Pseudomonas in Meat Processing Environments
Abstract
:1. Introduction
2. The Habitat of Pseudomonas
2.1. Pseudomonas Found in Meat Products
2.2. Pseudomonas in Meat Processing Plants
2.3. Discrepancy in Species Identification of Pseudomonas
3. Biofilm-Forming Abilities of Pseudomonas
3.1. Pseudomonas Species Are Often Reported as Strong Biofilm Formers Compared to Other Bacterial Species
3.2. Factors Affecting Biofilm Formation by Pseudomonas
3.3. Pseudomonas Biofilms and Foodborne Pathogens
3.4. Overview
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yang, X.; He, A.; Badoni, M.; Tran, F.; Wang, H. Mapping sources of contamination of Escherichia coli on beef in the fabrication facility of a commercial beef packing plant. Food Control 2017, 75, 153–159. [Google Scholar] [CrossRef]
- Yang, X.; Tran, F.; Youssef, M.K.; Gill, C.O. Determination of sources of Escherichia coli on beef by multiple-locus variable-number tandem repeat analysis. J. Food Prot. 2015, 78, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, H.; He, A.; Tran, F. Microbial efficacy and impact on the population of Escherichia coli of a routine sanitation process for the fabrication facility of a beef packing plant. Food Control 2017, 71, 353–357. [Google Scholar] [CrossRef]
- Alvarez-Molina, A.; Cobo-Díaz, J.F.; López, M.; Prieto, M.; de Toro, M.; Alvarez-Ordóñez, A. Unraveling the emergence and population diversity of Listeria monocytogenes in a newly built meat facility through whole genome sequencing. Int. J. Food Microbiol. 2021, 340, 109043. [Google Scholar] [CrossRef]
- IFSAC. Foodborne Illness Source Attribution Estimates for Salmonella, Escherichia coli O157, and Listeria monocytogenes—United States, 2021; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA; Food and Drug Administration: Silver Spring, MD, USA; U.S. Department of Agriculture’s Food Safety and Inspection Service: Washington, DC, USA, 2023.
- Yang, X.Q.; Wang, H.; Hrycauk, S.; Holman, D.B.; Ells, T.C. Microbial dynamics in mixed-culture biofilms of Salmonella Typhimurium and Escherichia coli O157:H7 and bacteria surviving sanitation of conveyor belts of meat processing plants. Microorganisms 2023, 11, 421. [Google Scholar] [CrossRef]
- Castonguay, M.H.; van der Schaaf, S.; Koester, W.; Krooneman, J.; van der Meer, W.; Harmsen, H.; Landini, P. Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Res. Microbiol. 2006, 157, 471–478. [Google Scholar] [CrossRef]
- Møretrø, T.; Langsrud, S. Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1022–1041. [Google Scholar] [CrossRef]
- Xu, Z.H.S.; Ju, T.T.; Yang, X.Q.; Gänzle, M. A meta-analysis of bacterial communities in food processing facilities: Driving forces for assembly of core and accessory microbiomes across different food commodities. Microorganisms 2023, 11, 1575. [Google Scholar] [CrossRef]
- Yang, X.; Narvaez-Bravo, C.; Zhang, P. Driving forces shaping the microbial ecology in meat packing plants. Front. Microbiol. 2024, 14, 1333696. [Google Scholar] [CrossRef]
- Raposo, A.; Pérez, E.; de Faria, C.T.; Ferrús, M.A.; Carrascosa, C. Food spoilage by Pseudomonas spp.—An overview. In Foodborne Pathogens and Antibiotic Resistance; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 41–71. [Google Scholar]
- Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Springer: New York, NY, USA, 2005; Volume 2.
