Effects of Grape Seed Proanthocyanidins and Malic Acid on Digestive Characteristics of Starch in Bread
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Separation of Wheat Starch
2.3. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
2.4. Raman Spectral Analysis
2.5. Wide Angle X-Ray Scattering (WAXS) Analysis
2.6. Bread Preparation
2.7. Bread Simulates Digestion In Vitro
2.8. Confocal Laser Scanning Microscopy
2.9. Inhibitory Activity of Bread Extracts on Digestive Enzymes
- (1)
- α-Amylase
- (2)
- α-Glucosidase
2.10. Effect of Bread Extract on the Fluorescence Intensity of Digestive Enzymes
2.11. Statistical Analysis
3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy Analysis of Wheat Starch by Proanthocyanidins Combined with MA
3.2. Raman Spectral Analysis of Wheat Starch by Proanthocyanidins Combined with MA
3.3. Crystal Structures of Wheat Starch with Proanthocyanidins and MA
3.4. Digestive Characteristics of Bread by Proanthocyanidins Combined with MA
3.5. Confocal Laser Analysis of Digestive Fluid
3.6. Inhibitory Effects of Proanthocyanidins and MA on the Activities of α-Amylase and α-Glucosidase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zuniga, Y.L.; Rebello, S.A.; Oi, P.L.; Zheng, H.; Lee, J.; Tai, E.S.; Van Dam, R.M. Rice and noodle consumption is associated with insulin resistance and hyperglycaemia in an Asian population. Br. J. Nutr. 2014, 111, 1118–1128. [Google Scholar] [CrossRef]
- Bojarczuk, A.; Khaneghah, A.M.; Marszalek, K. Health benefits of resistant starch: A review of the literature. J. Funct. Foods 2022, 93, 105094. [Google Scholar] [CrossRef]
- Stamataki, N.S.; Yanni, A.E.; Karathanos, V.T. Bread making technology influences postprandial glucose response: A review of the clinical evidence. Br. J. Nutr. 2017, 117, 1001–1012. [Google Scholar] [CrossRef]
- Barros, F.; Awika, J.; Rooney, L.W. Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation. J. Sci. Food Agric. 2014, 94, 1212–1217. [Google Scholar] [CrossRef]
- Kong, F.; Qin, Y.; Su, Z.; Ning, Z.; Yu, S. Optimization of Extraction of Hypoglycemic Ingredients from Grape Seeds and Evaluation of alpha-Glucosidase and alpha-Amylase Inhibitory Effects In Vitro. J. Food Sci. 2018, 83, 1422–1429. [Google Scholar] [CrossRef]
- Miao, L.G.; Xu, Y.; Jia, C.H.; Zhang, B.J.; Niu, M.; Zhao, S.M. Structural changes of rice starch and activity inhibition of starch digestive enzymes by anthocyanins retarded starch digestibility. Carbohydr. Polym. 2021, 261, 117841. [Google Scholar] [CrossRef]
- Ou, S.J.L.; Yu, J.Y.; Zhou, W.B.; Liu, M.H. Effects of anthocyanins on bread microstructure, and their combined impact on starch digestibility. Food Chem. 2022, 374, 131744. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Zhang, J.Y.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with alpha-amylase and alpha-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.N.; Zhang, Y.; Zhou, W.B. Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: Its quality attributes and in vitro digestibility. Food Chem. 2016, 196, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Castro-Acosta, M.L.; Lenihan-Geels, G.N.; Corpe, C.P.; Hall, W.L. Berries and anthocyanins: Promising functional food ingredients with postprandial glycaemia-lowering effects. Proc. Nutr. Soc. 2016, 75, 342–355. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.L.; Shen, L.H.; Feng, L.J.; Zhou, Q. Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against alpha-amylase and alpha-glucosidase. Food Chem. 2021, 359, 129934. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Pu, C.; Zhang, Y.J.; Wang, X.N.; Wang, M.X.; Shao, H.Y.; Yin, C.P.; Zhang, Y.L. Stability evaluation of gardenia yellow pigment in the presence of different antioxidants or microencapsulating agents. J. Food Sci. 2022, 87, 3036–3047. [Google Scholar] [CrossRef] [PubMed]
- Slavin, M.; Lu, Y.J.; Kaplan, N.; Yu, L.L. Effects of baking on cyanidin-3-glucoside content and antioxidant properties of black and yellow soybean crackers. Food Chem. 2013, 141, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Zhang, Q.R.; Peng, S.H.; Li, Y.C.; Zhang, H.Z.; Qin, X.G.; Liu, G. Malic acid enhances proanthocyanidin stability and their combined effects on dough rheological properties and bread quality. LWT—Food Sci. Technol. 2023, 184, 115066. [Google Scholar] [CrossRef]
- Lee, C.J.; Na, J.H.; Park, J.Y.; Chang, P.S. Structural Characteristics and In Vitro Digestibility of Malic Acid-Treated Corn Starch with Different pH Conditions. Molecules 2019, 24, 1900. [Google Scholar] [CrossRef]
- Li, J.A.; Walker, C.E.; Faubion, J.M. Acidulant and oven type affect total anthocyanin content of blue corn cookies. J. Sci. Food Agric. 2011, 91, 38–43. [Google Scholar] [CrossRef]
- Barani, Y.H.; Zhang, M.; Ju, R.H.; Mujumdar, A.S.; Chang, L. Effect of chemical and natural product additives on anthocyanins, color, total antioxidant properties of rose powder and stability of anthocyanins during storage. Dry. Technol. 2023, 41, 735–745. [Google Scholar] [CrossRef]
- Molaeafard, S.; Jamei, R.; Marjani, A.P. Co-pigmentation of anthocyanins extracted from sour cherry (Prunus cerasus L.) with some organic acids: Color intensity, thermal stability, and thermodynamic parameters. Food Chem. 2021, 339, 128070. [Google Scholar] [CrossRef]
- Ateeq, H.; Ahmad, R.S.S.; Imran, M.; Afzaal, M.; Shah, M.A. Valorization and structural characterization of onion peel powder for the development of functional bread. Int. J. Food Prop. 2023, 26, 2553–2562. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Q.; Zhang, H.; Qin, X.; Chen, H.; Corke, H.; Hu, Z.; Liu, G. Increased stability of curcumin-loaded pickering emulsions based on glycated proteins and chitooligosaccharides for functional food application. LWT—Food Sci. Technol. 2021, 148, 111742. [Google Scholar] [CrossRef]
- Todica, M.; Cioica, N.; Olar, L.E.; Papuc, I.; Cota, C.; Marin, E.; Manea, D.; Nagy, E.M. Preliminary XRD and IR investigation of some starch based biodegradable systems. Rom. Biotechnol. Lett. 2016, 21, 11825–11831. [Google Scholar]
- Begum, Y.A.; Chakraborty, S.; Deka, S.C. Bread fortified with dietary fibre extracted from culinary banana bract: Its quality attributes and in vitro starch digestibility. Int. J. Food Sci. Technol. 2020, 55, 2359–2369. [Google Scholar] [CrossRef]
