Impact of Heat Stress on Carcass Traits, Meat Quality, and Nutritional Value in Monogastric Animals: Underlying Mechanisms and Nutritional Mitigation Strategies
Abstract
:1. Introduction
2. Physiological Mechanisms Affecting Carcass Traits, Meat Quality, and Nutritional Value
2.1. Muscle Biochemistry Under Heat Stress
2.2. Oxidative Stress and Inflammatory Responses
2.3. Endocrine Disruptions and Stress Hormone Effects
3. Impact of Heat Stress on Carcass Traits, Meat Quality Attributes, and Nutritional Composition
3.1. Structural and Textural Changes in Muscle Tissue
3.2. Lipid Oxidation and Colour Stability
3.3. Sensory Attributes: Tenderness, Juiciness, and Flavour
3.4. Nutritional Consequences
4. Nutritional Strategies to Mitigate Quality and Nutritional Losses
4.1. Antioxidant Supplementation
4.2. Osmolytes and Metabolic Modulators
4.3. Optimised Diet Formulations
4.4. Emerging Feed Additives
4.5. Integrative Approaches
5. Practical Implications and Economic Considerations
5.1. Management and Nutritional Adaptations
5.2. Economic and Market Implications
5.3. Policy and Financial Incentives
6. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandit, J.; Sharma, A. A comprehensive review of climate change’s imprint on ecosystems. J. Water Clim. Change 2023, 14, 4273–4284. [Google Scholar] [CrossRef]
- Ali, S.; Mehmet, J.; Çam, A.; Habibi, E.; Faruk, Ö. Effects of Climate Change on Animal Production. J. Nat. Sci. Rev. 2024, 2, 1–14. [Google Scholar] [CrossRef]
- Bekele, S. Impacts of Climate Change on Livestock Production: A Review. J. Nat. Sci. Res. 2017, 7, 53–59. [Google Scholar]
- Rlm, O.; Omer; Galal, A.; Mahrous, M.; Bayoumi, F. Impact of heat stress on growth performance and carcass traits in some broiler chickens. Arab. Univ. J. Agric. Sci. 2020, 28, 651–662. [Google Scholar] [CrossRef]
- He, S.; Zhao, S.; Dai, S.; Liu, D.; Bokhari, S. Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Anim. Sci. J. = Nihon Chikusan Gakkaiho 2015, 86, 897–903. [Google Scholar] [CrossRef]
- Yousaf, A.; Jabbar, A.; Rajput, N.; Memon, A.; Shahnawaz, R.; Mukhtar, N.; Farooq, F.; Abbas, M.; Khalil, R. Effect of Environmental Heat Stress on Performance and Carcass Yield of Broiler Chicks. J. World's Poult. Res. 2019, 9, 26–30. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.; Chauhan, S.; Ha, M.; Fegan, N.; Dunshea, F.; Warner, R. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2019, 162, 108025. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yong, Y.; Ju, X. Effect of heat stress on growth and production performance of livestock and poultry: Mechanism to prevention. J. Therm. Biol. 2021, 99, 103019. [Google Scholar] [CrossRef]
- Hosseindoust, A.; Kang, H.; Kim, J. Quantifying heat stress; the roles on metabolic status and intestinal integrity in poultry, a review. Domest. Anim. Endocrinol. 2022, 81, 106745. [Google Scholar] [CrossRef]
- Ross, J.; Hale, B.; Gabler, N.; Rhoads, R.; Keating, A.; Baumgard, L. Physiological consequences of heat stress in pigs. Anim. Prod. Sci. 2015, 55, 1381–1390. [Google Scholar] [CrossRef]
- Ribeiro, B.P.V.B.; Yanagi, T.; De Oliveira, D.D.; De Lima, R.R.; Zangerônimo, M.G. Thermoneutral zone for laying hens based on environmental conditions, enthalpy and thermal comfort indexes. J. Therm. Biol. 2020, 93, 102678. [Google Scholar] [CrossRef]