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.C.; Levy, S.B.; Jackson, R.W. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef]
- Sivri, N.; Jones, M.; Allen, M.J. Pseudomonas aeruginosa isolated from the marine environments in the Istanbul coastal area (Turkey). Fresenius Environ. Bull. 2014, 23, 3340–3344. [Google Scholar]
- Molin, G.; Ternström, A. Phenotypically based taxonomy of psychrotrophic Pseudomonas isolated from spoiled meat, water, and soil. Int. J. Syst. Evol. Microbiol. 1986, 36, 257–274. [Google Scholar] [CrossRef]
- Kim, C.M.; Jeong, J.W.; Lee, D.H.; Kim, S.B. Pseudomonas guryensis sp. nov. and Pseudomonas ullengensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 2021, 71, 5082. [Google Scholar] [CrossRef]
- Liang, J.L.; Wang, S.; Yiming, A.; Fu, L.Y.; Ahmad, I.; Chen, G.Y.; Zhu, B. Pseudomonas bijieensis sp. nov., isolated from cornfield soil. Int. J. Syst. Evol. Microbiol. 2021, 71, 4676. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz-Tohid, V.; Vacheron, J.; Dubost, A.; Prigent-Combaret, C.; Taheri, P.; Tarighi, S.; Taghavi, S.M.; Moënne-Loccoz, Y.; Muller, D. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. Syst. Appl. Microbiol. 2019, 42, 468–480. [Google Scholar] [CrossRef]
- Lee, J.; Ku, B.J.; Kim, Y.; Han, J.A.; Kim, E.Y.; Lee, H.S. Draft genome for Pseudomonas alkylphenolica, IMGN1, isolated from soil. Microbiol. Resour. Announc. 2024, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.Y.; Zhang, Y.H.; Hu, Y.Q.; Li, H.R.; Han, W.; Du, Y.; Hu, T.; Luo, W.; Zeng, Y.X. Pseudomonas paeninsulae sp. nov. and Pseudomonas svalbardensis sp. nov., isolated from Antarctic intertidal sediment and Arctic soil, respectively. Int. J. Syst. Evol. Microbiol. 2024, 74, 6466. [Google Scholar] [CrossRef]
- Svec, P.; Kosina, M.; Zeman, M.; Holochová, P.; Králová, S.; Nemcová, E.; Micenková, L.; Urvashi; Gupta, V.; Sood, U.; et al. Pseudomonas karstica sp. nov. and Pseudomonas spelaei sp. nov., isolated from calcite moonmilk deposits from caves. Int. J. Syst. Evol. Microbiol. 2020, 70, 5131–5140. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.H.; Xiang, F.Q.; Ding, W.L.; Xi, L.J.; Wang, M.Q.; Xiao, Z.J.; Liu, J.G. Pseudomonas phragmitis sp. nov., isolated from petroleum polluted river sediment. Int. J. Syst. Evol. Microbiol. 2020, 70, 364–372. [Google Scholar] [CrossRef]
- Kim, H.S.; Suh, M.K.; Kim, J.S.; Do, H.E.; Eom, M.K.; Jin, J.S.; Lee, J.S. Pseudomonas aestuarii sp. nov., isolated from tidal flat sediment. Int. J. Syst. Evol. Microbiol. 2023, 73, 6190. [Google Scholar] [CrossRef]
- Anurat, P.; Duangmal, K.; Srisuk, N. Pseudomonas mangiferae sp. nov., isolated from bark of mango tree in Thailand. Int. J. Syst. Evol. Microbiol. 2019, 69, 3537–3543. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Gonzalez, V.; Brady, C.; Denman, S.; Allainguillaume, J.; Arnold, D. Pseudomonas kirkiae sp. nov., a novel species isolated from oak in the United Kingdom, and phylogenetic considerations of the genera Pseudomonas, Azotobacter and Azomonas. Int. J. Syst. Evol. Microbiol. 2020, 70, 2426–2434. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.; Albu, S.; Timilsina, S.; Minsavage, G.V.; Paret, M.L.; Jones, J.B. Pseudomonas californiensis sp. nov. and Pseudomonas quasicaspiana sp. nov., isolated from ornamental crops in California. Int. J. Syst. Evol. Microbiol. 2022, 72, 5565. [Google Scholar] [CrossRef]
- Zdorovenko, E.L.; Kadykova, A.A.; Shashkov, A.S.; Kiseleva, E.P.; Savich, V.V.; Novik, G.I. O-specific polysaccharides structures of Pseudomonas strains isolated from the strawberry leaves. Carbohydr. Res. 2020, 489. [Google Scholar] [CrossRef]
- Wang, X.; He, S.W.; Guo, H.B.; Thin, K.K.; Gao, J.S.; Wang, Y.; Zhang, X.X. Pseudomonas rhizoryzae sp. nov., isolated from rice. Int. J. Syst. Evol. Microbiol. 2020, 70, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, M.; Mulet, M.; Gomila, M.; Berge, O.; Hajlaoui, M.R.; Lalucat, J.; Sadfi-Zouaoui, N.; García-Valdés, E. New species of pathogenic Pseudomonas isolated from citrus in Tunisia: Proposal of Pseudomonas kairouanensis sp. nov. and Pseudomonas nabeulensis sp. nov. Syst. Appl. Microbiol. 2019, 42, 348–359. [Google Scholar] [CrossRef]
