The Application of Cold Atmospheric Plasma (CAP) in Barley Processing as an Environmentally Friendly Alternative
Abstract
:1. Introduction
2. The Basics of Plasma
2.1. Dielectric Barrier Discharge (DBD)
2.2. Corona Discharge (CD)
2.3. Plasma Jet (PJ)
2.4. Plasma Chemistry
3. The Potential of CAP in Food and Agriculture
4. CAP Effects on Microorganisms
- Temperature
- Reactive species, UV light, and charged particles
- Humidity
- Other process parameters
- Product characteristics
- Microbiological resilience
- Inactivation kinetics
4.1. CAP Effects on Bacteria
- Bacterial cells
- Bacterial spores
- Planktonic and biofilm cells
4.2. CAP Effects on Fungi and Mycotoxins
- Fungal cells
- Fungal spores
- Mycotoxins
5. CAP Effects on Storage Insect Pests
- Insecticidal effects
6. CAP Effects on Seed Dormancy, Germination, and Plant Growth
- Barley grain dormancy
- Breaking dormancy
- RNS as nutrients
- Stress hardening
- Decontamination vs. germination
7. Conclusions
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Destatis. Export von Lebensmitteln und Tierfutter: Ukraine und Russland mit hohem Weltmarktanteil. Available online: https://www.destatis.de/DE/Themen/Laender-Regionen/Internationales/Thema/landwirtschaft-fischerei/Ukraine-Landwirtschaft.html (accessed on 7 April 2025).
- Taner, A.; Avci, M.; Dusunceli, F. Barley: Post-Harvest Operations, 1st ed.; FAO: Ankara, Turkey, 2004; p. 65. [Google Scholar]
- Zhao, J.; Schwarz, P. Advances in Postharvest Storage and Handling of Barley: Methods to Prevent or Reduce Mycotoxin Contamination; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2020; pp. 227–264. ISBN 9781786763082. [Google Scholar]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Prishchepov, and Snigdhansu Chatterjee. Climate Change Has Likely Already Affected Global Food Production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef] [PubMed]
- European Commission. The European Green Deal-Striving to Be the First Climate-Neutral Continent. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 7 April 2025).
- European Environmental Agency. “Annual European Union Greenhouse Gas Inventory 1990–2020 and Inventory Report 2022”. 2022, p. 961. Available online: https://www.eea.europa.eu//publications/annual-european-union-greenhouse-gas-1 (accessed on 7 April 2025).
- European Commission. Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 7 April 2025).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions-A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 (accessed on 7 April 2025).
- European Commission. Questions and Answers: Farm to Fork Strategy-Building a Healthy and Fully Sustainable Food System. 2020. Available online: https://ec.europa.eu/commission/presscorner/api/files/document/print/en/qanda_20_885/QANDA_20_885_EN.pdf (accessed on 7 April 2025).
- Christian, H.; Witzke, P. Economic and Environmental Impacts of the Green Deal on the Agricultural Economy: A Simulation Study of the Impact of the F2f-Strategy on Production, Trade, Welfare and the Environment Based on the Capri-Model. 2021. Available online: https://www.bio-pop.agrarpol.uni-kiel.de/de/f2f-studie/executive-summary-en (accessed on 7 April 2025).
- Barros, J.H.T.; Sampaio, U.M.; Montenegro, F.M.; Steel, C.J.; Filho, J.d.A.; Clerici, M.T.P.S. Effects of Non-Thermal Plasma on Food Nutrients and Cereal-Based Raw Materials. Res. Soc. Dev. 2022, 11, e15611326261. [Google Scholar] [CrossRef]
- Scally, L.; Ojha, S.; Durek, J.; Cullen, P.J.; Schlüter, O.K.; Oliveira, M. Principles of Non-Thermal Plasma Processing and Its Equipment; Woodhead Publishing: Cambridge, UK, 2023; Volume 4, pp. 95–135. ISBN 978-0-12-818717-3. [Google Scholar]
- Misra, N.N.; Schlüter, O.; Cullen, P.J. Plasma in Food and Agriculture; Academic Press: San Diego, CA, USA, 2016; Volume 1, pp. 1–16. ISBN 978-0-12-801365-6. [Google Scholar]
- Thirumdas, R.; Sarangapani, C.; Annapure, U.S. Cold Plasma: A Novel Non-Thermal Technology for Food Processing. Food Biophys. 2015, 10, 1–11. [Google Scholar] [CrossRef]
- UN Department of Economic and Social Affairs. World Population Prospects 2022: Summary of Results. 2022. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 7 April 2025).
