Ozone Aeration Enhance Flowability, Structure, and Antioxidant Activity in Blueberry Pulp Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Blueberry Pulp Preparation
2.3. Pulp Drying Process
2.4. Ozone Dosage Procedure
2.5. Characterization of the Obtained Powders
2.5.1. Moisture Content and Water Activity
2.5.2. Solubility and Hygroscopicity
2.5.3. Bulk and Tapped Density
2.5.4. Hausner Ratio and Carr Index
2.5.5. Size of Particles
2.6. Scanning Electron Microscopy (SEM) Analysis
2.7. Fourier Transform Infrared (FT-IR) Spectrometer
2.8. Bioactive Compounds with Antioxidant Potential
2.8.1. Determination of Total Phenolic Content (TPC)
2.8.2. Determination of Total Flavonoid Content (TFC)
2.8.3. Determination of Anthocyanins
2.8.4. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azinobis (3-ethylbenzothiazo line-6-sulfonic acid)
2.9. Storage Stability
2.10. Statistical Analysis
3. Results and Discussion
3.1. Drying Yield
3.2. Physical Properties
3.3. Flowability and Cohesiveness: Hausner Ratio and Carr Compressibility Index
3.4. Size Particle and SEM Analysis
3.5. FT-IR Spectrometer
3.6. Bioactive Compounds with Antioxidant Potential
3.7. Storage Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, H.; Li, B.; Xiang, Q.; Du, B.; Zhang, B.; Tao, D.; Zhu, T.; Wu, D.; Ma, F. Sterilization of blueberry juice under solution plasma process: Factors, quality, and its action mechanisms. Food Control 2025, 171, 111136. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L.; Liu, X.; Hasan, K.F.; Li, H.; Zhou, S.; Zhang, Q.; Zhou, Y. Effect of thermosonication treatment on blueberry juice quality: Total phenolics, flavonoids, anthocyanin, and antioxidant activity. LWT 2021, 150, 112021. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Gonzalez-Cavieres, L.; Trautmann-Saez, G.; Pavez-Guajardo, C.; Moreno, J. Unconventional technologies as a strategy to improve the phenolic and antioxidant potential of zucchini products enriched with blueberry juice. Innov. Food Sci. Emerg. Technol. 2024, 95, 103738. [Google Scholar] [CrossRef]
- Gao, R.; Xue, L.; Zhang, Y.; Liu, Y.; Shen, L.; Zheng, X. Production of blueberry pulp powder by microwave-assisted foam-mat drying: Effects of formulations of foaming agents on drying characteristics and physicochemical properties. LWT 2022, 154, 112811. [Google Scholar] [CrossRef]
- Santos, N.C.; Almeida, R.L.J.; de Andrade, E.W.V.; de Fátima Dantas de Medeiros, M.; da Silva Pedrini, M.R. Effects of drying conditions and ethanol pretreatment on the techno-functional and morpho-structural properties of avocado powder produced by foam-mat drying. J. Food Meas. Charact. 2023, 17, 3149–3161. [Google Scholar] [CrossRef]
- Süfer, Ö.; Koç, G.Ç.; Öztekin, S.; Karabacak, A.Ö.; Su, D.; Wang, D.; Eroğlu, S.; Malçok, S.D.; Uslu, Ü.H.; Adal, S.; et al. Evaluation of the effect of sustainable drying techniques and intensification technologies on color profile of dehydrated fruits and vegetables. Food Bioprocess Technol. 2024, 18, 3148–3194. [Google Scholar] [CrossRef]
- Santos, N.C.; Almeida, R.L.J.; Monteiro, S.S.; de Lima, T.L.B.; Lúcio, A.d.S.; Nogueira, L.P.d.S.; Paiva, Y.F.; Gregório, M.G.; Brito, A.C.d.O.; da Silva, L.A.; et al. Microencapsulating Lacticaseibacillus rhamnosus GG by spray drying using pea protein, pectin, and tapioca flour: Probiotic viability, digestibility and thermal stability. Food Bioprod. Process. 2025, 150, 207–216. [Google Scholar] [CrossRef]
- Alhajj, N.; O’Reilly, N.J.; Cathcart, H. Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. Powder Technol. 2021, 384, 313–331. [Google Scholar] [CrossRef]
- Venkatesh, T.; Silpa, V.; Nandhu Lal, A.M.; Mohammed Ismail, O.U.; Kothakota, A. Correction: Effect of Aeration Techniques on Flow Properties of Spray-Dried Sugar Powders—Process Optimization Studies. Food Bioprocess Technol. 2022, 15, 2114–2130. [Google Scholar] [CrossRef]
- García-Segovia, P.; Igual, M.; Martínez-Monzó, J. Beetroot microencapsulation with pea protein using spray drying: Physicochemical, structural and functional properties. Appl. Sci. 2021, 11, 6658. [Google Scholar] [CrossRef]
