Phenolic Metabolism Explains Bitterness and Pungency of Extra Virgin Olive Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Sensory Analysis
2.2. Reagents and Standards
2.3. Determination of Phenolic Compounds in EVOO
2.4. Quantitative Determination of Phenolic Compounds and Statistical Analysis
3. Results and Discussion
3.1. Variability in Phenolic Composition and Organoleptic Attributes
3.2. Influence of the EVOO Phenolic Profile on the Intensity of Bitterness and Pungency
3.3. Capability of Phenols to Discriminate Bitterness and Pungency Intensity of EVOOs
3.4. Association of Bitterness and Pungency with Phenolic Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Emma, M.R.; Augello, G.; Di Stefano, V.; Azzolina, A.; Giannitrapani, L.; Montalto, C. Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies. Int. J. Mol. Sci. 2021, 22, 1234. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) No 1018/2013 establishing a list of permitted health claims made on foods other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. Union. 2013, L282, 43–45. [Google Scholar]
- European Commission. Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards Marketing Standards for Olive Oil, and Repealing Commission Regulation (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. Off. J. Eur. Union. 2022, L284, 1–22. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R2104 (accessed on 13 January 2025).
- IOC. COI/T.20/Doc. No 15/Rev. 11. Sensory Analysis of Olive Oil-Method for the Organoleptic Assessment of Virgin Olive Oil. International Olive Council Website. 2024. Available online: https://www.internationaloliveoil.org/what-we-do/chemistry-standardisation-unit/standards-and-methods/ (accessed on 13 January 2025).
- Kottaridi, K.; Milionis, A.; Demopoulos, V.; Rigakou, A.; Nikolaidis, V. A regression analysis method for the prediction of olive oil sensory attributes. J. Agric. Food Res. 2023, 12, 100555. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Aparicio-Ruiz, R.; Morales, M.T.; García-González, D.L. Contribution of specific volatile markers to green and ripe fruity attributes in extra virgin olive oils studied with three analytical methods. Food Chem. 2023, 399, 133942. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef]
- da Costa, J.R.O.; Dal Bosco, S.M.; de Souza Ramos, R.C.; Machado, I.C.K.; Garavaglia, J.; Villasclaras, S.S. Determination of volatile compounds responsible for sensory characteristics from Brazilian extra virgin olive oil using HS-SPME/GC-MS direct method. J. Food Sci. 2020, 85, 3764–3775. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, S.; Liu, Y.; Song, H. Comparative Analysis of Volatiles of 15 Brands of Extra-Virgin Olive Oils Using Solid-Phase Micro-Extraction and Solvent-Assisted Flavor Evaporation. Molecules. 2019, 24, 1512. [Google Scholar] [CrossRef]
- Tomé-Rodríguez, S.; Ledesma-Escobar, C.A.; Penco-Valenzuela, J.M.; Calderón-Santiago, M.; Priego-Capote, F. Metabolic patterns in the lipoxygenase pathway associated to fruitiness attributes of extra virgin olive oil. J. Food Compos. Anal. 2022, 109, 104478. [Google Scholar] [CrossRef]
- Teixeira, G.G.; Dias, L.G.; Rodrigues, N.; Marx, Í.M.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Application of a lab-made electronic nose for extra virgin olive oils commercial classification according to the perceived fruitiness intensity. Talanta 2021, 226, 122122. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, G.; Ruano, M.T.; Jiménez, A.; Uceda, M.; Aguilera, M.P. Evaluation of virgin olive oil bitterness by total phenol content analysis. Eur. J. Lipid Sci. Technol. 2007, 108, 193–197. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade Alessandra. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef]
- Gawel, R.; Rogers, D.A.G. The relationship between total phenol concentration and the perceived style of extra virgin olive oil. Grasas y Aceites 2009, 60, 134–138. [Google Scholar] [CrossRef]