- Testerman, T.; Varga, J.; Schiffer, M.M.; Donohue, H.; Da Silva, C.V.; Graf, J. Pseudomonas aphyarum sp. nov., Pseudomonas fontis sp. nov., Pseudomonas idahonensis sp. nov. and Pseudomonas rubra sp. nov., isolated from in, and around, a rainbow trout farm. Int. J. Syst. Evol. Microbiol. 2023, 73, 6201. [Google Scholar] [CrossRef]
- Duman, M.; Mulet, M.; Altun, S.; Saticioglu, I.B.; Gomila, M.; Lalucat, J.; Garcia-Valdes, E. Pseudomonas piscium sp. nov., Pseudomonas pisciculturae sp. nov., Pseudomonas mucoides sp. nov, and Pseudomonas neuropathica sp. nov. isolated from rainbow trout. Int. J. Syst. Evol. Microbiol. 2021, 71, 4714. [Google Scholar] [CrossRef] [PubMed]
- Duman, M.; Mulet, M.; Altun, S.; Saticioglu, I.B.; Gomila, M.; Lalucat, J.; García-Valdés, E. Pseudomonas anatoliensis sp. nov and Pseudomonas iridis sp. nov. isolated from fish. Syst. Appl. Microbiol. 2021, 44, 126198. [Google Scholar] [CrossRef]
- Oh, W.T.; Jun, J.W.; Giri, S.S.; Yun, S.; Kim, H.J.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J.; et al. Pseudomonas tructae sp. nov., novel species isolated from rainbow trout kidney. Int. J. Syst. Evol. Microbiol. 2019, 69, 3851–3856. [Google Scholar] [CrossRef]
- Hol, W.H.G.; Bezemer, T.M.; Biere, A. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front. Plant Sci. 2013, 4, 81. [Google Scholar] [CrossRef]
- Waghunde, R.R.; Sabalpara, A.N. Impact of Pseudomonas spp. on plant growth, lytic enzymes and secondary metabolites production. Front. Agron. 2021, 3, 752196. [Google Scholar] [CrossRef]
- Costa-Gutierrez, S.B.; Adler, C.; Espinosa-Urgel, M.; de Cristóbal, R.E. Pseudomonas putida and its close relatives: Mixing and mastering the perfect tune for plants. Appl. Microbiol. Biotechnol. 2022, 106, 3351–3367. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Monserrat, E.D.; Taylor, C.G. T6SS: A key to Pseudomonas’s success in biocontrol? Microorganisms 2023, 11, 2718. [Google Scholar] [CrossRef]
- Xin, X.-F.; Kvitko, B.; He, S.Y. Pseudomonas syringae: What it takes to be a pathogen. Nat. Rev. Microbiol. 2018, 16, 316–328. [Google Scholar] [CrossRef]
- Todai, T.; Takahashi, F.; Yasuoka, S.; Sato, T.; Abe, K.; Takikawa, Y.; Kondo, N. Pseudomonas amygdali (syn. Pseudomonas savastanoi) pv. adzukicola pv. nov., causal agent of bacterial stem rot of adzuki bean. J. Gen. Plant Pathol. 2022, 88, 358–371. [Google Scholar] [CrossRef]
- Busquets, A.; Gomila, M.; Beiki, F.; Mulet, M.; Rahimian, H.; García-Valdés, E.; Lalucat, J. Pseudomonas caspiana sp. nov., a citrus pathogen in the Pseudomonas syringae phylogenetic group. Syst. Appl. Microbiol. 2017, 40, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef]
- Kim, S.E.; Park, S.H.; Park, H.B.; Park, K.H.; Kim, S.H.; Jung, S.I.; Shin, J.H.; Jang, H.C.; Kang, S.J. Nosocomial Pseudomonas putida bacteremia: High rates of carbapenem resistance and mortality. Chonnam. Med. J. 2012, 48, 91–95. [Google Scholar] [CrossRef]
- Scales, B.S.; Dickson, R.P.; LiPuma, J.J.; Huffnagle, G.B. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin. Microbiol. Rev. 2014, 27, 927–948. [Google Scholar] [CrossRef]
- Gupta, V.; Sharma, S.; Singhal, L.; Soni, R.; Chander, J. Pseudomonas monteilii an emerging pathogen in meningoencephalitis. J. Clin. Diagn. Res. 2018, 12, DD4–DD5. [Google Scholar] [CrossRef]
- Aditi; Shariff, M.; Beri, K. Exacerbation of bronchiectasis by Pseudomonas monteilii: A case report. BMC Infect. Dis. 2017, 17, 511. [Google Scholar] [CrossRef]
- Tohya, M.; Uechi, K.; Tada, T.; Hishinuma, T.; Kinjo, T.; Ohshiro, T.; Maeda, S.; Kirikae, T.; Fujita, J. Emergence of clinical isolates of Pseudomonas asiatica and Pseudomonas monteilii from Japan harbouring an acquired gene encoding a carbapenemase VIM-2. J. Med. Microbiol. 2021, 70, 1258. [Google Scholar] [CrossRef] [PubMed]
- Uzuner, N.; Özcan, N.; Kangül, H.; Kadandir, I.R. The first case of urosepsis due to multidrug resistant Pseudomonas fulva. Flora Infeksiyon Hastalik. Ve Klin. Mikrobiyoloji Derg. 2020, 25, 269–274. [Google Scholar] [CrossRef]
