar] [CrossRef]
- Parry, L.A. The adulteration of cod liver oil. Lancet 1904, 163, 757. [Google Scholar] [CrossRef]
- NIH. Adulteration and Misbranding of Halibut Liver Oil Capsules. U. S. v. 24,000, 75,000, and 90,000 Halibut Liver Oil Capsules. Consent decrees of Condemnation. Product Ordered Released Under Bond for Relabeling. Available online: https://fdanj.nlm.nih.gov/catalog/ddnj00354 (accessed on 27 October 2025).
- NIH. The National Library of Medicine Case Number 1015. Adulteration and Misbranding of cod Liver Oil. U. S. v. The Swiftide Co. Plea of Nolo Contendere. Fine, $100. Available online: https://fdanj.nlm.nih.gov/catalog/ddnj01015 (accessed on 27 October 2025).
- Fuller, I.D.; Cumming, A.H.; Card, A.; Burgess, E.J.; Barrow, C.J.; Perry, N.B.; Killeen, D.P. Free Fatty Acids in Commercial Krill Oils: Concentrations, Compositions, and Implications for Oxidative Stability. J. Am. Oil Chem. Soc. 2020, 97, 889–900. [Google Scholar] [CrossRef]
- Ahmmed, F.; Killeen, D.P.; Gordon, K.C.; Fraser-Miller, S.J. Rapid quantitation of adulterants in premium marine oils by Raman and IR spectroscopy: A data fusion approach. Molecules 2022, 27, 4534. [Google Scholar] [CrossRef]
- Demšar, J.; Curk, T.; Erjavec, A.; Gorup, Č.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A. Orange: Data mining toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Robert, C.; Fraser-Miller, S.J.; Jessep, W.T.; Bain, W.E.; Hicks, T.M.; Ward, J.F.; Craigie, C.R.; Loeffen, M.; Gordon, K.C. Rapid discrimination of intact beef, venison and lamb meat using Raman spectroscopy. Food Chem. 2021, 343, 128441. [Google Scholar] [CrossRef]
- Robert, C.; Jessep, W.; Sutton, J.J.; Hicks, T.M.; Loeffen, M.; Farouk, M.; Ward, J.F.; Bain, W.E.; Craigie, C.R.; Fraser-Miller, S.J.; et al. Evaluating low-mid-and high-level fusion strategies for combining Raman and infrared spectroscopy for quality assessment of red meat. Food Chem. 2021, 361, 130154. [Google Scholar] [CrossRef] [PubMed]
- IFFO; The Marine Ingredients Organisation. CODEX Standard for Fish Oil. Available online: https://www.iffo.com/codex-standard-fish-oil (accessed on 16 November 2025).
- Tres, A.; Ruiz-Samblas, C.; van der Veer, G.; van Ruth, S.M. Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques. Food Chem. 2013, 137, 142–150. [Google Scholar] [CrossRef]
- Morcillo, F.; Vaissayre, V.; Serret, J.; Avallone, S.; Domonhedo, H.; Jacob, F.; Dussert, S. Natural diversity in the carotene, tocochromanol and fatty acid composition of crude palm oil. Food Chem. 2021, 365, 130638. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.Q.; da Silva, V.A., Jr.; Góes, A.J.S.; Silva, M.S.; de Oliveira, G.G.; Bastos, I.V.G.A.; de Castro Neto, A.G.; Alves, A.J. The fatty acid composition of vegetable oils and their potential use in wound care. Adv. Ski Wound Care 2019, 32, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Whelan, J.; Rust, C. Innovative dietary sources of n-3 fatty acids. Annu. Rev. Nutr. 2006, 26, 75–103. [Google Scholar] [CrossRef]
- Gunstone, F. Vegetable Oils in Food Technology: Composition, Properties and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lee, D.-S.; Noh, B.-S.; Bae, S.-Y.; Kim, K. Characterization of fatty acids composition in vegetable oils by gas chromatography and chemometrics. Anal. Chim. Acta 1998, 358, 163–175. [Google Scholar] [CrossRef]