- Garbe, L.-A.; Glaß, S.; Wald, F.; Hellmann, A.; Weltmann, K.-D.; Sawade, H.; Schultz, F. Government-Funded Development of Innovative Physical Technologies for Sustainable Agriculture and Food Production in Rural Germany through a University–Business Alliance Formation. Platforms 2023, 1, 53–87. [Google Scholar] [CrossRef]
- Wald, F.; Glaß, S.; Garbe, L.-A. Physikalische Behandlung von Lagerschüttgütern zur Inaktivierung von Schadinsekten. Lebensmittelbrief 2023, 1, 2–5. [Google Scholar]
- Wald, F.; Glaß, S. Ein Drittel der geernteten Schüttgüter geht verloren-Innovative Zukunftstechnologie im Vorratsschutz. QM 2023, 2, 22–26. [Google Scholar]
- Bittencourt, J.A. Fundamentals of Plasma Physics; Springer: New York, NY, USA, 2004; ISBN 978-0-387-20975-3. [Google Scholar]
- Mehta, D.; Yadav, S.K. Recent Advances in Cold Plasma Technology for Food Processing. Food Eng. Rev. 2022, 14, 555–578. [Google Scholar] [CrossRef]
- Alexander, F. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2008; p. 9780521847353. [Google Scholar]
- Katsigiannis, A.S.; Bayliss, D.L.; Walsh, J.L. Cold Plasma for the Disinfection of Industrial Food-Contact Surfaces: An Overview of Current Status and Opportunities. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1086–1124. [Google Scholar] [CrossRef]
- Pańka, D.; Jeske, M.; Łukanowski, A.; Baturo-Cieśniewska, A.; Prus, P.; Maitah, M.; Maitah, K.; Malec, K.; Rymarz, D.; Muhire, J.d.D.; et al. Can Cold Plasma Be Used for Boosting Plant Growth and Plant Protection in Sustainable Plant Production? Agronomy 2022, 12, 841. [Google Scholar] [CrossRef]
- Feizollahi, E.; Misra, N.; Roopesh, M.S. Factors Influencing the Antimicrobial Efficacy of Dielectric Barrier Discharge (Dbd) Atmospheric Cold Plasma (Acp) in Food Processing Applications. Crit. Rev. Food Sci. Nutr. 2020, 61, 666–689. [Google Scholar] [CrossRef]
- Laroque, D.A.; Seó, S.T.; Valencia, G.A.; Laurindo, J.B.; Carciofi, B.A.M. Cold Plasma in Food Processing: Design, Mechanisms, and Application. J. Food Eng. 2022, 312, 110748. [Google Scholar] [CrossRef]
- Nwabor, O.F.; Onyeaka, H.; Miri, T.; Obileke, K.; Anumudu, C.; Hart, A. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. Food Eng. Rev. 2022, 14, 535–554. [Google Scholar] [CrossRef]
- Lu, P.; Cullen, P.J.; Ostrikov, K. Atmospheric Pressure Nonthermal Plasma Sources; Academic Press: San Diego, CA, USA, 2016; Volume 4, pp. 83–116. ISBN 978-0-12-801365-6. [Google Scholar]
- Christopher, W.J. Chapter 3—The Chemistry of Cold Plasma; Academic Press: San Diego, CA, USA, 2016; pp. 53–81. ISBN 978-0-12-801365-6. [Google Scholar]
- Surowsky, B.; Schlüter, O.; Knorr, D. Interactions of Non-Thermal Atmospheric Pressure Plasma with Solid and Liquid Food Systems: A Review. Food Eng. Rev. 2015, 7, 82–108. [Google Scholar] [CrossRef]
- Park, Y.; Oh, K.S.; Oh, J.; Seok, D.C.; Kim, S.B.; Yoo, S.J.; Lee, M. The Biological Effects of Surface Dielectric Barrier Discharge on Seed Germination and Plant Growth with Barley. Plasma Process. Polym. 2018, 15, 1600056. [Google Scholar] [CrossRef]
- Černák, M.; Černáková, L.; Hudec, I.; Kováčik, D.; Zahoranová, A. Diffuse Coplanar Surface Barrier Discharge and Its Applications for in-Line Processing of Low-Added-Value Materials. Eur. Phys. J. Appl. Phys. 2009, 47, 22806. [Google Scholar] [CrossRef]
- Muranyi, P.; Wunderlich, J.; Heise, M. Influence of Relative Gas Humidity on the Inactivation Efficiency of a Low Temperature Gas Plasma. J. Appl. Microbiol. 2008, 104, 1659–1666. [Google Scholar] [CrossRef]
- Scally, L.; Behan, S.; de Carvalho, A.M.A.; Sarangapani, C.; Tiwari, B.; Malone, R.; Byrne, H.J.; Curtin, J.; Cullen, P.J. Diagnostics of a Large Volume Pin-to-Plate Atmospheric Plasma Source for the Study of Plasma Species Interactions with Cancer Cell Cultures. Plasma Process. Polym. 2021, 18, 2000250. [Google Scholar] [CrossRef]