- Mulet, M.; Gomila, M.; Ramírez, A.; LaLucat, J.; Garcia-Valdes, E. Pseudomonas nosocomialis sp. nov., isolated from clinical specimens. Int. J. Syst. Evol. Microbiol. 2019, 69, 3392–3398. [Google Scholar] [CrossRef]
- Pradeepan, S.; Wark, P. Pseudomonas pharyngitis in a cystic fibrosis patient. Respirol. Case Rep. 2018, 6, 325. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.G.; Zhang, C.L.; Tan, N.; Chen, Y.; He, J.L.; Li, Y.F.; Yuan, C.L.; Lin, C.X. Is it a potential pneumonia pathogen in Pseudomonas putida group? First isolation and identification of Pseudomonas plecoglossicida in clinic and a comparison of pathogenicity with Pseudomonas putida. Microb. Pathog. 2024, 196, 106910. [Google Scholar] [CrossRef]
- Huang, C.-R.; Lien, C.-Y.; Tsai, W.-C.; Lai, W.-A.; Hsu, C.-W.; Tsai, N.-W.; Chang, C.-C.; Lu, C.-H.; Chien, C.-C.; Chang, W.-N. The clinical characteristics of adult bacterial meningitis caused by non-Pseudomonas (Ps.) aeruginosa Pseudomonas species: A clinical comparison with Ps. aeruginosa meningitis. Kaohsiung J. Med. Sci. 2018, 34, 49–55. [Google Scholar] [CrossRef]
- Stellato, G.; Utter, D.R.; Voorhis, A.; De Angelis, M.; Eren, A.M.; Ercolini, D. A few Pseudomonas oligotypes dominate in the meat and dairy processing environment. Front. Microbiol. 2017, 8, 264. [Google Scholar] [CrossRef]
- Zhang, P.; Badoni, M.; Gänzle, M.; Yang, X. Growth of Carnobacterium spp. isolated from chilled vacuum-packaged meat under relevant acidic conditions. Int. J. Food Microbiol. 2018, 286, 120–127. [Google Scholar] [CrossRef]
- Blickstad, E.; Molin, G. Carbon dioxide as a controller of the spoilage flora of pork, with special reference to temperature and sodium chloride. J. Food Prot. 1983, 46, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Hilgarth, M.; Lehner, E.M.; Behr, J.; Vogel, R.F. Diversity and anaerobic growth of Pseudomonas spp. isolated from modified atmosphere packaged minced beef. J. Appl. Microbiol. 2019, 127, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Molin, G.; Ternström, A. Numerical taxonomy of psychrotrophic pseudomonads. Microbiology 1982, 128, 1249–1264. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.G.; Latty, J.B. A numerical taxonomic study of Pseudomonas strains from spoiled meat. J. Appl. Bacteriol. 1982, 52, 219–228. [Google Scholar] [CrossRef]
- Shaw, B.G.; Latty, J.B. A study of the relative incidence of different Pseudomonas groups on meat using a computer-assisted identification technique employing only carbon source tests. J. Appl. Bacteriol. 1984, 57, 59–67. [Google Scholar] [CrossRef]
- Franzetti, L.; Scarpellini, M. Characterisation of Pseudomonas spp. isolated from foods. Ann. Microbiol. 2007, 57, 39–47. [Google Scholar] [CrossRef]
- Olofsson, T.C.; Ahrné, S.; Molin, G. Composition of the bacterial population of refrigerated beef, identified with direct 16S rRNA gene analysis and pure culture technique. Int. J. Food Microbiol. 2007, 118, 233–240. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Nychas, G.J.E. Monitoring the succession of the biota grown on a selective medium for pseudomonads during storage of minced beef with molecular-based methods. Food Microbiol. 2013, 34, 62–69. [Google Scholar] [CrossRef]
- Yang, X.Y.; Zhu, L.X.; Zhang, Y.M.; Liang, R.R.; Luo, X. Microbial community dynamics analysis by high-throughput sequencing in chilled beef longissimus steaks packaged under modified atmospheres. Meat Sci. 2018, 141, 94–102. [Google Scholar] [CrossRef]
- Yang, J.; Yang, X.Y.; Liang, R.R.; Zhu, L.X.; Mao, Y.W.; Dong, P.C.; Hopkins, D.L.; Luo, X.; Zhang, Y.M. The response of bacterial communities to carbon dioxide in high-oxygen modified atmosphere packaged beef steaks during chilled storage. Food Res. Int. 2022, 151, 110872. [Google Scholar] [CrossRef]
- Wang, T.J.; Guo, H.Y.; Zhang, H.; Ren, F.Z.; Zhang, M.; Ge, S.Y.; Luo, H.L.; Zhao, L. Dynamics of bacterial communities of lamb meat packaged in air and vacuum pouch during chilled storage. Food Sci. Anim. Resour. 2019, 39, 209–221. [Google Scholar] [CrossRef]