- Xie, D.; Gong, M.; Wei, W.; Jin, J.; Wang, X.; Wang, X.; Jin, Q. Antarctic Krill (Euphausia superba) Oil: A Comprehensive Review of Chemical Composition, Extraction Technologies, Health Benefits, and Current Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 514–534. [Google Scholar] [CrossRef]
- Huang, L.T.C.; Bülbül, U.; Wen, P.C.; Glew, R.; Ayaz, F. Fatty acid composition of 12 fish species from the Black Sea. J. Food Sci. 2012, 77, C512–C518. [Google Scholar] [CrossRef]
- El Oudiani, S.; Chetoui, I.; Darej, C.; Moujahed, N. Sex and seasonal variation in proximate composition and fatty acid profile of Scomber scombrus (L. 1758) fillets from the Middle East Coast of Tunisia. Grasas Y Aceites 2019, 70, e285. [Google Scholar] [CrossRef]
- Soares, A.T.; da Costa, D.C.; Silva, B.F.; Lopes, R.G.; Derner, R.B.; Antoniosi Filho, N.R. Comparative Analysis of the Fatty Acid Composition of Microalgae Obtained by Different Oil Extraction Methods and Direct Biomass Transesterification. BioEnergy Res. 2014, 7, 1035–1044. [Google Scholar] [CrossRef]
- Metin, C.; Alparslan, Y.; Yapici, H.H.; Eksi, Z.; Baygar, T. Assessment of the effects of sex and harvesting season on lipid and fatty acid composition of Sparidae species. Lipids 2021, 56, 391–404. [Google Scholar] [CrossRef]
- Senso, L.; Suárez, M.D.; Ruiz-Cara, T.; García-Gallego, M. On the possible effects of harvesting season and chilled storage on the fatty acid profile of the fillet of farmed gilthead sea bream (Sparus aurata). Food Chem. 2007, 101, 298–307. [Google Scholar] [CrossRef]
- Bratu, A.; Mihalache, M.; Hanganu, A.; Chira, N.-A.; Todaşcă, M.-C.; Roşca, S. Quantitative determination of fatty acids from fish oils using GC-MS method and1H-NMR spectroscopy. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2013, 75, 23–32. [Google Scholar]
- Chen, Y.; Cheong, L.Z.; Zhao, J.; Panpipat, W.; Wang, Z.; Li, Y.; Lu, C.; Zhou, J.; Su, X. Lipase-catalyzed selective enrichment of omega-3 polyunsaturated fatty acids in acylglycerols of cod liver and linseed oils: Modeling the binding affinity of lipases and fatty acids. Int. J. Biol. Macromol. 2019, 123, 261–268. [Google Scholar] [CrossRef]
- Simat, V.; Vlahovic, J.; Soldo, B.; Skroza, D.; Ljubenkov, I.; Generalic Mekinic, I. Production and Refinement of Omega-3 Rich Oils from Processing By-Products of Farmed Fish Species. Foods 2019, 8, 125. [Google Scholar] [CrossRef]
- Bekhit, M.Y.; Grung, B.; Mjøs, S.A. Determination of omega-3 fatty acids in fish oil supplements using vibrational spectroscopy and chemometric methods. Appl. Spectrosc. 2014, 68, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Vongsvivut, J.; Miller, M.R.; McNaughton, D.; Heraud, P.; Barrow, C.J. Rapid Discrimination and Determination of Polyunsaturated Fatty Acid Composition in Marine Oils by FTIR Spectroscopy and Multivariate Data Analysis. Food Bioprocess Technol. 2014, 7, 2410–2422. [Google Scholar] [CrossRef]
- Yang, H.; Irudayaraj, J.; Paradkar, M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chem. 2005, 93, 25–32. [Google Scholar] [CrossRef]
- Guillen, M.D.; Cabo, N. Characterization of edible oils and lard by Fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. J. Am. Oil Chem. Soc. 1997, 74, 1281–1286. [Google Scholar] [CrossRef]