- Misra, N.N.; Yadav, B.; Roopesh, M.S.; Jo, C. Cold Plasma for Effective Fungal and Mycotoxin Control in Foods: Mechanisms, Inactivation Effects, and Applications. Com. Rev. Food Sci. Food Saf. 2019, 18, 106–120. [Google Scholar] [CrossRef]
- Prakash, S.D.; Siliveru, K.; Zheng, Y. Emerging Applications of Cold Plasma Technology in Cereal Grains and Products. Trends Food Sci. Technol. 2023, 141, 104177. [Google Scholar] [CrossRef]
- Ravash, N.; Hesari, J.; Feizollahi, E.; Dhaliwal, H.K.; Roopesh, M.S. Valorization of Cold Plasma Technologies for Eliminating Biological and Chemical Food Hazards. Food Eng. Rev. 2024, 16, 22–58. [Google Scholar] [CrossRef]
- Stoffels, E.; Sakiyama, Y.; Graves, D.B. Cold Atmospheric Plasma: Charged Species and Their Interactions with Cells and Tissues. IEEE Trans. Plasma Sci. 2008, 36, 1441–1457. [Google Scholar] [CrossRef]
- Oliveira, M.; Prieto, M.; Álvarez-Ordoñez, A.; López, M. Application of Non-Thermal Atmospheric Plasma Processing in the Food Industry; Woodhead Publishing: Cambridge, UK, 2023; Volume 5, pp. 137–202. ISBN 978-0-12-818717-3. [Google Scholar]
- Waskow, A.; Avino, F.; Howling, A.; Furno, I. Entering the Plasma Agriculture Field: An Attempt to Standardize Protocols for Plasma Treatment of Seeds. Plasma Process. Polym. 2022, 19, 2100152. [Google Scholar] [CrossRef]
- Surowsky, B.; Bußler, S.; Schlüter, O.K. Cold Plasma Interactions with Food Constituents in Liquid and Solid Food Matrices; Academic Press: San Diego, CA, USA, 2016; Volume 7, pp. 179–203. ISBN 978-0-12-801365-6. [Google Scholar]
- Keener, K.M.; Misra, N.N. Future of Cold Plasma in Food Processing; Academic Press: San Diego, CA, USA, 2016; Volume 14, pp. 343–360. [Google Scholar] [CrossRef]
- Šimek, M.; Homola, T. Plasma-Assisted Agriculture: History, Presence, and Prospects—A Review. Eur. Phys. J. D 2021, 75, 210. [Google Scholar] [CrossRef]
- Isikber, A.A.; Athanassiou, C.G. The Use of Ozone Gas for the Control of Insects and Micro-Organisms in Stored Products. J. Stored Prod. Res. 2015, 64, 139–145. [Google Scholar] [CrossRef]
- Yawut, N.; Mekwilai, T.; Vichiansan, N.; Braspaiboon, S.; Leksakul, K.; Boonyawan, D. Cold Plasma Technology: Transforming Food Processing for Safety and Sustainability. J. Agric. Food Res. 2024, 18, 101383. [Google Scholar] [CrossRef]
- Boopathy, B.; Rajan, A.; Radhakrishnan, M. Ozone: An Alternative Fumigant in Controlling the Stored Product Insects and Pests: A Status Report. Ozone Sci. Eng. 2022, 44, 79–95. [Google Scholar] [CrossRef]
- Perea-Brenes, A.; Gómez-Ramírez, A.; López-Santos, C.; Oliva-Ramírez, M.; Molina, R.; Cotrino, J.; García, J.L.; Cantos, M.; González-Elipe, A.R. Comparative Analysis of the Germination of Barley Seeds Subjected to Drying, Hydrogen Peroxide, or Oxidative Air Plasma Treatments. Plasma Process. Polym. 2022, 19, 2200035. [Google Scholar] [CrossRef]
- Hoppanová, L.; Medvecká, V.; Dylíková, J.; Hudecová, D.; Kaliňáková, B.; Kryštofová, S.; Zahoranová, A. Low-Temperature Plasma Applications in Chemical Fungicide Treatment Reduction. Acta Chim. Slovaca 2020, 13, 26–33. [Google Scholar] [CrossRef]
- Perea-Brenes, A.; Garcia, J.L.; Cantos, M.; Cotrino, J.; Gonzalez-Elipe, A.R.; Gomez-Ramirez, A.; Lopez-Santos, C. Germination and First Stages of Growth in Drought, Salinity, and Cold Stress Conditions of Plasma-Treated Barley Seeds. ACS Agric. Sci. Technol. 2023, 3, 760–770. [Google Scholar] [CrossRef]
- Mwando, E.; Angessa, T.T.; Han, Y.; Li, C. Salinity Tolerance in Barley during Germination—Homologs and Potential Genes. J. Zhejiang Univ. Sci. B 2020, 21, 93–121. [Google Scholar] [CrossRef]