- Botta, C.; Ferrocino, I.; Cavallero, M.C.; Riva, S.; Giordano, M.; Cocolin, L. Potentially active spoilage bacteria community during the storage of vacuum packaged beefsteaks treated with aqueous ozone and electrolyzed water. Int. J. Food Microbiol. 2018, 266, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiary, F.; Sayevand, H.R.; Remely, M.; Hippe, B.; Hosseini, H.; Haslberger, A.G. Evaluation of bacterial contamination sources in meat production line. J. Food Qual. 2016, 39, 750–756. [Google Scholar] [CrossRef]
- Botta, C.; Ferrocino, I.; Pessione, A.; Cocolin, L.; Rantsiou, K. Spatiotemporal distribution of the environmental microbiota in food processing plants as impacted by cleaning and sanitizing procedures: The case of slaughterhouses and gaseous ozone. Appl. Environ. Microbiol. 2020, 86, 23. [Google Scholar] [CrossRef]
- Cobo-Díaz, J.F.; Alvarez-Molina, A.; Alexa, E.A.; Walsh, C.J.; Mencía-Ares, O.; Puente-Gómez, P.; Likotrafiti, E.; Fernández-Gómez, P.; Prieto, B.; Crispie, F.; et al. Microbial colonization and resistome dynamics in food processing environments of a newly opened pork cutting industry during 1.5 years of activity. Microbiome 2021, 9, 204. [Google Scholar] [CrossRef] [PubMed]
- Fagerlund, A.; Moretro, T.; Heir, E.; Briandet, R.; Langsrud, S. Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Appl. Environ. Microbiol. 2017, 83, 17. [Google Scholar] [CrossRef]
- Hascoët, A.S.; Ripolles-Avila, C.; Guerrero-Navarro, A.E.; Rodríguez-Jerez, J.J. Microbial ecology evaluation of an Iberian pig processing plant through implementing SCH sensors and the influence of the resident microbiota on Listeria monocytogenes. Appl. Sci. 2019, 9, 4611. [Google Scholar] [CrossRef]
- Lerma, L.L.; Benomar, N.; Muñoz, M.D.C.; Gálvez, A.; Abriouel, H. Antibiotic multiresistance analysis of mesophilic and psychrotrophic Pseudomonas spp. isolated from goat and lamb slaughterhouse surfaces throughout the meat production process. Appl. Environ. Microbiol. 2014, 80, 6792–6806. [Google Scholar] [CrossRef]
- Li, L.L.; Ye, L.; Zhang, S.; Meng, H.C. Isolation and identification of aerobic bacteria carrying tetracycline and sulfonamide resistance genes obtained from a meat processing plant. J. Food Sci. 2016, 81, M1480–M1484. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhang, H.M.; Wu, C.L.; Deng, W.J.; Wang, D.; Zhao, G.F.; Song, J.K.; Jiang, Y. Molecular analysis of dominant species in Listeria monocytogenes-positive biofilms in the drains of food processing facilities. Appl. Microbiol. Biotechnol. 2016, 100, 3165–3175. [Google Scholar] [CrossRef]
- Nakamura, A.; Takahashi, H.; Kondo, A.; Koike, F.; Kuda, T.; Kimura, B.; Kobayashi, M. Distribution of psychrophilic microorganisms in a beef slaughterhouse in Japan after cleaning. PLoS ONE 2022, 17, 268411. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, V.; Bosilevac, J.M.; Barkhouse, D.A.; Velez, S.E.; Dass, S.C. Shotgun-metagenomics reveals a highly diverse and communal microbial network present in the drains of three beef-processing plants. Front. Cell. Infect. Microbiol. 2023, 13, 1240138. [Google Scholar] [CrossRef] [PubMed]
- Sequino, G.; Cobo-Diaz, J.F.; Valentino, V.; Tassou, C.; Volpe, S.; Torrieri, E.; Nychas, G.J.; Ordoñez, A.A.; Ercolini, D.; De Filippis, F. Microbiome mapping in beef processing reveals safety-relevant variations in microbial diversity and genomic features. Food Res. Int. 2024, 186, 114318. [Google Scholar] [CrossRef]
- Stellato, G.; La Storia, A.; De Filippis, F.; Borriello, G.; Villani, F.; Ercolini, D. Overlap of spoilage-associated microbiota between meat and the meat processing environment in small-scale and large-scale retail distributions. Appl. Environ. Microbiol. 2016, 82, 4045–4054. [Google Scholar] [CrossRef] [PubMed]
- Tadielo, L.E.; dos Santos, E.A.R.; Possebon, F.S.; Schmiedt, J.A.; Juliano, L.C.B.; Cerqueira-Cézar, C.K.; de Oliveira, J.P.; Sampaio, A.; Melo, P.R.L.; Caron, E.F.F.; et al. Characterization of microbial ecology, Listeria monocytogenes, and Salmonella sp. on equipment and utensil surfaces in Brazilian poultry, pork, and industries. Food Res. Int. 2023, 173, 113422. [Google Scholar] [CrossRef]