| No. Factors | Calibration | Cross-Validation | Prediction (Test Set) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| r2 | RMSEC | r2 | RMSEcv | r2 | Slope | Offset | RMSEP | |||
| Total ω-3% (model range: 0 to 100%) | Raman | 2 | 0.92 | 3.1% | 0.92 | 3.3% | 0.94 | 0.97 | 1.1 | 2.4% |
| IR | 2 | 0.89 | 3.8% | 0.89 | 3.9% | 0.95 | 0.88 | 3.4 | 2.3% | |
| Low-level fusion | 2 | 0.96 | 2.5% | 0.95 | 2.6% | 0.96 | 0.98 | 0.56 | 1.9% | |
| EPA% (model range: 0 to 100%) | Raman | 2 | 0.91 | 2.1% | 0.90 | 2.2% | 0.86 | 0.84 | 2.4 | 2.4% |
| IR | 2 | 0.91 | 2.2% | 0.90 | 2.2% | 0.95 | 0.86 | 2.2 | 1.5% | |
| Low-level fusion | 2 | 0.95 | 1.6% | 0.95 | 1.6% | 0.94 | 0.90 | 1.6 | 1.7% | |
| DHA% (model range: 0 to 100%) | Raman | 2 | 0.86 | 1.5% | 0.85 | 1.6% | 0.83 | 0.83 | 2.2 | 1.5% |
| IR | 2 | 0.80 | 1.8% | 0.78 | 1.8% | 0.90 | 0.78 | 2.0 | 1.1% | |
| Low-level fusion | 2 | 0.91 | 1.2% | 0.91 | 1.2% | 0.91 | 0.86 | 1.4 | 1.1% | |
| EPA + DPA + DHA% (model range: 0 to 100%) | Raman | 2 | 0.92 | 3.2% | 0.91 | 3.3% | 0.90 | 0.95 | 1.9 | 2.9% |
| IR | 2 | 0.89 | 3.7% | 0.89 | 3.8% | 0.95 | 0.86 | 3.6 | 2.1% | |
| Low-level fusion | 2 | 0.95 | 2.5% | 0.95 | 2.6% | 0.95 | 0.95 | 1.3 | 2.1% | |
| Total PUFA% (model range: 0 to 100%) | Raman | 2 | 0.90 | 3.5% | 0.89 | 3.6% | 0.83 | 0.85 | 4.1 | 4.0% |
| IR | 2 | 0.88 | 3.7% | 0.88 | 3.8% | 0.79 | 0.76 | 6.7 | 4.4% | |
| Low-level fusion | 2 | 0.94 | 2.7% | 0.94 | 2.8% | 0.83 | 0.86 | 3.6 | 4.0% | |
| MUFA% (model range: 0 to 100%) | Raman | 2 | 0.67 | 6.2% | 0.66 | 6.3% | 0.66 | 0.59 | 17.3 | 6.1% |
| IR | 2 | 0.74 | 5.6% | 0.74 | 5.7% | 0.75 | 0.84 | 5.6 | 5.2% | |
| Low-level fusion | 2 | 0.74 | 5.5% | 0.74 | 5.6% | 0.76 | 0.80 | 7.7 | 5.2% | |
| SFA% (model range: 0 to 100%) | Raman | 3 | 0.72 | 4.4% | 0.71 | 4.5% | 0.71 | 0.56 | 11.6 | 4.8% |
| IR | 3 | 0.73 | 4.2% | 0.72 | 4.3% | 0.78 | 0.74 | 8.4 | 4.3% | |
| Low-level fusion | 3 | 0.74 | 4.1% | 0.72 | 4.2% | 0.79 | 0.70 | 8.8 | 4.1% | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ahmmed, F.; Gordon, K.C.; Card, A.; Killeen, D.P.; Fraser-Miller, S.J. Advancing the Analysis of Fatty Acid Composition in Animal-Based Marine Oils Through the Integration of Raman and IR Spectroscopy with Chemometrics. Foods 2026, 15, 183. https://doi.org/10.3390/foods15010183
Ahmmed F, Gordon KC, Card A, Killeen DP, Fraser-Miller SJ. Advancing the Analysis of Fatty Acid Composition in Animal-Based Marine Oils Through the Integration of Raman and IR Spectroscopy with Chemometrics. Foods. 2026; 15(1):183. https://doi.org/10.3390/foods15010183
Chicago/Turabian StyleAhmmed, Fatema, Keith C. Gordon, Asli Card, Daniel P. Killeen, and Sara J. Fraser-Miller. 2026. "Advancing the Analysis of Fatty Acid Composition in Animal-Based Marine Oils Through the Integration of Raman and IR Spectroscopy with Chemometrics" Foods 15, no. 1: 183. https://doi.org/10.3390/foods15010183
APA StyleAhmmed, F., Gordon, K. C., Card, A., Killeen, D. P., & Fraser-Miller, S. J. (2026). Advancing the Analysis of Fatty Acid Composition in Animal-Based Marine Oils Through the Integration of Raman and IR Spectroscopy with Chemometrics. Foods, 15(1), 183. https://doi.org/10.3390/foods15010183