- Robbins, L.; Green-Miller, A.; Johnson, J.; Gonzales, C.; Gaskill, B. Thermocline Design for Thermal Preference Testing in Piglets. In Proceedings of the 10th International Livestock Environment Symposium (ILES X), Omaha, NE, USA, 25–27 September 2018. [Google Scholar] [CrossRef]
- Bejaoui, B.; Sdiri, C.; Souf, I.B.; Slimen, I.B.; Larbi, M.B.; Koumba, S.; Martin, P.; M’Hamdi, N. Physicochemical Properties, Antioxidant Markers, and Meat Quality as Affected by Heat Stress: A Review. Molecules 2023, 28, 3332. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, Z.; Zheng, C.; Hu, Y.; Wang, L. Nutritional Regulation for Meat Quality and Nutrient Metabolism of PigsExposed to High Temperature Environment. J. Nutr. Food Sci. 2015, 5, 6. [Google Scholar] [CrossRef]
- Mia, N.; Rahman, M.M.; Hashem, M.A. Effect of heat stress on meat quality: A review. Meat Res. 2023, 3, 1–8. [Google Scholar] [CrossRef]
- Zhang, M.; Dunshea, F.; Warner, R.; DiGiacomo, K.; Osei-Amponsah, R.; Chauhan, S. Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol. 2020, 64, 1613–1628. [Google Scholar] [CrossRef]
- Alam, A.N.; Lee, E.-Y.; Hossain, M.J.; Samad, A.; Kim, S.-H.; Hwang, Y.; Joo, S.-T. Meat quality and safety issues during high temperatures and cutting-edge technologies to mitigate the scenario. J. Anim. Sci. Technol. 2024, 66, 645–662. [Google Scholar] [CrossRef]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef]
- Sumanu, V.; Naidoo, V.; Oosthuizen, M.; Chamunorwa, J. A Technical Report on the Potential Effects of Heat Stress on Antioxidant Enzymes Activities, Performance and Small Intestinal Morphology in Broiler Chickens Administered Probiotic and Ascorbic Acid during the Hot Summer Season. Animals 2023, 13, 3407. [Google Scholar] [CrossRef]
- Singh, S.; Deshpande, A.; Somagond, Y. Betaine: A potent feed additive for amelioration of adverse effect of heat stress in livestock and poultry. Indian J. Anim. Sci. 2022, 92, 277–282. [Google Scholar] [CrossRef]
- Mohammed, A.; Jiang, S.; Jacobs, J.; Cheng, H. Effect of a synbiotic supplement on cecal microbial ecology, antioxidant status, and immune response of broiler chickens reared under heat stress. Poult. Sci. 2019, 98, 4408–4415. [Google Scholar] [CrossRef]
- Chauhan, S.; Rashamol, V.; Bagath, M.; Sejian, V.; Dunshea, F. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int. J. Biometeorol. 2021, 65, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yuan, Y.; Sun, C.; Balasubramanian, B.; Zhao, Z.; An, L. Effects of Dietary Betaine on Growth Performance, Digestive Function, Carcass Traits, and Meat Quality in Indigenous Yellow-Feathered Broilers under Long-Term Heat Stress. Animals 2019, 9, 506. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, M.; Dridi, S. Impact of heat stress on poultry production: Feed intake, water homeostasis, gut integrity, and meat quality. Ger. J. Veter Res. 2024, 4, 43–51. [Google Scholar] [CrossRef]
- Saeed, M.; Abbas, G.; Alagawany, M.; Kamboh, A.; El-Hack, M.A.; Khafaga, A.; Chao, S. Heat stress management in poultry farms: A comprehensive overview. J. Therm. Biol. 2019, 84, 414–425. [Google Scholar] [CrossRef]
- Sesay, A. Impact of Heat Stress on Chicken Performance, Welfare, and Probable Mitigation Strategies. Int. J. Environ. Clim. Change 2022, 12, 3120–3133. [Google Scholar] [CrossRef]