- Inarejos-Garcia, A.M.; Androulaki, A.; Salvador, M.D.; Fregapane, G.; Tsimidou, M.Z. Discussion on the objective evaluation of virgin olive oil bitterness. Food Res. Int. 2009, 42, 279–284. [Google Scholar] [CrossRef]
- Andrewes, P.; Busch, J.L.H.C.; De Joode, T.; Groenewegen, A.; Alexandre, H. Sensory properties of virgin olive oil polyphenols: Identification of deacetoxy-ligstroside aglycon as a key contributor to pungency. J. Agric. Food Chem. 2003, 51, 1415–1420. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.H.; Smith, A.B.; Breslin, P.A. Ibuprofen-like activity in extra-virgin olive oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef]
- Peyrot des Gachons, C.; Uchida, K.; Bryant, B.; Shima, A.; Sperry, J.B.; Dankulich-Nagrudny, L.; Tominaga, M.; Smith, A.B.; Beauchamp, G.K.; Breslin, P.A. Unusual Pungency from Extra-Virgin Olive Oil Is Attributable to Restricted Spatial Expression of the Receptor of Oleocanthal. J. Neurosci. 2011, 31, 999–1009. [Google Scholar] [CrossRef]
- Demopoulos, V.; Karkoula, E.; Magiatis, P.; Melliou, E.; Kotsiras, A.; Mouroutoglou, C. Correlation of oleocanthal and oleacein concentration with pungency and bitterness in “koroneiki” virgin olive oil. Acta Hortic. 2015, 1099, 219–224. [Google Scholar] [CrossRef]
- Gutiérrez-Rosales, F.; Ríos, J.J.; Gómez-Rey, M.L. Main Polyphenols in the Bitter Taste of Virgin Olive Oil. Structural Confirmation by On-Line High-Performance Liquid Chromatography Electrospray Ionization Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 6021–6025. [Google Scholar] [CrossRef]
- Mateos, R.; Cert, A.; Pérez-Camino, M.C.; García, J.M. Evaluation of virgin olive oil bitterness by quantification of secoiridoid derivatives. J. Am. Oil Chem. Soc. 2004, 81, 71–75. [Google Scholar] [CrossRef]
- Siliani, S.; Mattei, A.; Innocenti, L.B.; Zanoni, B. Bitter taste and phenolic compounds in extra virgin olive oil: An empirical relationship. J. Food Qual. 2006, 29, 431–441. [Google Scholar] [CrossRef]
- Castillo-Luna, A.; Criado-Navarro, I.; Ledesma-Escobar, C.A.; López-Bascón, M.A.; Priego-Capote, F. The decrease in the health benefits of extra virgin olive oil during storage is conditioned by the initial phenolic profile. Food Chem. 2021, 336, 127730. [Google Scholar] [CrossRef] [PubMed]
- Hrncirik, K.; Fritsche, S. Comparability and reliability of different techniques for the determination of phenolic compounds in virgin olive oil. Eur. J. Lipid Sci. Technol. 2004, 106, 540–549. [Google Scholar] [CrossRef]
- Sánchez de Medina, V.; Miho, H.; Melliou, E.; Magiatis, P.; Priego-Capote, F.; Luque de Castro, M.D. Quantitative method for determination of oleocanthal and oleacein in virgin olive oils by liquid chromatography–tandem mass spectrometry. Talanta 2017, 162, 24–31. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011, 12, 77. [Google Scholar] [CrossRef]
- Prata, R.; Pereira, J.A.; Rodrigues, N.; Dias, L.G.; Veloso, A.C.A.; Casal, S.; Peres, A.M. Olive Oil Total Phenolic Contents and Sensory Sensations Trends during Oven and Microwave Heating Processes and Their Discrimination Using an Electronic Tongue. J. Food Qual. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Cui, M.; Chen, B.; Xu, K.; Rigakou, A.; Diamantakos, P.; Melliou, E.; Logothetis, D.E.; Magiatis, P. Activation of specific bitter taste receptors by olive oil phenolics and secoiridoids. Sci. Rep. 2021, 11, 22340. [Google Scholar] [CrossRef]
- Diamantakos, P.; Velkou, A.; Killday, K.B.; Gimisis, T.; Melliou, E.; Magiatis, P. Oleokoronal and oleomissional: New major phenolic ingredients of extra virgin olive oil. Olivae 2015, 122, 22–33. [Google Scholar]
- Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; Di Maio, I.; Selvaggini, R.; Taticchi, A. Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2014, 3, 1–23. [Google Scholar] [CrossRef]
Crop Season | Bitterness | Pungency |
---|---|---|
2021–2022 | ||
Delicate (nbitterness = 7; npungency = 3) | 2.57 ± 0.18 c (***) | 2.97 ± 0.06 c |
