Assessment of Microbial and Heavy Metal Contamination of Natural Sheep Casings from Different Geographic Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Physicochemical Properties
2.3. Microbiological Analysis
2.3.1. Total Counts of Aerobic Mesophilic Bacteria
2.3.2. Enumeration of Escherichia coli
2.3.3. Determination of Salmonella spp.
2.3.4. Determination of Listeria spp.
2.3.5. Determination of Coagulase-Positive Staphylococci
2.3.6. Determination of Anaerobic Sulfide-Reducing Bacteria
2.4. Bacterial Identification
2.5. Determination of Trace Elements
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Analysis
3.2. Microbial Contamination
3.3. Heavy Metal Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Djordjevica, J.; Pecanacb, B.; Todorovica, M.; Dokmanovica, M.; Glamoclijaa, N.; Tadica, V.; Baltica, M. Fermented sausage casings. Procedia Food Sci. 2015, 5, 69–72. [Google Scholar] [CrossRef]
- Çağlar, A.; Bor, Y.; Tomar, O.; Beykaya, M.; Gök, V. Mechanical and microbiological properties of natural casings using in meat products. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 327–334. [Google Scholar]
- Liu, W.; Chen, X.; Tsutsuura, S.; Nishiumi, T. Toughness variations among natural casings: An exploration on their biochemical and histological characteristics. Foods 2022, 11, 3815. [Google Scholar] [CrossRef]
- Davidson, P.M. Chemical preservatives and natural antimicrobial compounds. In Food Microbiology: Fundamentals and Frontiers; Doyle, M.P., Beauchat, L.R., Montville, T.J., Eds.; ASM Press: Washington, DC, USA, 2001. [Google Scholar]
- Di Salvo, E.; Tardugno, R.; Nava, V.; Naccari, C.; Virga, A.; Salvo, A.; Corbo, F.; Clodoveo, M.L.; Cicero, N. Gourmet table salts: The mineral composition showdown. Toxics 2023, 11, 705. [Google Scholar] [CrossRef] [PubMed]
- Cheraghali, A.M.; Kobarfard, F.; Faeizy, N. Heavy metals contamination of table salt consumed in Iran. Iran. J. Pharm. Res. 2010, 9, 129–132. [Google Scholar] [PubMed]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 2010, 48, 611–619. [Google Scholar] [CrossRef]
- Maturin, L.; Peeler, J.T. Chapter 3: Aerobic Plate Count (January 2001 Edition). In Bacteriological Analytical Manual; Association Official Analytical Chemists: Washington, DC, USA, 1988; Content current as of: 16 June 2021. [Google Scholar]
- ISO 16649-2:2001; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-glucuronidase-positive Escherichia coli Part 2: Colony-Count Technique at 44 Degrees C using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide. ISO: Geneva, Switzerland, 2001.
- Andrews, W.H.; Wang, H.; Jacobson, A.; Ge, B.; Zhang, G.; Hammack, T. Chapter 5: Salmonella (May 2024 Edition). In Bacteriological Analytical Manual; Association Official Analytical Chemists: Washington, DC, USA, 1999; Content current as of: 3 June 2024. [Google Scholar]
- Hitchins, A.D.; Jinneman, K. Chapter 10: Detection and Enumeration of Listeria monocytogenes in Foods (April 2022 Edition). In Bacteriological Analytical Manual; Association Official Analytical Chemists: Washington, DC, USA, 2011; Content current as of: 22 April 2022. [Google Scholar]
- Tallent, S.; Hait, J.; Bennett, R.W.; Lancette, G.A. Chapter 12: Staphylococcus aureus (March 2016 Edition). In Bacteriological Analytical Manual; Association Official Analytical Chemists: Washington, DC, USA, 1998; Content current as of: 16 December 2019. [Google Scholar]
- ISO 15213-1:2023; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Sulfite-Reducing Bacteria Growing Under Anaerobic Conditions. ISO: Geneva, Switzerland, 2023.