- Elnesr, S.; Abdel-Azim, A. The impact of heat stress on the gastrointestinal tract integrity of poultry. Labyrinth Fayoum J. Sci. Interdiscip. Stud. 2023, 1, 82–90. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lee, K.-W. An update on heat stress in laying hens. World's Poult. Sci. J. 2023, 79, 689–712. [Google Scholar] [CrossRef]
- Johnson, J. 269 Bioenergetic Consequences of Pre- and Post-Natal Heat Stress on Swine Productivity. J. Anim. Sci. 2023, 101, 59. [Google Scholar] [CrossRef]
- Zaboli, G.; Huang, X.; Feng, X.; Ahn, D.U. How can heat stress affect chicken meat quality?—A review. Poult. Sci. 2019, 98, 1551–1556. [Google Scholar] [CrossRef]
- Xing, T.; Gao, F.; Tume, R.; Zhou, G.; Xu, X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr. Rev. Food Sci. Food Saf. 2019, 18, 380–401. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Chronic Heat Stress Impairs the Quality of Breast-Muscle Meat in Broilers by Affecting Redox Status and Energy-Substance Metabolism. J. Agric. Food Chem. 2017, 65, 11251–11258. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jiao, H.; Song, Z.; Zhao, J.; Wang, X.; Lin, H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. J. Anim. Sci. 2015, 93, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Montilla, S.; Johnson, T.; Pearce, S.; Gardan-Salmon, D.; Gabler, N.; Ross, J.; Rhoads, R.; Baumgard, L.; Lonergan, S.; Selsby, J. Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle. Temperature 2014, 1, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Khyade, V.; Phule, R.A.; Murad, F. Malondialdehyde (MDA): The Key Product In Lipid Peroxidation. Int. J. Chem. Mol. Eng. 2019, 5, 1–13. [Google Scholar]
- Tuell, J.; Nondorf, M.; Maskal, J.; Johnson, J.; Kim, Y. Impacts of in Utero Heat Stress on Carcass and Meat Quality Traits of Market Weight Gilts. Animals 2021, 11, 717. [Google Scholar] [CrossRef]
- Ganesan, S.; Reynolds, C.; Hollinger, K.; Pearce, S.; Gabler, N.; Baumgard, L.; Rhoads, R.; Selsby, J. Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R1288–R1296. [Google Scholar] [CrossRef]
- Terenina, E.; Babigumira, B.; Mignon, G.; Bazovkina, D.; Rousseau, S.; Salin, F.; Bendixen, C.; Mormède, P. Association study of molecular polymorphisms in candidate genes related to stress responses with production and meat quality traits in pigs. Domest. Anim. Endocrinol. 2013, 44, 81–97. [Google Scholar] [CrossRef]
- Reith, R.; Sieck, R.; Grijalva, P.; Swanson, R.; Fuller, A.; Diaz, D.; Schmidt, T.; Yates, D.; Petersen, J. Transcriptome analyses indicate that heat stress-induced inflammation in white adipose tissue and oxidative stress in skeletal muscle is partially moderated by zilpaterol supplementation in beef cattle. J. Anim. Sci. 2022, 100, skac019. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Zhan, T.; Zhao, Q.; Zhang, J.-M.; Ao, X.; He, J.; Zhou, J.; Tang, C. Effect of slaughter weight on carcass characteristics, meat quality, and lipidomics profiling in longissimus thoracis of finishing pigs. LWT Food Sci. Technol. 2021, 140, 110705. [Google Scholar] [CrossRef]
- Cullere, M.; Zs, S.; Kasza, R.; Gerencsér, Z.; Dalle Zotte, A. Impact of heat stress on the meat quality of rabbits divergently selected for total body fat content. In Proceedings of the 12th World Rabbit Congress, Nantes, France, 3–5 November 2021. [Google Scholar]