- Ulbrich, M.; Scholz, F.; Braun, B.; Bussert, R.; Floeter, E. High Amylose Corn Starch Gels-Investigation of the Supermolecular Structure. Starch-Starke 2023, 75, 2200138. [Google Scholar] [CrossRef]
- Ren, S.; Li, K.; Liu, Z. Research on the Influences of Five Food-Borne Polyphenols on In Vitro Slow Starch Digestion and the Mechanism of Action. J. Agric. Food Chem. 2019, 67, 8617–8625. [Google Scholar] [CrossRef]
- Sun, L.; Chen, W.; Meng, Y.; Yang, X.; Yuan, L.; Guo, Y.; Warren, F.J.; Gidley, M.J. Interactions between polyphenols in thinned young apples and porcine pancreatic alpha-amylase: Inhibition, detailed kinetics and fluorescence quenching. Food Chem. 2016, 208, 51–60. [Google Scholar] [CrossRef]
- Pozo, C.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.; Restrepo, I. Study of the structural order of native starch granules using combined FTIR and XRD analysis. J. Polym. Res. 2018, 25, 266. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Chen, J.; Dai, T.; Liu, C.; Li, T. Effect of polymeric proanthocyanidin on the physicochemical and in vitro digestive properties of different starches. LWT—Food Sci. Technol. 2021, 148, 111713. [Google Scholar] [CrossRef]
- Chi, C.; Li, X.; Lu, P.; Miao, S.; Zhang, Y.; Chen, L. Dry heating and annealing treatment synergistically modulate starch structure and digestibility. Int. J. Biol. Macromol. 2019, 137, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, S.; Liu, L.; Wang, S.; Copeland, L. Structural Orders of Wheat Starch Do Not Determine the In Vitro Enzymatic Digestibility. J. Agric. Food Chem. 2017, 65, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure-a joint FTIR-ATR, NMR, XRD and DSC study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef]
- Lu, H.; Tian, Y.Q.; Ma, R.R. Assessment of order of helical structures of retrograded starch by Raman spectroscopy. Food Hydrocoll. 2023, 134, 108064. [Google Scholar] [CrossRef]
- Pan, J.X.; Li, M.; Zhang, S.K.; Jiang, Y.L.; Lv, Y.J.; Liu, J.; Liu, Q.R.; Zhu, Y.J.; Zhang, H.H. Effect of epigallocatechin gallate on the gelatinisation and retrogradation of wheat starch. Food Chem. 2019, 294, 209–215. [Google Scholar] [CrossRef]
- Na, J.H.; Jeong, G.A.; Park, H.J.; Lee, C.J. Impact of esterification with malic acid on the structural characteristics and in vitro digestibilities of different starches. Int. J. Biol. Macromol. 2021, 174, 540–548. [Google Scholar] [CrossRef]
- Mei, J.Q.; Zhou, D.N.; Jin, Z.Y.; Xu, X.M.; Chen, H.Q. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch. Food Chem. 2015, 187, 378–384. [Google Scholar] [CrossRef]
- Lemos, P.V.F.; Barbosa, L.S.; Ramos, I.G.; Coelho, R.E.; Druzian, J.I. The important role of crystallinity and amylose ratio in thermal stability of starches. J. Therm. Anal. Calorim. 2018, 131, 2555–2567. [Google Scholar] [CrossRef]
- Kan, L.; Oliviero, T.; Verkerk, R.; Fogliano, V.; Capuano, E. Interaction of bread and berry polyphenols affects starch digestibility and polyphenols bio-accessibility. J. Funct. Foods 2020, 68, 103924. [Google Scholar] [CrossRef]
- Luo, S.Z.; Shen, X.Y.; Pan, L.H.; Zheng, Z.; Zhao, Y.Y.; Zhong, X.Y.; Jiang, S.T. Effect of grape seed extract on sensory, textural, and anti-staling properties of Chinese steamed bread. J. Food Process. Preserv. 2018, 42, e13497. [Google Scholar] [CrossRef]