- Wagner, E.M.; Pracser, N.; Thalguter, S.; Fischel, K.; Rammer, N.; Pospísilová, L.; Alispahic, M.; Wagner, M.; Rychli, K. Identification of biofilm hotspots in a meat processing environment: Detection of spoilage bacteria in multi-species biofilms. Int. J. Food Microbiol. 2020, 328, 108668. [Google Scholar] [CrossRef]
- Wang, H.; He, A.N.; Yang, X.Q. Dynamics of microflora on conveyor belts in a beef fabrication facility during sanitation. Food Control 2018, 85, 42–47. [Google Scholar] [CrossRef]
- Yeom, J.; Bae, D.; Kim, S.A. Microbial dynamics of South Korean beef and surroundings along the supply chain based on high-throughput sequencing. Meat Sci. 2024, 214, 109520. [Google Scholar] [CrossRef]
- Zwirzitz, B.; Wetzels, S.U.; Dixon, E.D.; Fleischmann, S.; Selberherr, E.; Thalguter, S.; Quijada, N.M.; Dzieciol, M.; Wagner, M.; Stessl, B. Co-occurrence of Listeria spp. and spoilage associated microbiota during meat processing due to cross-contamination events. Front. Microbiol. 2021, 12, 632935. [Google Scholar] [CrossRef]
- Alvarez-Molina, A.; Cobo-Díaz, J.F.; Alexa, E.A.; Crispie, F.; Prieto, M.; López, M.; Cotter, P.D.; Alvarez-Ordóñez, A. Sequencing-based analysis of the microbiomes of Spanish food processing facilities reveals environment-specific variation in the dominant taxa and antibiotic resistance genes. Food Res. Int. 2023, 173, 113442. [Google Scholar] [CrossRef]
- Barcenilla, C.; Cobo-Díaz, J.F.; Puente, A.; Valentino, V.; De Filippis, F.; Ercolini, D.; Carlino, N.; Pinto, F.; Segata, N.; Prieto, M.; et al. In-depth characterization of food and environmental microbiomes across different meat processing plants. Microbiome 2024, 12, 199. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; La Storia, A.; Villani, F.; Ercolini, D. Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. PLoS ONE 2013, 8, 70222. [Google Scholar] [CrossRef]
- Gill, C.O.; Newton, K.G. Effect of lactic acid concentration on growth on meat of gram-negative psychrotrophs from a meatworks. Appl. Environ. Microbiol. 1982, 43, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, P.; Borch, E. Contamination of beef carcasses by psychrotrophic Pseudomonas and Enterobacteriaceae at different stages along the processing line. Int. J. Food Microbiol. 1993, 20, 67–83. [Google Scholar] [CrossRef]
- Hood, S.K.; Zottola, E.A. Isolation and identification of adherent gram-negative microorganisms from four meat-processing facilities. J. Food Prot. 1997, 60, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Sayadi, M.; Langroodi, A.M.; Amiri, S.; Radi, M. Effect of nanocomposite alginate-based film incorporated with cumin essential oil and TiO2 nanoparticles on chemical, microbial, and sensory properties of fresh meat/beef. Food Sci. Nutr. 2022, 10, 1401–1413. [Google Scholar] [CrossRef]
- Belk, A.D.; Frazier, A.N.; Fuerniss, L.K.; Delmore, R.; Belk, K.; Borlee, B.; Geornaras, I.; Martin, J.N.; Metcalf, J.L. A pilot study: The development of a facility-associated microbiome and its association with the presence of Listeria spp. in one small meat processing facility. Microbiol. Spectr. 2022, 10, 5. [Google Scholar] [CrossRef]
- Yang, X.; Noyes, N.R.; Doster, E.; Martin, J.N.; Linke, L.M.; Magnuson, R.J.; Yang, H.; Geornaras, I.; Woerner, D.R.; Jones, K.L.; et al. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl. Env. Microbiol. 2016, 82, 2433–2443. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Lick, S.; Wibberg, D.; Busche, T.; Blom, J.; Grimmler, C.; Goesmann, A.; Kalinowski, J. Pseudomonas kulmbachensis sp. nov. and Pseudomonas paraveronii sp. nov., originating from chilled beef and chicken breast. Int. J. Syst. Evol. Microbiol. 2024, 74, 6293. [Google Scholar] [CrossRef]
- Stanborough, T.; Fegan, N.; Powell, S.M.; Singh, T.; Tamplin, M.; Chandry, P.S. Genomic and metabolic characterization of spoilage-associated Pseudomonas species. Int. J. Food Microbiol. 2018, 268, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Lick, S.; Wibberg, D.; Winkler, A.; Blom, J.; Grimmler, C.; Goesmann, A.; Kalinowski, J.; Kröckel, L. Pseudomonas paraversuta sp. nov. isolated from refrigerated dry-aged beef. Int. J. Syst. Evol. Microbiol. 2021, 71, 4822. [Google Scholar] [CrossRef]