Medium (nbitterness = 86; npungency = 82) | 4.42 ± 0.64 b (***) | 4.82 ± 0.65 b |
Robust (nbitterness = 5; npungency = 13) | 6.32 ± 0.14 a (***) | 6.49 ± 0.34 a (***) |
2022–2023 | ||
Delicate (nbitterness = 25; npungency = 8) | 2.86 ± 0.33 c | 2.69 ± 0.53 c |
Medium (nbitterness = 54; npungency = 64) | 4.99 ± 0.83 b | 4.96 ± 0.85 b |
Robust (nbitterness = 21; npungency = 27) | 6.86 ± 0.36 a | 6.98 ± 0.35 a |
Crop Season | Hydroxytyrosol (*) | Tyrosol | Oleuropein Aglycone (***) | Ligstroside Aglycone | Oleomissional (***) | Oleokoronal | Oleacein (**) | Oleocanthal | Total Phenols |
---|---|---|---|---|---|---|---|---|---|
2021–2022 | 5.67 ± 2.81 | 8.16 ± 3.47 | 151 ± 64 | 73.1 ± 40.5 | 17.8 ± 12.7 | 69.8 ± 36.0 | 55.5 ± 41.9 | 56.3 ± 44.9 | 437 ± 159 |
2022–2023 | 5.17 ± 4.15 | 8.34 ± 3.91 | 127 ± 70 | 79.8 ± 55.2 | 36.9 ± 22.6 | 79.5 ± 50.4 | 45.8 ± 46.7 | 54.4 ± 38.6 | 437 ± 200 |
Hydroxytyrosol | Tyrosol | Oleuropein Aglycone | Ligstroside Aglycone | Oleomissional | Oleokoronal | Oleacein | Oleocanthal | Total Phenols | |
---|---|---|---|---|---|---|---|---|---|
Bitterness | |||||||||
Delicate | 4.16 ± 4.72 c | 6.80 ± 3.63 b | 93.3 ± 55.4 c | 50.8 ± 30.3 c | 26.8 ± 19.0 b | 56.0 ± 39.4 b | 37.8 ± 29.7 | 51.5 ± 33.5 ab | 327 ± 144 c |
Medium | 5.41 ± 3.31 b | 8.18 ± 3.65 b | 140 ± 61 b | 74.1 ± 43.1 b | 24.4 ± 19.6 b | 71.2 ± 37.7 b | 46.4 ± 33.5 | 52.4 ± 40.8 b | 428 ± 153 b |
Robust | 7.00 ± 2.50 a | 10.4 ± 3.0 a | 190 ± 82 a | 121 ± 64 a | 44.2 ± 21.1 a | 117 ± 56 a | 68.6 ± 59.9 | 75.6 ± 50.9 a | 621 ± 223 a |
Pungency | |||||||||
Delicate | 5.76 ± 7.44 | 7.57 ± 4.60 | 101 ± 70 b | 54.2 ± 32.4 | 25.8 ± 19.37 ab | 56.3 ± 41.7 b | 38.6 ± 15.8 | 56.6 ± 32.6 ab | 346 ± 137 b |
Medium | 5.26 ± 3.33 | 8.25 ± 3.75 | 137 ± 66 ab | 75.1 ± 48.8 | 25.0 ± 19.94 b | 72.5 ± 43.4 b | 47.6 ± 40.1 | 51.0 ± 39.8 b | 422 ± 175 b |
Robust | 5.84 ± 2.81 | 8.49 ± 3.28 | 158 ± 74 a | 89.2 ± 48.1 | 35.5 ± 20.52 a | 88.8 ± 44.8 a | 64.7 ± 61.0 | 71.8 ± 47.5 a | 522 ± 189 a |
Compound | Bitterness | Pungency | |||||
---|---|---|---|---|---|---|---|
Multiclass AUC | AUC “Delicate” vs. “Medium” | AUC “Medium” vs. “Robust” | AUC “Delicate” vs. “Robust” | Threshold “Delicate” vs. “Medium” | Threshold “Delicate” vs. “Robust” | AUC “Medium” vs. “Robust” | |
Hydroxytyrosol | 71.8 | 67.2 | 67.9 | 80.2 | 3.78 | 4.77 | 56.6 |
Tyrosol | 72.2 | 62.4 | 70.5 | 83.7 | 7.31 | 8.48 | 54.5 |
Oleuropein aglycone | 75.9 | 72.7 | 68.7 | 86.2 | 120 | 128 | 59.3 |
Oleomissional | 69.5 | 53.1 | 79.8 | 75.6 | 26.0 | 29.3 | 67.9 |
Ligstroside aglycone | 76.2 | 66.2 | 74.0 | 88.3 | 64.0 | 63.9 | 58.7 |
Oleokoronal | 75.1 | 61.5 | 80.4 | 83.5 | 56.2 | 87.0 | 62.2 |
Oleacein | 58.8 | 57.7 | 55.7 | 63.0 | 27.9 | 37.6 | 59.1 |
Oleocanthal | 59.9 | 53.1 | 65.0 | 61.7 | 41.9 | 47.5 | 63.9 |
Total phenols | 78.2 | 68.6 | 77.6 | 88.3 | 362 | 405 | 67.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomé-Rodríguez, S.; Barba-Palomeque, F.; Calderón-Santiago, M.; Penco-Valenzuela, J.M.; Priego-Capote, F. Phenolic Metabolism Explains Bitterness and Pungency of Extra Virgin Olive Oils. Foods 2025, 14, 1620. https://doi.org/10.3390/foods14091620
Tomé-Rodríguez S, Barba-Palomeque F, Calderón-Santiago M, Penco-Valenzuela JM, Priego-Capote F. Phenolic Metabolism Explains Bitterness and Pungency of Extra Virgin Olive Oils. Foods. 2025; 14(9):1620. https://doi.org/10.3390/foods14091620
Chicago/Turabian StyleTomé-Rodríguez, Sonia, Francisco Barba-Palomeque, Mónica Calderón-Santiago, José María Penco-Valenzuela, and Feliciano Priego-Capote. 2025. "Phenolic Metabolism Explains Bitterness and Pungency of Extra Virgin Olive Oils" Foods 14, no. 9: 1620. https://doi.org/10.3390/foods14091620
APA StyleTomé-Rodríguez, S., Barba-Palomeque, F., Calderón-Santiago, M., Penco-Valenzuela, J. M., & Priego-Capote, F. (2025). Phenolic Metabolism Explains Bitterness and Pungency of Extra Virgin Olive Oils. Foods, 14(9), 1620. https://doi.org/10.3390/foods14091620