- Zeferino, C.; Komiyama, C.; Pelícia, V.; Fascina, V.; Aoyagi, M.; Coutinho, L.L.; Sartori, J.; Moura, A.S.A.M.T. Carcass and meat quality traits of chickens fed diets concurrently supplemented with vitamins C and E under constant heat stress. Animal 2016, 10, 163–171. [Google Scholar] [CrossRef]
- Segura, J.; Calvo, L.; Escudero, R.; Rodríguez, A.; Olivares, Á.; Jiménez-Gómez, B.; López-Bote, C. Alleviating Heat Stress in Fattening Pigs: Low-Intensity Showers in Critical Hours Alter Body External Temperature, Feeding Pattern, Carcass Composition, and Meat Quality Characteristics. Animals 2024, 14, 1661. [Google Scholar] [CrossRef]
- Cui, Y.; Hao, Y.; Li, J.; Gao, Y.; Gu, X. Proteomic changes of the porcine skeletal muscle in response to chronic heat stress. J. Sci. Food Agric. 2018, 98, 3315–3323. [Google Scholar] [CrossRef]
- Chauhan, S.; Dunshea, F.; Plozza, T.; Hopkins, D.; Ponnampalam, E. The Impact of Antioxidant Supplementation and Heat Stress on Carcass Characteristics, Muscle Nutritional Profile and Functionality of Lamb Meat. Animals 2020, 10, 1286. [Google Scholar] [CrossRef] [PubMed]
- Igal, R. Death and the desaturase: Implication of Stearoyl-CoA desaturase-1 in the mechanisms of cell stress, apoptosis, and ferroptosis. Biochimie 2024, 225, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; McMillan, R.; Xie, G.; Giridhar, S.; Baumgard, L.; El-Kadi, S.; Selsby, J.; Ross, J.; Gabler, N.; Hulver, M.; et al. Heat stress decreases metabolic flexibility in skeletal muscle of growing pigs. Am. J. Physiol. Integr. Comp. Physiol. 2018, 315, R1096–R1106. [Google Scholar] [CrossRef]
- Ntawubizi, M.; Raes, K.; Buys, N.; Smet, S. Effect of sire and sex on the intramuscular fatty acid profile and indices for enzyme activities in pigs. Livest. Sci. 2009, 122, 264–270. [Google Scholar] [CrossRef]
- Chauhan, S.; Celi, P.; Leury, B.; Dunshea, F. High dietary selenium and vitamin E supplementation ameliorates the impacts of heat load on oxidative status and acid-base balance in sheep. J. Anim. Sci. 2015, 93, 3342–3354. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, M.; Oskoueian, E.; Le, H.; Shakeri, M. Strategies to Combat Heat Stress in Broiler Chickens: Unveiling the Roles of Selenium, Vitamin E and Vitamin C. Veter. Sci. 2020, 7, 71. [Google Scholar] [CrossRef]
- Kumbhar, S.; Khan, A.; Parveen, F.; Nizamani, Z.; Siyal, F.; El-Hack, M.; Gan, F.; Liu, Y.; Hamid, M.; Nido, S.; et al. Impacts of selenium and vitamin E supplementation on mRNA of heat shock proteins, selenoproteins and antioxidants in broilers exposed to high temperature. AMB Express 2018, 8, 112. [Google Scholar] [CrossRef]
- Nawaz, A.; Zhang, L. Oxidative stress in broiler chicken and its consequences on meat quality. Int. J. Life Sci. Res. Arch. 2021, 1, 45–54. [Google Scholar] [CrossRef]
- Wan, X.; Ahmad, H.; Zhang, L.; Wang, Z.; Wang, T. Dietary enzymatically treated Artemisia annua L. improves meat quality, antioxidant capacity and energy status of breast muscle in heat-stressed broilers. J. Sci. Food Agric. 2018, 98, 3715–3721. [Google Scholar] [CrossRef]
- Madkour, M.; Salman, F.; El-Wardany, I.; Abdel-Fattah, S.; Alagawany, M.; Hashem, N.; Abdelnour, S.; El-Kholy, M.; Dhama, K. Mitigating the detrimental effects of heat stress in poultry through thermal conditioning and nutritional manipulation. J. Therm. Biol. 2022, 103, 103169. [Google Scholar] [CrossRef]