- See-Too, W.S.; Salazar, S.; Ee, R.; Convey, P.; Chan, K.-G.; Peix, Á. Pseudomonas versuta sp. nov., isolated from Antarctic soil. Syst. Appl. Microbiol. 2017, 40, 191–198. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 2018, 4, 274–288. [Google Scholar] [CrossRef]
- Varadarajan, A.R.; Allan, R.N.; Valentin, J.D.P.; Castañeda Ocampo, O.E.; Somerville, V.; Pietsch, F.; Buhmann, M.T.; West, J.; Skipp, P.J.; van der Mei, H.C.; et al. An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1. npj Biofilms Microbiomes 2020, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Alonso, V.P.P.; Gonçalves, M.; de Brito, F.A.E.; Barboza, G.R.; Rocha, L.O.; Silva, N.C.C. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Compr. Rev. Food Sci. Food Saf. 2023, 22, 688–713. [Google Scholar] [CrossRef]
- Alonso, V.P.P.; Furtado, M.M.; Iwase, C.H.T.; Brondi-Mendes, J.Z.; Nascimento, M.d.S. Microbial resistance to sanitizers in the food industry: Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 654–669. [Google Scholar] [CrossRef]
- Yushina, Y.K.; Zaiko, E.V.; Grudistova, M.A.; Semenova, A.A.; Makhova, A.A.; Bataeva, D.S.; Demkina, E.V.; Nikolaev, Y.A. Patterns of biofilm formation by members of Listeria, Salmonella, and Pseudomonas at various temperatures and the role of their synergistic interactions in the formation of biofilm communities. Microbiology 2024, 93, 598–609. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Gutiérrez-Lomelí, M.; Avila-Novoa, M.G. Kinetics of biofilm formation by pathogenic and spoilage microorganisms under conditions that mimic the poultry, meat, and egg processing industries. Int. J. Food Microbiol. 2019, 303, 32–41. [Google Scholar] [CrossRef]
- Liu, Y.N.; Wu, H.H.; Sun, Z.L.; Xu, X.X.; Liu, F. Contamination and biofilm formation of foodborne and opportunistic pathogens in yellow-feathered chicken carcass. Foodborne Pathog. Dis. 2021, 18, 210–218. [Google Scholar] [CrossRef]
- Rossi, C.; Serio, A.; Chaves-López, C.; Anniballi, F.; Auricchio, B.; Goffredo, E.; Cenci-Goga, B.T.; Lista, F.; Fillo, S.; Paparella, A. Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 2018, 86, 241–248. [Google Scholar] [CrossRef]
- Wang, H.H.; Cai, L.L.; Li, Y.H.; Xu, X.L.; Zhou, G.H. Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control 2018, 91, 397–403. [Google Scholar] [CrossRef]
- Ning, Z.Z.; Xue, B.; Wang, H.H. Evaluation of the adhesive potential of bacteria isolated from meat-related sources. Appl. Sci. 2021, 11, 652. [Google Scholar] [CrossRef]
- Ripolles-Avila, C.; García-Hernández, N.; Cervantes-Huamán, B.H.; Mazaheri, T.; Rodríguez-Jerez, J.J. Quantitative and compositional study of monospecies biofilms of spoilage microorganisms in the meat industry and their interaction in the development of multispecies biofilms. Microorganisms 2019, 7, 655. [Google Scholar] [CrossRef] [PubMed]
- Sternisa, M.; Klancnik, A.; Mozina, S.S. Spoilage Pseudomonas biofilm with Escherichia coli protection in fish meat at 5 °C. J. Sci. Food Agric. 2019, 99, 4635–4641. [Google Scholar] [CrossRef]
- Liu, Y.J.; Xie, J.; Zhao, L.J.; Qian, Y.F.; Zhao, Y.; Liu, X. Biofilm formation characteristics of Pseudomonas lundensis isolated from meat. J. Food Sci. 2015, 80, M2904–M2910. [Google Scholar] [CrossRef]
- Zhu, J.L.; Liu, J.C.; Hong, X.L.; Sun, Y. Synergism with ε-polylysine hydrochloride and cinnamon essential oil against dual-species biofilms of Listeria monocytogenes and Pseudomonas lundensis. Front. Microbiol. 2022, 13, 885502. [Google Scholar] [CrossRef]
- Zhu, J.; Yan, Y.; Wang, Y.; Qu, D. Competitive interaction on dual-species biofilm formation by spoilage bacteria, Shewanella baltica and Pseudomonas fluorescens. J. Appl. Microbiol. 2019, 126, 1175–1186. [Google Scholar] [CrossRef]
- Morimatsu, K.; Eguchi, K.; Hamanaka, D.; Tanaka, F.; Uchino, T. Effects of temperature and nutrient conditions on biofilm formation of Pseudomonas putida. Food Sci. Technol. Res. 2012, 18, 879–883. [Google Scholar] [CrossRef]