- Durek, J.; Schlüter, O.; Roscher, A.; Durek, P.; Fröhling, A. Inhibition or Stimulation of Ochratoxin a Synthesis on Inoculated Barley Triggered by Diffuse Coplanar Surface Barrier Discharge Plasma. Front. Microbiol. 2018, 9, 2782. [Google Scholar] [CrossRef] [PubMed]
- Los, A.; Ziuzina, D.; Akkermans, S.; Boehm, D.; Cullen, P.J.; Van Impe, J.; Bourke, P. Improving Microbiological Safety and Quality Characteristics of Wheat and Barley by High Voltage Atmospheric Cold Plasma Closed Processing. Food Res. Int. 2018, 106, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Zilli, C.; Pedrini, N.; Prieto, E.; Girotti, J.R.; Vallecorsa, P.; Ferreyra, M.; Chamorro, J.C.; Cejas, E.; Fina, B.; Prevosto, L.; et al. Non-Thermal Plasma as Emerging Technology for Tribolium castaneum Pest-Management in Stored Grains and Flours. J. Stored Prod. Res. 2022, 99, 102031. [Google Scholar] [CrossRef]
- Feizollahi, E.; Iqdiam, B.; Vasanthan, T.; Thilakarathna, M.S.; Roopesh, M.S. Effects of Atmospheric-Pressure Cold Plasma Treatment on Deoxynivalenol Degradation, Quality Parameters, and Germination of Barley Grains. Appl. Sci. 2020, 10, 3530. [Google Scholar] [CrossRef]
- Harikrishna, S.; Anil, P.P.; Shams, R.; Dash, K.K. Cold Plasma as an Emerging Nonthermal Technology for Food Processing: A Comprehensive Review. J. Agric. Food Res. 2023, 14, 100747. [Google Scholar] [CrossRef]
- Cullen, P.J.; Lalor, J.; Scally, L.; Boehm, D.; Milosavljević, V.; Bourke, P.; Keener, K. Translation of Plasma Technology from the Lab to the Food Industry. Plasma Process. Polym. 2018, 15, 1700085. [Google Scholar] [CrossRef]
- Takayuki, O. Plasma in Agriculture; Academic Press: San Diego, CA, USA, 2016; Volume 8, pp. 205–221. ISBN 978-0-12-801365-6. [Google Scholar]
- Heslin, C.; Boehm, D.; Gilmore, B.F.; Megaw, J.; Bourke, P. Safety Evaluation of Plasma-Treated Lettuce Broth Using in Vitro and in Vivo Toxicity Models. J. Phys. D Appl. Phys. 2020, 53, 274003. [Google Scholar] [CrossRef]
- Peťková, M.; Švubová, R.; Kyzek, S.; Medvecká, V.; Slováková, Ľ.; Ševčovičová, A.; Gálová, E. The Effects of Cold Atmospheric Pressure Plasma on Germination Parameters, Enzyme Activities and Induction of DNA Damage in Barley. Int. J. Mol. Sci. 2021, 22, 2833. [Google Scholar] [CrossRef]
- Durek, J.; Fröhling, A.; Bußler, S.; Hase, A.; Ehlbeck, J.; Schlüter, O.K. Pilot-Scale Generation of Plasma Processed Air and Its Influence on Microbial Count, Microbial Diversity, and Selected Quality Parameters of Dried Herbs. Innov. Food Sci. Emerg. Technol. 2022, 75, 102890. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Van Cleynenbreugel, R.; Boehm, D.; Bourke, P. Assessing the Biological Safety of Atmospheric Cold Plasma Treated Wheat Using Cell and Insect Models. Foods 2020, 9, 898. [Google Scholar] [CrossRef]
- Han, S.H.; Suh, H.J.; Hong, K.B.; Kim, S.Y.; Min, S.C. Oral Toxicity of Cold Plasma-Treated Edible Films for Food Coating. J. Food Sci. 2016, 81, T3052–T3057. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Sung, N.-Y.; Yong, H.I.; Kim, H.; Lim, Y.; Ko, K.H.; Yun, C.-H.; Jo, C. Mutagenicity and Immune Toxicity of Emulsion-Type Sausage Cured with Plasma-Treated Water. Food Sci. Anim. Resour. 2016, 36, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Ziuzina, D.; Misra, N.N.; Cullen, P.J.; Keener, K.M.; Mosnier, J.P.; Vilaró, I.; Gaston, E.; Bourke, P. Demonstrating the Potential of Industrial Scale in-Package Atmospheric Cold Plasma for Decontamination of Cherry Tomatoes. Plasma Med. 2016, 6, 397–412. [Google Scholar] [CrossRef]
- Felšöciová, S.; Kowalczewski, P.Ł.; Krajčovič, T.; Dráb, Š.; Kačániová, M. Effect of Long-Term Storage on Mycobiota of Barley Grain and Malt. Plants 2021, 10, 1655. [Google Scholar] [CrossRef]