- Marunaka, Y. The Proposal of Molecular Mechanisms of Weak Organic Acids Intake-Induced Improvement of Insulin Resistance in Diabetes Mellitus via Elevation of Interstitial Fluid pH. Int. J. Mol. Sci. 2018, 19, 3244. [Google Scholar] [CrossRef]
- Shi, M.M.; Gao, Q.Y.; Liu, Y.Q. Changes in the Structure and Digestibility of Wrinkled Pea Starch with Malic Acid Treatment. Polymers 2018, 10, 1359. [Google Scholar] [CrossRef]
- Brownlee, I.A.; Gill, S.; Wilcox, M.D.; Pearson, J.P.; Chater, P.I. Starch digestion in the upper gastrointestinal tract of humans. Starch-Starke 2018, 70, 1700111. [Google Scholar] [CrossRef]
- Hemalatha, P.; Bomzan, D.P.; Sathyendra Rao, B.V.; Sreerama, Y.N. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on alpha-amylase and alpha-glucosidase activities. Food Chem. 2016, 199, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Gao, Y.; Zhang, X.; Sun, Y.; Hu, B.; Zhou, L.; Jabbar, S.; Zeng, X. Effects of Oolong tea polyphenols, EGCG, and EGCG3″Me on pancreatic alpha-amylase activity in vitro. J. Agric. Food Chem. 2014, 62, 9507–9514. [Google Scholar] [CrossRef] [PubMed]






| Sample | 1047/1022 cm−1 | 1022/995 cm−1 |
|---|---|---|
| Wheat starch | 0.877 | 1.059 |
| 0.1%GSP wheat starch | 0.878 | 1.060 |
| 0.3%GSP wheat starch | 0.881 | 1.080 |
| 0.5%GSP wheat starch | 0.877 | 1.070 |
| 0.3%GSP-0.1%MA wheat starch | 0.881 | 1.096 |
| 0.3%GSP-0.3%MA wheat starch | 0.886 | 1.070 |
| 0.3%GSP-0.5%MA wheat starch | 0.884 | 1.078 |
| Wheat Starch | 0 | 0.1%GSP | 0.3%GSP | 0.5%GSP | 0.3%GSP-0.1%MA | 0.3%GSP-0.3%MA | 0.3%GSP-0.5%MA |
|---|---|---|---|---|---|---|---|
| FWMH at 480 cm−1 | 29.09 | 27.35 | 27.15 | 29.63 | 28.90 | 27.68 | 29.52 |
| Sample | α-Amylase (%) | α-Glucosinase (%) |
|---|---|---|
| 0 | 52.2 ± 0.8 d | 75.3 ± 0.3 a |
| 0.3%GSP | 54.3 ± 0.8 b | 75.0 ± 0.4 a |
| 0.3%GSP-0.1%MA | 52.8 ± 0.8 cd | 75.1 ± 0.1 a |
| 0.3%GSP-0.3%MA | 54.2 ± 0.6 bc | 75.4 ± 0.2 a |
| 0.3%GSP-0.5%MA | 57.7 ± 1.3 a | 75.1 ± 0.7 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Qin, X.; Zhu, Q.; Li, G.; Zhang, H.; Di, X.; Liu, L.; Liu, G.; Blennow, A. Effects of Grape Seed Proanthocyanidins and Malic Acid on Digestive Characteristics of Starch in Bread. Foods 2026, 15, 149. https://doi.org/10.3390/foods15010149
Qin X, Zhu Q, Li G, Zhang H, Di X, Liu L, Liu G, Blennow A. Effects of Grape Seed Proanthocyanidins and Malic Acid on Digestive Characteristics of Starch in Bread. Foods. 2026; 15(1):149. https://doi.org/10.3390/foods15010149
Chicago/Turabian StyleQin, Xinguang, Qinyue Zhu, Guanxi Li, Haizhi Zhang, Xiaohui Di, Liang Liu, Gang Liu, and Andreas Blennow. 2026. "Effects of Grape Seed Proanthocyanidins and Malic Acid on Digestive Characteristics of Starch in Bread" Foods 15, no. 1: 149. https://doi.org/10.3390/foods15010149
APA StyleQin, X., Zhu, Q., Li, G., Zhang, H., Di, X., Liu, L., Liu, G., & Blennow, A. (2026). Effects of Grape Seed Proanthocyanidins and Malic Acid on Digestive Characteristics of Starch in Bread. Foods, 15(1), 149. https://doi.org/10.3390/foods15010149