- Labazi, M.; McNeil, A.; Kurtz, T.; Lee, T.; Pegg, R.; Angeli, J.; Conrad, M.; McNeil, P. The antioxidant requirement for plasma membrane repair in skeletal muscle. Free. Radic. Biol. Med. 2015, 84, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, J.; Zhang, H.; Wu, S.-G.; Yue, H.; Wan, X.; Yang, H.; Wang, Z.; Qi, G. Vitamin E Supplementation Enhances Lipid Oxidative Stability via Increasing Vitamin E Retention, Rather Than Gene Expression of MAPK-Nrf2 Signaling Pathway in Muscles of Broilers. Foods 2021, 10, 2555. [Google Scholar] [CrossRef]
- Min, L.; Li, D.; Tong, X.; Nan, X.; Ding, D.; Xu, B.; Wang, G. Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: A review. Int. J. Biometeorol. 2019, 63, 1283–1302. [Google Scholar] [CrossRef]
- Hajati, H.; Hassanabadi, A.; Golian, A.; Nassiri-Moghaddam, H.; Nassiri, M. The Effect of Grape Seed Extract Supplementation on Performance, Antioxidant Enzyme Activity, and Immune Responses in Broiler Chickens Exposed to Chronic Heat Stress. Iran. J. Appl. Anim. Sci. 2018, 8, 109–117. [Google Scholar]
- Jewell, D.; Motsinger, L.; Paetau-Robinson, I. Effect of dietary antioxidants on free radical damage in dogs and cats. J. Anim. Sci. 2024, 102, skae153. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Krishna, S.; Khan, S.; Dar, T.; Khan, K.; Singh, L. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. Int. J. Biol. Macromol. 2021, 177, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Babazadeh, D.; Naveed, M.; Arain, M.; Hassan, F.; Chao, S. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: A review. Trop. Anim. Health Prod. 2017, 49, 1329–1338. [Google Scholar] [CrossRef]
- Wen, C.; Chen, Y.; Leng, Z.; Ding, L.; Wang, T.; Zhou, Y. Dietary betaine improves meat quality and oxidative status of broilers under heat stress. J. Sci. Food Agric. 2018, 99, 620–623. [Google Scholar] [CrossRef]
- Shakeri, M.; Cottrell, J.; Wilkinson, S.; Le, H.; Suleria, H.; Warner, R.; Dunshea, F. Growth Performance and Characterization of Meat Quality of Broiler Chickens Supplemented with Betaine and Antioxidants under Cyclic Heat Stress. Antioxidants 2019, 8, 336. [Google Scholar] [CrossRef]
- Seidel, U.; Huebbe, P.; Rimbach, G. Taurine: A Regulator of Cellular Redox Homeostasis and Skeletal Muscle Function. Mol. Nutr. Food Res. 2018, 63, e1800569. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Dietary taurine supplementation improves breast meat quality in chronic heat-stressed broilers via activating the Nrf2 pathway and protecting mitochondria from oxidative attack. J. Sci. Food Agric. 2018, 99, 1066–1072. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, L.; Li, J.; Xing, T.; Jiang, Y.; Gao, F. Dietary taurine supplementation ameliorates muscle loss in chronic heat stressed broilers via suppressing the perk signaling and reversing endoplasmic reticulum-stress-induced apoptosis. J. Sci. Food Agric. 2020, 101, 2125–2134. [Google Scholar] [CrossRef]
- Mirza, M.; Kausar, R.; Ahmad, T. Effect of dietary energy to protein ratio on the growth of male broilers kept under oppressively hot climatic conditions. Pak. J. Agric. Sci. 2014, 51, 1081–1084. [Google Scholar]
- Corzo, A.; Moran, E.; Hoehler, D. Lysine needs of summer-reared male broilers from six to eight weeks of age. Poult. Sci. 2003, 82, 1602–1607. [Google Scholar] [CrossRef]