- Ussenov, Y.A.; Akildinova, A.; Kuanbaevich, B.A.; Serikovna, K.A.; Gabdullin, M.; Dosbolayev, M.; Daniyarov, T.; Ramazanov, T. The Effect of Non-Thermal Atmospheric Pressure Plasma Treatment of Wheat Seeds on Germination Parameters and A-Amylase Enzyme Activity. IEEE Trans. Plasma Sci. 2022, 50, 330–340. [Google Scholar] [CrossRef]
- Jürgen, F.; Regitz, M. Römpp Lexikon-Chemie; Georg Thieme Verlag: Stuttgart, Germany, 1998; ISBN 3-13-734910-9. [Google Scholar]
- López, M.; Calvo, T.; Prieto, M.; Múgica-Vidal, R.; Muro-Fraguas, I.; Alba-Elías, F.; Alvarez-Ordóñez, A. A Review on Non-Thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications. Front. Microbiol. 2019, 10, 622. [Google Scholar] [CrossRef]
- Hertwig, C.; Meneses, N.; Mathys, A. Cold Atmospheric Pressure Plasma and Low Energy Electron Beam as Alternative Nonthermal Decontamination Technologies for Dry Food Surfaces: A Review. Trends Food Sci. Technol. 2018, 77, 131–142. [Google Scholar] [CrossRef]
- Patil, S.; Bourke, P.; Cullen, P.J. Principles of Nonthermal Plasma Decontamination; Academic Press: San Diego, CA, USA, 2016; Volume 6, pp. 143–177. ISBN 978-0-12-801365-6. [Google Scholar]
- Rajan, A.; Boopathy, B.; Radhakrishnan, M.; Rao, L.; Schlüter, O.K.; Tiwari, B.K. Plasma Processing: A Sustainable Technology in Agri-Food Processing. Sustain. Food Technol. 2023, 1, 9–49. [Google Scholar] [CrossRef]
- Muranyi, P.; Wunderlich, J.; Heise, M. Sterilization Efficiency of a Cascaded Dielectric Barrier Discharge. J. Appl. Microbiol. 2007, 103, 1535–1544. [Google Scholar] [CrossRef]
- Drishya, C.; Yoha, K.; Perumal, A.B.; A Moses, J.; Anandharamakrishnan, C.; Balasubramaniam, V.M. Impact of Nonthermal Food Processing Techniques on Mycotoxins and Their Producing Fungi. Int. J. Food Sci. Technol. 2022, 57, 2140–2148. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Han, L.; Cullen, P.; Gilmore, B. Microbiological Interactions with Cold Plasma. J. Appl. Microbiol. 2017, 123, 308–324. [Google Scholar] [CrossRef] [PubMed]
- Ziuzina, D.; Boehm, D.; Patil, S.; Cullen, P.J.; Bourke, P. Cold Plasma Inactivation of Bacterial Biofilms and Reduction of Quorum Sensing Regulated Virulence Factors. PLoS ONE 2015, 10, e0138209. [Google Scholar] [CrossRef] [PubMed]
- Butscher, D.; Van Loon, H.; Waskow, A.; von Rohr, P.R.; Schuppler, M. Plasma Inactivation of Microorganisms on Sprout Seeds in a Dielectric Barrier Discharge. Int. J. Food Microbiol. 2016, 238, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Ziuzina, D.; Misra, N.N. Cold Plasma for Food Safety; Academic Press: San Diego, CA, USA, 2016; Volume 9, pp. 223–252. ISBN 978-0-12-801365-6. [Google Scholar]
- Ziuzina, D.; Misra, N.; Han, L.; Cullen, P.; Moiseev, T.; Mosnier, J.; Keener, K.; Gaston, E.; Vilaró, I.; Bourke, P. Investigation of a Large Gap Cold Plasma Reactor for Continuous in-Package Decontamination of Fresh Strawberries and Spinach. Innov. Food Sci. Emerg. Technol. 2020, 59, 102229. [Google Scholar] [CrossRef]
- Sruthi, N.; Josna, K.; Pandiselvam, R.; Kothakota, A.; Gavahian, M.; Khaneghah, A.M. Impacts of Cold Plasma Treatment on Physicochemical, Functional, Bioactive, Textural, and Sensory Attributes of Food: A Comprehensive Review. Food Chem. 2022, 368, 130809. [Google Scholar] [CrossRef]
- Laca, A.; Mousia, Z.; Díaz, M.; Webb, C.; Pandiella, S.S. Distribution of Microbial Contamination within Cereal Grains. J. Food Eng. 2006, 72, 332–338. [Google Scholar] [CrossRef]
- Ambrico, P.F.; Šimek, M.; Rotolo, C.; Morano, M.; Minafra, A.; Ambrico, M.; Pollastro, S.; Gerin, D.; Faretra, F.; Angelini, R.M.D.M. De Miccolis Angelini. Surface Dielectric Barrier Discharge Plasma: A Suitable Measure against Fungal Plant Pathogens. Sci. Rep. 2020, 10, 3673. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef]
- Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; van Duin, A.C.T.; Neyts, E.C. Neyts. Plasma-Induced Destruction of Bacterial Cell Wall Components: A Reactive Molecular Dynamics Simulation. J. Phys. Chem. C 2013, 117, 5993–5998. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Clauson, M.; Hong, J.; Murphy, A.B. Gram Positive and Gram Negative Bacteria Differ in Their Sensitivity to Cold Plasma. Sci. Rep. 2016, 6, 38610. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, H.; Zhang, J. Inactivation of Spoilage Bacteria in Package by Dielectric Barrier Discharge Atmospheric Cold Plasma—Treatment Time Effects. Food Bioprocess Technol. 2016, 9, 1648–1652. [Google Scholar] [CrossRef]
- Los, A.; Ziuzina, D.; Boehm, D.; Bourke, P. Effects of Cold Plasma on Wheat Grain Microbiome and Antimicrobial Efficacy against Challenge Pathogens and Their Resistance. Int. J. Food Microbiol. 2020, 335, 108889. [Google Scholar] [CrossRef] [PubMed]
- Wannicke, N.; Dias, J.M.; Nishime, T.M.C.; Brust, H. Inactivation Efficiency of Bacillus Atrophaeus Spores on Seeds of Barley, Wheat, Lupine and Rapeseed by Direct Cold Atmospheric Pressure Plasma. Appl. Sci. 2024, 14, 9793. [Google Scholar] [CrossRef]
- Šimončicová, J.; Kaliňáková, B.; Kováčik, D.; Medvecká, V.; Lakatoš, B.; Kryštofová, S.; Hoppanová, L.; Palušková, V.; Hudecová, D.; Ďurina, P.; et al. Cold Plasma Treatment Triggers Antioxidative Defense System and Induces Changes in Hyphal Surface and Subcellular Structures of Aspergillus Flavus. Appl. Microbiol. Biotechnol. 2018, 102, 6647–6658. [Google Scholar] [CrossRef]
- Wielogorska, E.; Ahmed, Y.; Meneely, J.; Graham, W.G.; Elliott, C.T.; Gilmore, B.F. A Holistic Study to Understand the Detoxification of Mycotoxins in Maize and Impact on Its Molecular Integrity Using Cold Atmospheric Plasma Treatment. Food Chem. 2019, 301, 125281. [Google Scholar] [CrossRef]
- Piotrowska, M. Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. Toxins 2021, 13, 819. [Google Scholar] [CrossRef]
- Bosch, L.T.; Pfohl, K.; Avramidis, G.; Wieneke, S.; Viöl, W.; Karlovsky, P. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species. Toxins 2017, 9, 97. [Google Scholar] [CrossRef]
- Pankaj, S.; Shi, H.; Keener, K.M. A Review of Novel Physical and Chemical Decontamination Technologies for Aflatoxin in Food. Trends Food Sci. Technol. 2018, 71, 73–83. [Google Scholar] [CrossRef]
- Siciliano, I.; Spadaro, D.; Prelle, A.; Vallauri, D.; Cavallero, M.C.; Garibaldi, A.; Gullino, M.L. Use of Cold Atmospheric Plasma to Detoxify Hazelnuts from Aflatoxins. Toxins 2016, 8, 125. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.; Shah, M.A.; Sofi, S.A.; Hamdani, A.M.; Oliveira, C.A.; Moosavi, M.H.; Khaneghah, A.M.; Sant’Ana, A.S. Application of New Technologies in Decontamination of Mycotoxins in Cereal Grains: Challenges, and Perspectives. Food Chem. Toxicol. 2021, 148, 111976. [Google Scholar] [CrossRef]
- Liu, Y.; Yamdeu, J.H.G.; Gong, Y.Y.; Orfila, C. A Review of Postharvest Approaches to Reduce Fungal and Mycotoxin Contamination of Foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1521–1560. [Google Scholar] [CrossRef]
- Feizollahi, E.; Roopesh, M.S. Degradation of Zearalenone by Atmospheric Cold Plasma: Effect of Selected Process and Product Factors. Food Bioprocess Technol. 2021, 14, 2107–2119. [Google Scholar] [CrossRef]
- Ziesche, T.M.; Ordon, F.; Schliephake, E.; Will, T. Long-Term Data in Agricultural Landscapes Indicate That Insect Decline Promotes Pests Well Adapted to Environmental Changes. J. Pest Sci. 2023, 97, 1281–1297. [Google Scholar] [CrossRef]
- Sallam, M.N.; Mejia, D. Insect Damage: Damage on Post-Harvest; FAO: Nairobi, Kenya, 2000; p. 38. [Google Scholar]
- Kaur, M.; Hüberli, D.; Bayliss, K.L. Cold Plasma: Exploring a New Option for Management of Postharvest Fungal Pathogens, Mycotoxins and Insect Pests in Australian Stored Cereal Grain. Crop Pasture Sci. 2020, 71, 715–724. [Google Scholar] [CrossRef]