- Cholewińska, P.; Szeligowska, N.; Wojnarowski, K.; Nazar, P.; Greguła-Kania, M.; Junkuszew, A.; Rant, W.; Radzik-Rant, A.; Marcinkowska, A.; Bodkowski, R. Selected bacteria in sheep stool depending on breed and physiology state. Sci. Rep. 2023, 13, 11739. [Google Scholar] [CrossRef]
- Montanari, C.; Barbieri, F.; Gardini, G.; Magnani, R.; Gottardi, D.; Gardini, F.; Tabanelli, G. Effects of starter cultures and type of casings on the microbial features and volatile profile of fermented sausages. Fermentation 2022, 8, 683. [Google Scholar] [CrossRef]
- Benli, H.; Hafley, B.S.; Keeton, J.T.; Lucia, L.M.; Cabrera-Diaz, E.; Acuff, G.R. Biomechanical and microbiological changes in natural hog casings treated with ozone. Meat Sci. 2008, 79, 155–162. [Google Scholar] [CrossRef]
- Chawla, S.P.; Chander, R.; Sharma, A. Safe and shelf-stable natural casing using hurdle technology. Food Control 2006, 17, 127–131. [Google Scholar] [CrossRef]
- Wijnker, J.J.; Janssen, P.M.W.; Cebeci, S.; Koerten, K.V.; Bekker, M. Validation of a High-Throughput Sausage Casing Model for the Assessment of Bacterial Inactivation Affected by Salt Concentration, pH, and Temperature. J Food Prot. 2019, 82, 1769–1774. [Google Scholar] [CrossRef] [PubMed]
- McMeekin, T.A.; Presser, K.; Ratkowsky, D.; Ross, T.; Salter, M.; Tienungoon, S. Quantifying the hurdle concept by modelling the bacterial growth/no growth interface. Int. J. Food Microbiol. 2000, 55, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Schultz, C. Water activity as related to microorganisms in the manufacturing environment. Gen. Int. Med. Clin. Innov. 2016, 1. Available online: https://oatext.com/Water-activity-as-related-to-microorganisms-in-the-manufacturing-environment.php (accessed on 5 April 2025). [CrossRef]
- Nurmilah, S.; Cahyana, Y.; Utama, G.L.; Aït-Kaddour, A. Strategies to reduce salt content and its effect on food characteristics and acceptance. A Review. Foods 2022, 11, 3120. [Google Scholar] [CrossRef] [PubMed]
- Wijnker, J.J. Aspects of Quality Assurance in Processing Natural Sausage Casings. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2009. Available online: https://dspace.library.uu.nl/handle/1874/31822 (accessed on 5 April 2025).
- Pérez-Boto, D.; D’Arrigo, M.; Grcía-Lafuente, A.; Bravo, D.; Pérez-Baltar, A.; Gaya, P.; Medina, M.; Arqués, J.L. Staphylococcus aureus in the Processing Environment of Cured Meat Products. Foods 2023, 12, 2161. [Google Scholar] [CrossRef]
- Prevost, S.; Cayol, J.-L.; Zuber, F.; Tholozan, J.-L.; Remize, F. Characterization of clostridial species and sulfite-reducing anaerobes isolated from foie gras with respect to microbial quality and safety. Food Control 2013, 32, 222–227. [Google Scholar] [CrossRef]
- Houben, J.H. A survey of dry-salted natural casings for the presence of Salmonella spp., Listeria monocytogenes and sulphite-reducing Clostridium spores. Food Microbiol. 2005, 22, 221–225. [Google Scholar] [CrossRef]
- Jyothsna, T.S.; Tushar, L.; Sasikala, C.; Ramana, C.V. Paraclostridium benzoelyticum gen. nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov. Proposal of a new genus Paeniclostridium gen. nov. to accommodate Clostridium sordellii and Clostridium ghonii. Int. J. Syst. Evol. Micr. 2016, 66, 1268–1274. [Google Scholar]
- Cai, X.; Peng, Y.; Yang, G.; Feng, L.; Tian, X.; Huang, P.; Mao, Y.; Xu, L. Populational genomic insights of Paraclostridium bifermentans as an emerging human pathogen. Front. Microbiol. 2023, 14, 1293206. [Google Scholar] [CrossRef]