- Seme, K.; Somenutse, K.G.; Magueda, W.; Madiala, D.L.; Oke, O.; Voemesse, K.; Pitala, W. Impact of Dietary Lysine Supplementation on Growth Performance of Large White Pigs in Tropical Environments. Asian J. Biol. 2024, 20, 40–48. [Google Scholar] [CrossRef]
- Erfani, H.; Ghorbani, G.; Hashemzadeh, F.; Ghasemi, E.; Khademi, A.; Naderi, N.; Drackley, J. Effects of complete substitution of dietary grain and protein sources with by-products on the production performance of mid-lactation dairy cows fed diets based on barley silage under heat stress conditions. J. Dairy Sci. 2024, 107, 1993–2010. [Google Scholar] [CrossRef]
- Zhang, S.; Johnson, J.; Qiao, M.; Trottier, N. Reduced protein diet with near ideal amino acid profile improves energy efficiency and mitigate heat production associated with lactation in sows. J. Anim. Sci. Biotechnol. 2020, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Tabashsum, Z.; Anderson, M.; Truong, A.; Houser, A.; Padilla, J.; Akmel, A.; Bhatti, J.; Rahaman, S.; Biswas, D. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1908–1933. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Rocha, K.M.; Manjarrez-Juanes, M.M.; Larrosa, M.; Barrios-Payán, J.A.; Rocha-Guzmán, N.E.; Macías-Salas, A.; Gallegos-Infante, J.A.; Álvarez, S.A.; González-Laredo, R.F.; Moreno-Jiménez, M.R. The Synergistic Effect of Quince Fruit and Probiotics (Lactobacillus and Bifidobacterium) on Reducing Oxidative Stress and Inflammation at the Intestinal Level and Improving Athletic Performance during Endurance Exercise. Nutrients 2023, 15, 4764. [Google Scholar] [CrossRef]
- Liu, F.; Cottrell, J.; Collins, C.; Henman, D.; O’Halloran, K.; Dunshea, F. Supplementation of selenium, vitamin E, chromium and betaine above recommended levels improves lactating performance of sows over summer. Trop. Anim. Health Prod. 2017, 49, 1461–1469. [Google Scholar] [CrossRef]
- Dunshea, F.; Gonzalez-Rivas, P.; Hung, A.; DiGiacomo, K.; Chauhan, S.; Leury, B.; Celi, P.; Ponnampalam, E.; Cottrell, J. Nutritional strategies to alleviate heat stress in pigs. Anim. Prod. Sci. 2015, 55, 371–388. [Google Scholar] [CrossRef]
- Chauhan, S.; Zhang, M.; Osei-Amponsah, R.; Clarke, I.; Sejian, V.; Warner, R.; Dunshea, F. Impact of heat stress on ruminant livestock production and meat quality, and strategies for amelioration. Anim. Front. 2023, 13, 60–68. [Google Scholar] [CrossRef]
- Tavakolinasab, F.; Hashemi, M. Effect of Using Vitamin C Supplementation on Performance, Blood Parameters, Carcass Characteristics and Meat Quality of Broiler Chickens Under Heat Stress Condition: A Meta-Analysis. J. Anim. Physiol. Anim. Nutr. 2025. [Google Scholar] [CrossRef]
Impact Area | Mechanism | Effects on Meat Quality and Composition | Physiological Consequences | Economic and Consumer Impact | References |
---|---|---|---|---|---|
Structural and Textural Changes | - Protein denaturation due to heat-induced instability - Increased proteolysis via calpain and ubiquitin–proteasome pathways - Shift from oxidative to glycolytic fibres - Mitochondrial dysfunction reduces ATP availability | - Reduced tenderness and muscle firmness - Increased drip loss - Rapid post-mortem pH decline, causing PSE meat - Lower muscle fibre density | - Reduced muscle mass - Increased muscle fragility | - Lower market value - Increased processing loss | [15,16] |