- Sutar, S.A.; Thirumdas, R.; Chaudhari, B.B.; Deshmukh, R.R.; Annapure, U.S. Annapure. Effect of Cold Plasma on Insect Infestation and Keeping Quality of Stored Wheat Flour. J. Stored Prod. Res. 2021, 92, 101774. [Google Scholar] [CrossRef]
- Ramanan, K.R.; Sarumathi, R.; Mahendran, R. Influence of Cold Plasma on Mortality Rate of Different Life Stages of Tribolium castaneum on Refined Wheat Flour. J. Stored Prod. Res. 2018, 77, 126–134. [Google Scholar] [CrossRef]
- Radhakrishnan, M.; Ramanan, K.R.; Sargunam, R.; Sarumathi, R. Effect of Cold Plasma on Mortality of Tribolium castaneum on Maida Flour. Agric. Eng. 2016, 3, 37–44. [Google Scholar]
- Abotaleb, A.O.; Badr, N.F.; Rashed, U.M. Assessment of the Potential of Non-Thermal Atmospheric Pressure Plasma Discharge and Microwave Energy against Tribolium castaneum and Trogoderma Granarium. Bull Entomol. Res. 2021, 111, 528–543. [Google Scholar] [CrossRef]
- Ziuzina, D.; van Cleynenbreugel, R.; Tersaruolo, C.; Bourke, P. Cold Plasma for Insect Pest Control: Tribolium castaneum Mortality and Defense Mechanisms in Response to Treatment. Plasma Process. Polym. 2021, 18, 2000178. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Aoki, N.; Kasa, S.; Sakamoto, M.; Kai, K.; Tomokiyo, R.; Watabe, G.; Yuasa, T.; Iwaya-Inoue, M. The Interrelationship between Abscisic Acid and Reactive Oxygen Species Plays a Key Role in Barley Seed Dormancy and Germination. Front. Plant Sci. 2017, 8, 275. [Google Scholar] [CrossRef]
- Mazandarani, A.; Goudarzi, S.; Ghafoorifard, H.; Eskandari, A. Evaluation of Dbd Plasma Effects on Barley Seed Germination and Seedling Growth. IEEE Trans. Plasma Sci. 2020, 48, 3115–3121. [Google Scholar] [CrossRef]
- Barrero, J.M.; Downie, A.B.; Xu, Q.; Gubler, F. A Role for Barley Cryptochrome1 in Light Regulation of Grain Dormancy and Germination. Plant Cell 2014, 26, 1094–1104. [Google Scholar] [CrossRef] [PubMed]
- Hoang, H.H.; Sechet, J.; Bailly, C.; Leymarie, J.; Corbineau, F. Inhibition of Germination of Dormant Barley (Ordeum vulgare L.) Grains by Blue Light as Related to Oxygen and Hormonal Regulation. Plant Cell Environ. 2014, 37, 1393–1403. [Google Scholar] [CrossRef]
- Dobrin, D.; Magureanu, M.; Mandache, N.B.; Ionita, M.-D. The Effect of Non-Thermal Plasma Treatment on Wheat Germination and Early Growth. Innov. Food Sci. Emerg. Technol. 2015, 29, 255–260. [Google Scholar] [CrossRef]
- Rifna, E.; Ramanan, K.R.; Mahendran, R. Emerging Technology Applications for Improving Seed Germination. Trends Food Sci. Technol. 2019, 86, 95–108. [Google Scholar] [CrossRef]
- Benabderrahim, M.A.; Bettaieb, I.; Hannachi, H.; Rejili, M.; Dufour, T. Cold Plasma Treatment Boosts Barley Germination and Seedling Vigor: Insights into Soluble Sugar, Starch, and Protein Modifications. J. Cereal Sci. 2024, 116, 103852. [Google Scholar] [CrossRef]
- Song, J.-S.; Lee, M.J.; Ra, J.E.; Lee, K.S.; Eom, S.; Ham, H.M.; Kim, H.Y.; Kim, S.B.; Lim, J. Growth and Bioactive Phytochemicals in Barley (Hordeum vulgare L.) Sprouts Affected by Atmospheric Pressure Plasma during Seed Germination. J. Phys. D Appl. Phys. 2020, 53, 314002. [Google Scholar] [CrossRef]
- Gómez-Ramírez, A.; López-Santos, C.; Cantos, M.; García, J.L.; Molina, R.; Cotrino, J.; Espinós, J.P.; González-Elipe, A.R. Surface Chemistry and Germination Improvement of Quinoa Seeds Subjected to Plasma Activation. Sci. Rep. 2017, 7, 5924. [Google Scholar] [CrossRef]
- Anjaly, P.; Mahendran, R. Mortality of Tribolium castaneum and Quality Changes in Oryza sativa by Indirect Exposure to Non-Thermal Plasma. Front. Adv. Mater. Res. 2020, 2, 26–40. [Google Scholar] [CrossRef]
Bacteria | Plasma Characteristics | Treatment Time | Maximum Reduction | Reference |
---|---|---|---|---|