- Sankar, U.R.; Biswas, R.; Raja, S.; Sistla, S.; Gopalakrishnan, M.; Saxena, S.K. Brain abscess and cervical lymphadenitis due to Paraclostridium bifermentans: A report of two cases. Anaerobe 2018, 51, 8–11. [Google Scholar] [CrossRef]
- Hale, A.; Kirby, J.E.; Albrecht, M. Fatal spontaneous Clostridium bifermentans necrotizing endometritis: A case report and literature review of the pathogen. Open Forum Infect. Dis. 2016, 3, ofw095. [Google Scholar] [CrossRef]
- Barrett, L.F.; Saragadam, S.D.; DiMaria, C.N.; Delgado-Daza, A. Infection of a prosthetic knee joint with Clostridium bifermentans. Oxf. Med. Case Rep. 2020, 8, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Edagiz, S.; Lagace-Wiens, P.; Embil, J.; Karlowsky, J.; Walkty, A. Empyema caused by Clostridium bifermentans: A case report. Can. J. Infect. Dis. Med. Microbiol. 2015, 26, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, J.; Peng, Y.; Cai, X.; Liu, Y.; Huang, W.; Huang, H.; Nie, Y. Genomic insights from Paraclostridium bifermentans HD0315_2: General features and pathogenic potential. Front. Microbiol. 2022, 13, 928153. [Google Scholar] [CrossRef]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Wałecka-Zacharska, E. Genomic and pathogenicity islands of Listeria monocytogenes-overview of selected aspects. Front. Mol. Biosci. 2023, 10, 1161486. [Google Scholar] [CrossRef] [PubMed]
- Taponen, S.; Supré, K.; Piessens, V.; van Coillie, E.; De Vliegher, S.; Koort, J.M.K. Staphylococcus agnetis sp. nov., a coagulase-variable species from bovine subclinical and mild clinical mastitis. Int. J. Syst. Evol. Microbiol. 2012, 62, 61–65. [Google Scholar] [CrossRef]
- Szafraniec, G.M.; Szeleszczuk, P.; Dolka, B. A Review of current knowledge on Staphylococcus agnetis in poultry. Animals 2020, 10, 1421. [Google Scholar] [CrossRef]
- Hugh-Jones, M.E.; William, T.H.; Hagstad, H.V. Zoonoses: Recognition, Control, and Prevention, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1995. [Google Scholar]
- Kunin, C.M.; Rudy, J. Effect of NaCl-induced osmotic stress on intracellular concentrations of glycine betaine and potassium in Escherichia coli, Enterococcus faecalis, and staphylococci. J. Lab. Clin. Med. 1991, 118, 217–224. [Google Scholar]
- Sanchez, S.; Hofacre, C.L.; Lee, M.D.; Maurer, J.J.; Doyle, M.P. Animal sources of salmonellosis in humans. JAVMA 2002, 221, 492–497. [Google Scholar] [CrossRef]
- Wijnker, J.J.; Koop, G.; Lipman, L.J. Antimicrobial properties of salt (NaCl) used for the preservation of natural casings. Food Microbiol. 2006, 23, 657–662. [Google Scholar] [CrossRef]
- Alwazzeh, M.J.; Alkuwaiti, F.A.; Alqasim, M.; Alwarthan, S. Infective endocarditis caused by pseudomonas stutzeri: A case report and literature review. In.fect Dis. Rep. 2020, 12, 105. [Google Scholar] [CrossRef]
- Tsuji, A.; Takei, Y.; Nishimura, T.; Azuma, Y. Identification of new Halomonas strains from food-related environments. Microbes Environ. 2022, 37, ME21052. [Google Scholar] [CrossRef]
- Foulkes, E.C. Intestinal Absorption of Heavy Metals. In Pharmacology of Intestinal Permeation I; Handbook of Experimental Pharmacology; Csáky, T.Z., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 70/1. [Google Scholar]