Lipid Oxidation and Colour Stability | - Increased ROS production targets unsaturated fatty acids - Lipid peroxidation generates MDA and HNE - Myoglobin oxidation leads to colour changes | - Loss of membrane integrity - Reduced oxidative stability - Discoloration due to myoglobin oxidation | - Reduced cell viability - Increased lipid rancidity | - Reduced consumer appeal - Shorter shelf life | [35,49] |
Sensory Attributes (Tenderness, Juiciness, Flavour) | - Increased proteolysis of actin and myosin - Lactic acid accumulation lowers muscle pH - Lipid oxidation produces aldehydes and ketones | - Reduced tenderness and juiciness - Increased off-flavours - Lower water-holding capacity | - Poor muscle texture and flavour profile | - Lower consumer satisfaction - Negative product perception | [16,42] |
Protein Content and Amino Acid Profile | - Increased muscle proteolysis - Reduced protein synthesis due to impaired mitochondrial function - Increased muscle catabolism | - Reduced muscle protein content - Loss of essential amino acids | - Reduced muscle growth and repair | - Lower market value - Lower biological value | [7] |
Fatty Acid Composition and Lipid Quality | - Oxidation of PUFAs - Increased lipid peroxidation due to ROS production | - Lower omega-3 and omega-6 content - Increased rancidity and off-flavours | - Reduced lipid reserves - Increased oxidative damage | - Lower nutritional value - Shorter shelf life | [41,42] |
Micronutrient Degradation | - Depletion of vitamins and antioxidants - Increased ROS-induced damage to membranes - Loss of essential trace minerals | - Reduced shelf life and oxidative stability - Lower antioxidant capacity | - Increased muscle susceptibility to oxidative stress | - Reduced nutritional value - Lower consumer preference | [50,51] |
Endocrine Disruptions | - Activation of the HPA axis increases cortisol levels - Cortisol promotes muscle degradation and increases fat deposition | - Reduced muscle mass - Increased fat deposition | - Reduced muscle growth - Increased fat accumulation | - Lower carcass yield - Reduced market value | [38,42] |
Consumer and Economic Implications | - Reduced sensory and nutritional quality - Increased production costs due to heat-stress management | - Lower consumer acceptance due to poor texture and flavour - Reduced shelf life | - Increased production costs - Lower profitability | - Lower market value - Reduced profitability | [43] |
Nutritional Strategy | Mechanism of Action | Animal Species (Start–End Duration) | Inclusion Levels | Effects on Heat Stress | References |
---|---|---|---|---|---|
Vitamin E | Fat-soluble antioxidant; integrates into cell membranes and scavenges free radicals | Broilers (1–35 days); Pigs (25–70 kg) | 100–250 IU/kg | Improves tenderness, juiciness, and colour stability; reduces lipid oxidation | [51,56] |
Selenium | Cofactor for glutathione peroxidase; detoxifies hydrogen peroxide and lipid peroxides | Broilers (7–35 days); Pigs (20–70 kg); Quails (5–20 days) | 0.2–0.4 mg/kg | Enhances antioxidant capacity, reduces oxidative stress, and improves muscle integrity | [49,51] |
Polyphenols | Scavenges free radicals, inhibits lipid peroxidation, and reduces pro-inflammatory cytokines | Broilers (14–49 days) | 100–300 mg/kg from grape seed extract or green tea | Improves tenderness, juiciness, colour stability, and shelf life | [58] |