Background bacteria | Closed DBD system; 80 kV; air | 20 min (+24 h storage) | 2.4 log (direct) ≈52.2% reduction; 1.7 log (indirect) ≈37.0% reduction | [51] |
Escherichia coli (inoculated) | Closed DBD system; 80 kV; air | 20 min (+24 h storage) | 3.5 log (direct) ≈97.7% reduction; 3.3 log (indirect) ≈91.7% reduction | [51] |
Bacillus atrophaeus (vegetative cells; inoculated) | Closed DBD system; 80 kV; air | 20 min (+24 h storage) | 3.2 log (direct) ≈66.7% reduction; 2.7 log (indirect) ≈56.3% reduction | [51] |
Bacillus atrophaeus (endospores; inoculated) | Closed DBD system; 80 kV; air | 20 min (+2 h storage) | 2.4 log (direct) ≈33.4% reduction; 1.3 log (indirect) ≈16.7% reduction | [51] |
Bacillus atrophaeus (endospores; inoculated) | Volume-DBD; 12 kV; argon | 2 × 5 min with 5 min break in between | 1.43 ± 1.38 log (direct) ≈19.3% reduction | [86] |
Fungus/Mycotoxin | Plasma Characteristics | Treatment Time | Maximum Reduction | Drawback | Reference |
---|---|---|---|---|---|
Fusarium culmorum (inoculated) | Diffuse Coplanar Surface Barrier Discharge (DCSBD); 14 kHz, 20 kV, 400 W; ambient air | 120 s | Complete fungal removal | Germination and seedling vigour reduced after >30 s | [47] |
Aspergillus niger (inoculated) | DCSBD; 350 W; dry air | 180 s (+14 d storage at 9 °C) | 3 log ≈43.6% reduction (mycelium); 2.5 log ≈47.9% reduction (spores) | Certain storage and incubation conditions might facilitate mycotoxin production | [50] |
Penicillium verrucosum (inoculated) | DCSBD; 350 W; dry air | 180 s (+14 d storage at 9 °C) | 3.12 log ≈55.5% reduction | Certain storage and incubation conditions might facilitate mycotoxin production | [50] |
Zearalenone (inoculated) | DBD (in pulsed mode); 3.5 kHz, 0–30 kV; air | 60 s 180 s | 52.7% 64.8% | [95] | |
Deoxynivalenol (inoculated) | Direct DBD (in pulsed mode); 3.5 kHz, 0–34 kV, 300 W; air | 6 min 10 min | 48.9% 54.4% | No significant increase in toxin degradation due to increased humidity and moisture | [53] |
Penicillium verrucosum (spores; inoculated) | Closed DBD system; 80 kV; air | 20 min (+24 h storage) | 3.6 log (direct) ≈56.3% reduction; 2.7 log (indirect) ≈42.2% reduction | [51] | |
Background fungi | Closed DBD system; 80 kV; air | 20 min (+24 h storage) | 2.1 log (direct) ≈47.7% reduction; 1.5 log (indirect) ≈34.1% reduction | [51] |
Plasma Source | Gas | Power, Voltage, and Frequency | Time | Germination Rate | Reference |
---|---|---|---|---|---|
Diffuse Coplanar Surface Barrier Discharge (DCSBD) | Ambient air | 400 W, 20 kV, 14 kHz | control 15 s 30 s 60 s 120 s | 100% 100% 98 ± 4% 94 ± 8% 72 ± 15% | [47] |
DBD (in pulsed mode) | Air | 3.5 kHz, 0–34 kV, 300 W | control 6 min | 80% 93.3% | [53] |
DBD (direct) | Air | 1 kHz, 8.6 kV, 5.3 W | control 3 min | 92% 94–100% | [46] |
DBD (direct) | Ambient air | 50 Hz, 16 kV | control 5 min | 42% 78% in 7 days | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barner, N.; Nelles, M.; Garbe, L.-A. The Application of Cold Atmospheric Plasma (CAP) in Barley Processing as an Environmentally Friendly Alternative. Foods 2025, 14, 1635. https://doi.org/10.3390/foods14091635
Barner N, Nelles M, Garbe L-A. The Application of Cold Atmospheric Plasma (CAP) in Barley Processing as an Environmentally Friendly Alternative. Foods. 2025; 14(9):1635. https://doi.org/10.3390/foods14091635
Chicago/Turabian StyleBarner, Norman, Michael Nelles, and Leif-Alexander Garbe. 2025. "The Application of Cold Atmospheric Plasma (CAP) in Barley Processing as an Environmentally Friendly Alternative" Foods 14, no. 9: 1635. https://doi.org/10.3390/foods14091635
APA StyleBarner, N., Nelles, M., & Garbe, L.-A. (2025). The Application of Cold Atmospheric Plasma (CAP) in Barley Processing as an Environmentally Friendly Alternative. Foods, 14(9), 1635. https://doi.org/10.3390/foods14091635