- Zhang, S.; Tang, H.; Zhou, M.; Pan, L. Salt use patterns and heavy metal urinary excretion. Front. Nutr. 2025, 11, 1521826. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.A.; Sarraf Ov, N.; Dana, Z.; Hashami, Z.; Afrah, A.; Sadeghi, E.; Bashiry, M. A comprehensive image of environmental toxic heavy metals in red meat: A global systematic review and meta-analysis and risk assessment study. Sci. Total Environ. 2023, 889, 164100. [Google Scholar] [CrossRef] [PubMed]
- González, N.; Calderón, J.; Rúbies, A.; Timoner, I.; Castell, V.; Domingo, J.L.; Nadal, M. Dietary intake of arsenic, cadmium, mercury and lead by the population of Catalonia, Spain: Analysis of the temporal trend. Food Chem. Toxicol. 2019, 132, 110721. [Google Scholar] [CrossRef] [PubMed]
- Raeeszadeh, M.; Gravandi, H.; Akbari, A. Determination of some heavy metals levels in the meat of animal species (sheep, beef, turkey, and ostrich) and carcinogenic health risk assessment in Kurdistan province in the west of Iran. Environ. Sci. Pollut. Res. Int. 2022, 41, 62248–62258. [Google Scholar] [CrossRef]
- Shahzad, L.; Hayyat, M.U.; Sharif, F.; Ameer, R.; Amir, M.; Khalil, M.; Saleem, M. Health risk assessment of heavy metals in various brands of sausages and salami in local markets of Lahore, Pakistan. Environ. Eng. Manag. J. 2023, 22, 167–176. [Google Scholar] [CrossRef]
- Manea, I.; Manea, L.; Radulescu, C.; Dulama, I.D.; Teodorescu, S.; Stirbescu, R.M.; Bucurică, I.A.; Chelarescu, E.D. Assessment of metals level in several meat products obtained through conventional and traditional methods. Rom. Rep. Phys. 2017, 69, 711. [Google Scholar]
- Heshmati, A. Evaluation of heavy metals contamination of unrefined and refined table salt. Int. J. Res. Stud. Bios. 2014, 2, 21–24. [Google Scholar]
- Nnaji, N.D.; Anyanwu, C.U.; Miri, T.; Onyeaka, H. Mechanisms of Heavy Metal Tolerance in Bacteria: A Review. Sustainability 2024, 16, 11124. [Google Scholar] [CrossRef]
- Elnabi, M.K.A.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Elaty, A.E.A. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef] [PubMed]
Samples | Microorganisms | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Country of Origin | Number of Pooled Samples * (Mean Number of Samples in a Single Pool) | Total Counts of Aerobic Mesophilic Bacteria | Escherichia coli | Anaerobic Sulfide-Reducing Bacteria (SRB) | Coagulase-Positive Staphylococci (CoPS) | Listeria monocytogenes | Salmonella spp. | ||||||||
Culture Media | |||||||||||||||
PCA | TBX Agar | ISA Agar | Baird-Parker Agar | PALCAM Agar | Oxford Agar | XLD Agar | HE Agar | ||||||||
Bacterial Growth Observed | |||||||||||||||
Mean log10 CFU/g ± SD | Mean log10 CFU/g ± SD | Number of Positive Samples | Mean log10 CFU/g ± SD | Number of Positive Samples | Mean log10 CFU/g ± SD | Number of Positive Samples | Isolated Bacteria | Number of Positive Samples | Isolated Bacteria ** | Number of Positive Samples | Isolated Bacteria ** | Number of Positive Samples | Isolated Bacteria | ||
Turkey | 4 (12) | 3.45 ± 2.68 | 0 | 0 | ND | 3 | 1.04 ± 0.48 A | 0 | ND | 0 | ND | 0 | ND | 0 | ND |
Iran | 5 (18) | 3.50 ± 2.84 | 0 | 2 | 0.97 ± 0.17 A | 4 | 1.89 ±1.17 B | 0 | ND | 2 | Halomonas elongata Halomonas eurihalina | 1 | Pseudomonas stutzeri | 0 | ND |
China | 5 (16) | 4.08 ± 3.16 | 0 | 0 | ND | 5 | 1.74 ± 1.11 B | 0 | ND | 0 | ND | 0 | ND | 0 | ND |
Mongolia | 4 (15) | 2.98 ± 2.17 | 0 | 0 | ND | 3 | 1.23 ± 0.47 A | 0 | ND | 1 | Halomonas elongata | 2 | Pseudomonas stutzeri | 0 | ND |
Pakistan | 5 (23) | 4.03 ± 3.38 | 0 | 1 | 0.6 B | 3 | 1.02 ± 0.3 A | 0 | ND | 0 | ND | 0 | ND | 0 | ND |
New Zealand | 4 (18) | 3.11 ± 2.14 | 0 | 2 | 0.81 ± 0.17 B | 4 | 1.11 ± 0.69 A | 0 | ND | 0 | ND | 0 | ND | 0 | ND |