Betaine | Osmolyte; maintains cellular hydration and ion balance, stabilizes proteins | Broilers (14–42 days); Pigs (20–70 kg) | 0.12–0.20% of diet | Improves water-holding capacity, reduces drip loss, and enhances feed efficiency | [62,63] |
Taurine | Osmolyte and antioxidant; stabilizes cell membranes and reduces lactic acid accumulation | Broilers (14–42 days); Pigs (20–65 kg) | 0.05–0.10% of diet | Improves muscle integrity, reduces drip loss, and enhances tenderness | [65,66] |
Vitamin C | Water-soluble antioxidant; scavenges ROS and regenerates oxidized vitamin E | Broilers (14–49 days); Pigs (20–70 kg) | 200–500 mg/kg | Reduces cortisol levels, enhances feed efficiency, and improves immune function | [50] |
Probiotics | Beneficial microorganisms (e.g., Lactobacillus, Bifidobacterium) that enhance gut health | Broilers (7–35 days); Pigs (20–65 kg) | 107–109 CFU/kg | Improves nutrient absorption, reduces inflammation, and increases feed efficiency | [70] |
Prebiotics | Non-digestible fibres (e.g., FOS, MOS) that promote the growth of beneficial gut bacteria | Broilers (7–35 days); Pigs (20–65 kg) | 0.2–0.4% of diet | Improves gut microbiota balance, reduces inflammation, and increases feed efficiency | [70] |
Phytochemicals | Bioactive compounds (e.g., flavonoids, terpenoids) that modulate oxidative and inflammatory responses | Broilers (14–49 days) | 100–300 mg/kg | Reduces oxidative stress, improves muscle integrity, and enhances sensory attributes | [57] |
Optimized protein-to-energy ratio | Adjusts dietary protein and fat levels to improve energy balance under reduced feed intake | Broilers (7–35 days); Pigs (20–70 kg) | 2900–3300 kcal/kg with 20–22% protein | Improves growth performance and carcass yield | [67] |
Combination of Vitamin E, Selenium, and Betaine | Synergistic antioxidant and osmoprotective effects | Broilers (14–42 days); Sows (40–120 kg) | Vitamin E (250 IU/kg), Selenium (0.2 mg/kg), Betaine (0.2%) | Enhances antioxidant capacity, improves muscle performance, and reduces oxidative damage | [74] |
Combination of Vitamin E, Selenium, and Polyphenols | Synergistic antioxidant and anti-inflammatory effects | Broilers (14–49 days) | Vitamin E (250 mg/kg), Selenium (0.2 mg/kg), Polyphenols (100–300 mg/kg) | Improves oxidative stability, reduces drip loss, and enhances sensory traits | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prates, J.A.M. Impact of Heat Stress on Carcass Traits, Meat Quality, and Nutritional Value in Monogastric Animals: Underlying Mechanisms and Nutritional Mitigation Strategies. Foods 2025, 14, 1612. https://doi.org/10.3390/foods14091612
Prates JAM. Impact of Heat Stress on Carcass Traits, Meat Quality, and Nutritional Value in Monogastric Animals: Underlying Mechanisms and Nutritional Mitigation Strategies. Foods. 2025; 14(9):1612. https://doi.org/10.3390/foods14091612
Chicago/Turabian StylePrates, José A. M. 2025. "Impact of Heat Stress on Carcass Traits, Meat Quality, and Nutritional Value in Monogastric Animals: Underlying Mechanisms and Nutritional Mitigation Strategies" Foods 14, no. 9: 1612. https://doi.org/10.3390/foods14091612
APA StylePrates, J. A. M. (2025). Impact of Heat Stress on Carcass Traits, Meat Quality, and Nutritional Value in Monogastric Animals: Underlying Mechanisms and Nutritional Mitigation Strategies. Foods, 14(9), 1612. https://doi.org/10.3390/foods14091612