- Sternisa, M.; Centa, U.G.; Drnovsek, A.; Remskar, M.; Mozina, S.S. Pseudomonas fragi biofilm on stainless steel (at low temperatures) affects the survival of Campylobacter jejuni and Listeria monocytogenes and their control by a polymer molybdenum oxide nanocomposite coating. Int. J. Food Microbiol. 2023, 394, 110159. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.M.; Fischel, K.; Rammer, N.; Beer, C.; Palmetzhofer, A.L.; Conrady, B.; Roch, F.F.; Hanson, B.T.; Wagner, M.; Rychli, K. Bacteria of eleven different species isolated from biofilms in a meat processing environment have diverse biofilm forming abilities. Int. J. Food Microbiol. 2021, 349, 109232. [Google Scholar] [CrossRef] [PubMed]
- Al-Adawi, A.S.; Gaylarde, C.C.; Sunner, J.; Beech, I.B. Transfer of bacteria between stainless steel and chicken meat: A CLSM and DGGE study of biofilms. Aims Microbiol. 2016, 2, 340–358. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, S.; Zhang, C.; Mi, X.; Zhang, W.; Wang, L.; Liu, W.; Jiang, Y. Escherichia coli O157:H7 is challenged by the presence of Pseudomonas, but successfully co-existed in dual-species microbial communities. Food Microbiol. 2022, 106, 104034. [Google Scholar] [CrossRef]
- Papaioannou, E.; Giaouris, E.D.; Berillis, P.; Boziaris, I.S. Dynamics of biofilm formation by Listeria monocytogenes on stainless steel under mono-species and mixed-culture simulated fish processing conditions and chemical disinfection challenges. Int. J. Food Microbiol. 2018, 267, 9–19. [Google Scholar] [CrossRef]
- Langsrud, S.; Moen, B.; Møretrø, T.; Løype, M.; Heir, E. Microbial dynamics in mixed culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing plants. J. Appl. Microbiol. 2016, 120, 366–378. [Google Scholar] [CrossRef]
- Hamanaka, D.; Onishi, M.; Genkawa, T.; Tanaka, F.; Uchino, T. Effects of temperature and nutrient concentration on the structural characteristics and removal of vegetable-associated Pseudomonas biofilm. Food Control 2012, 24, 165–170. [Google Scholar] [CrossRef]
- Pang, X.; Yuk, H.-G. Effect of Pseudomonas aeruginosa on the sanitizer sensitivity of Salmonella Enteritidis biofilm cells in chicken juice. Food Control 2018, 86, 59–65. [Google Scholar] [CrossRef]
- Pang, X.Y.; Yang, Y.S.; Yuk, H.G. Biofilm formation and disinfectant resistance of Salmonella sp. in mono- and dual-species with Pseudomonas aeruginosa. J. Appl. Microbiol. 2017, 123, 651–660. [Google Scholar] [CrossRef]
- Leriche, V.; Carpentier, B. Viable but nonculturable Salmonella Typhimurium in single- and binary-species biofilms in response to chlorine treatment. J. Food Prot. 1995, 58, 1186–1191. [Google Scholar] [CrossRef]
- Haddad, S.; Elliot, M.; Savard, T.; Deschenes, L.; Smith, T.; Ells, T. Variations in biofilms harbouring Listeria monocytogenes in dual and triplex cultures with Pseudomonas fluorescens and Lactobacillus plantarum produced under a model system of simulated meat processing conditions, and their resistance to benzalkonium chloride. Food Control 2021, 123, 107720. [Google Scholar] [CrossRef]
- Puga, C.H.; SanJose, C.; Orgaz, B. Biofilm development at low temperatures enhances Listeria monocytogenes resistance to chitosan. Food Control 2016, 65, 143–151. [Google Scholar] [CrossRef]
- Giaouris, E.; Chorianopoulos, N.; Doulgeraki, A.; Nychas, G.-J. Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride. PLoS ONE 2013, 8, e77276. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.N.; Birt, D.M.; Frank, J.F. Behavior of Listeria monocytogenes in a Pseudomonas putida biofilm on a condensate-forming surface. J. Food Prot. 2004, 67, 322–327. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calhoun, C.; Geornaras, I.; Zhang, P. Pseudomonas in Meat Processing Environments. Foods 2025, 14, 1615. https://doi.org/10.3390/foods14091615
Calhoun C, Geornaras I, Zhang P. Pseudomonas in Meat Processing Environments. Foods. 2025; 14(9):1615. https://doi.org/10.3390/foods14091615
Chicago/Turabian StyleCalhoun, Chloe, Ifigenia Geornaras, and Peipei Zhang. 2025. "Pseudomonas in Meat Processing Environments" Foods 14, no. 9: 1615. https://doi.org/10.3390/foods14091615
APA StyleCalhoun, C., Geornaras, I., & Zhang, P. (2025). Pseudomonas in Meat Processing Environments. Foods, 14(9), 1615. https://doi.org/10.3390/foods14091615