United Kingdom | 4 (14) | 2.91 ± 2.23 | 0 | 1 | 0.69 B | 0 | ND | 0 | ND | 0 | ND | 0 | ND | 0 | ND |
Belgium | 4 (13) | 3.51 ± 2.52 | 0 | 1 | 0.95 A | 3 | 1.93 ± 1.17 B | 0 | ND | 1 | Halomonas elongata | 1 | Pseudomonas oryzihabitans | 0 | ND |
Country of Origin | Number of Pooled Samples Representing Different Batches | Parameters | Pb | Cd | As | Hg |
---|---|---|---|---|---|---|
MRL [mg/kg] * | 0.10 | 0.05 | 0.20 | 0.01 | ||
Turkey | 4 | Mean ± SD [mg/kg] | 0.068 ± 0.057 | 0.007 ± 0.01 | 0.028 ± 0.016 | <0.001 |
Range [mg/kg] | 0.018–0.15 | 0.0012–0.022 | 0.011–0.049 | <0.001 | ||
n < LOQ ** | 0 | 0 | 0 | 4 | ||
n > MRL *** | 0 | 0 | 0 | 0 | ||
Iran | 5 | Mean ± SD [mg/kg] | 0.068 ± 0.035 | 0.008 ± 0.009 | 0.042 ± 0.05 | <0.001 |
Range [mg/kg] | 0.023–0.11 | <0.001–0.021 | <0.01–0.13 | <0.001 | ||
n < LOQ | 0 | 1 | 1 | 5 | ||
n > MRL | 0 | 0 | 0 | 0 | ||
China | 5 | Mean ± SD [mg/kg] | 0.084 ± 0.057 | 0.008 ± 0.009 | 0.054 ± 0.031 | <0.001 |
Range [mg/kg] | 0.023–0.17 | <0.001–0.018 | 0.14–0.094 | <0.001 | ||
n < LOQ | 0 | 2 | 0 | 5 | ||
n > MRL | 0 | 0 | 0 | 0 | ||
Mongolia | 4 | Mean ± SD [mg/kg] | 0.092 ± 0.049 | 0.014 ± 0.009 | 0.034 ± 0.027 | <0.001 |
Range [mg/kg] | 0.045–0.16 | <0.001–0.023 | 0.014–0.073 | <0.001 | ||
n < LOQ | 0 | 1 | 0 | 4 | ||
n > MRL | –0 | 0 | 0 | 0 | ||
Pakistan | 5 | Mean ± SD [mg/kg] | 0.097 ± 0.052 | 0.01 ± 0.01 | 0.035 ± 0.028 | <0.001 |
Range [mg/kg] | 0.043–0.16 | <0.001–0.026 | <0.01–0.083 | <0.001 | ||
n < LOQ | 0 | 1 | 1 | 5 | ||
n > MRL | 0 | 0 | 0 | 0 | ||
New Zealand | 4 | Mean ± SD [mg/kg] | 0.064 ± 0.048 | 0.011 ± 0.007 | 0.026 ± 0.014 | <0.001 |
Range [mg/kg] | 0.017–0.13 | <0.001–0.019 | 0.011–0.042 | <0.001 | ||
n < LOQ | 0 | 1 | 0 | 4 | ||
n > MRL | 0 | 0 | 0 | 0 | ||
United Kingdom | 4 | Mean ± SD [mg/kg] | 0.069 ± 0.045 | 0.008 ± 0.009 | 0.028 ± 0.02 | <0.001 |
Range [mg/kg] | 0.025–0.13 | <0.001–0.022 | < 0.01–0.056 | <0.001 | ||
n < LOQ | 0 | 1 | 1 | 4 | ||
n > MRL | 0 | 0 | 0 | 0 | ||
Belgium | 4 | Mean ± SD [mg/kg] | 0.069 ± 0.043 | 0.005 ± 0.007 | 0.041 ± 0.036 | <0.001 |
Range [mg/kg] | 0.033–0.13 | <0.001–0.017 | < 0.01–0.087 | <0.001 | ||
n < LOQ | 0 | 1 | 1 | 4 | ||
n > MRL | 0 | 0 | 0 | 0 | ||
Total | 35 | Mean ± SD [mg/kg] | 0.077 ± 0.045 | 0.009 ± 0.008 | 0.036 ± 0.029 | <0.001 |
Range [mg/kg] | 0.017–0.17 | <0.001–0.026 | <0.01–0.13 | <0.001 | ||
n < LOQ | 0 | 8 | 4 | 35 | ||
n > MRL | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysok, B.; Dymkowski, A.; Sołtysiuk, M.; Kobuszewska, A. Assessment of Microbial and Heavy Metal Contamination of Natural Sheep Casings from Different Geographic Regions. Foods 2025, 14, 1520. https://doi.org/10.3390/foods14091520
Wysok B, Dymkowski A, Sołtysiuk M, Kobuszewska A. Assessment of Microbial and Heavy Metal Contamination of Natural Sheep Casings from Different Geographic Regions. Foods. 2025; 14(9):1520. https://doi.org/10.3390/foods14091520
Chicago/Turabian StyleWysok, Beata, Adam Dymkowski, Marta Sołtysiuk, and Aleksandra Kobuszewska. 2025. "Assessment of Microbial and Heavy Metal Contamination of Natural Sheep Casings from Different Geographic Regions" Foods 14, no. 9: 1520. https://doi.org/10.3390/foods14091520
APA StyleWysok, B., Dymkowski, A., Sołtysiuk, M., & Kobuszewska, A. (2025). Assessment of Microbial and Heavy Metal Contamination of Natural Sheep Casings from Different Geographic Regions. Foods, 14(9), 1520. https://doi.org/10.3390/foods14091520