- Johanson, K.; Barletta, D. The influence of air counter-flow through powder materials as a means of reducing cohesive flow problems. Part. Part. Syst. Charact. 2004, 21, 316–325. [Google Scholar] [CrossRef]
- Sert, D.; Mercan, E. Assessment of powder flow, functional and microbiological characteristics of ozone-treated skim milk powder. Int. Dairy J. 2021, 121, 105121. [Google Scholar] [CrossRef]
- Almeida, R.L.J.; Santos, N.C.; de Brito, A.C.O.; Leite, A.C.N.; Morais, J.R.F.; de Oliveira, B.F.; da Silva, P.B.; da Silva, Y.T.F.; Freitas, R.V.d.S.; Bonfim, K.S.D.; et al. Dual modification of starch: Synergistic effects of ozonation and pulsed electric fields on structural, rheological, and functional attributes. Food Chem. 2025, 464, 141718. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.L.J.; Santos, N.C.; Muniz, C.E.S.; Eduardo, R.d.S.; Silva, R.d.A.; Ribeiro, C.A.C.; da Costa, G.A.; de Figueiredo, M.J.; Galdino, P.O.; dos Santos, E.S. Red rice starch modification—Combination of the non-thermal method with a pulsed electric field (PEF) and enzymatic method using α-amylase. Int. J. Biol. Macromol. 2023, 253, 127030. [Google Scholar] [CrossRef] [PubMed]
- Brzezowska, J.; Martinez-Rodriguez, A.J.; Silvan, J.M.; Łysiak, G.P.; Wojdyło, A.; Lech, K.; Michalska-Ciechanowska, A. Matrix changes driven by cultivar diversity, inulin addition and drying techniques-shaping the antioxidant, antimicrobial and anti-inflammatory properties of blueberry powders. Innov. Food Sci. Emerg. Technol. 2023, 89, 103481. [Google Scholar] [CrossRef]
- Li, C.; Fan, X.; Sun, Y.; Zhou, C.; Pan, D. Preparation, morphology and release of goose liver oil microcapsules. Foods 2022, 11, 1236. [Google Scholar] [CrossRef]
- Zlatanović, S.; Kalušević, A.; Micić, D.; Laličić-Petronijević, J.; Tomić, N.; Ostojić, S.; Gorjanović, S. Functionality and storability of cookies fortified at the industrial scale with up to 75% of apple pomace flour produced by dehydration. Foods 2019, 8, 561. [Google Scholar] [CrossRef]
- Varshney, A.; Rawat, M.; Gupta, A.K.; Kandpal, R.; Choudhary, A.; Jha, A.K.; Naik, B.; Kumar, V.; Rustagi, S. Structural and functional insights into Dioscorea esculenta (Suthni) flour: A comparative analysis with potato flour for potential application in bakery product. J. Food Meas. Charact. 2024, 18, 9307–9329. [Google Scholar] [CrossRef]
- Farhan, M.; Ahmad, Z.; Waseem, M.; Mehmood, T.; Javed, M.R.; Ali, M.; Manzoor, M.F.; Goksen, G. Assessment of Beetroot powder as nutritional, antioxidant, and sensory evaluation in candies. J. Agric. Food Res. 2024, 15, 101023. [Google Scholar] [CrossRef]
- Vega, E.N.; González-Zamorano, L.; Cebadera, E.; Barros, L.; Pires, T.C.S.P.; Molina, A.K.; da Silveira, T.F.F.; de Ulzurrun, G.V.-D.; Tardío, J.; Cámara, M.; et al. Natural Food Colorant Obtained from Wild Berberis vulgaris L. by Ultrasound-Assisted Extraction: Optimization and Characterization. Foods 2025, 14, 183. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- de Souza, H.K.S.; Fagundes-Klen, M.R.; Fiorese, M.L.; Triques, C.C.; da Silva, L.C.; Canan, C.; Rossin, A.R.S.; Furtado, C.H.; Maluf, J.U.; da Silva, E.A. Microencapsulation of porcine liver hydrolysate by spray drying and freeze-drying with different carrier agents. Waste Biomass Valorization 2024, 15, 2397–2416. [Google Scholar] [CrossRef]
- Samborska, K.; Budziak-Wieczorek, I.; Matwijczuk, A.; Witrowa-Rajchert, D.; Gagoś, M.; Gładyszewska, B.; Karcz, D.; Rybak, K.; Jaskulski, M.; Barańska, A.; et al. Powdered plant beverages obtained by spray-drying without carrier addition—Physicochemical and chemometric studies. Sci. Rep. 2024, 14, 4488. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.H.G.; Kurozawa, L.E. Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. J. Food Eng. 2020, 267, 109761. [Google Scholar] [CrossRef]
- Akbarbaglu, Z.; Peighambardoust, S.H.; Sarabandi, K.; Jafari, S.M. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chem. 2021, 359, 129965. [Google Scholar] [CrossRef] [PubMed]
- Das, A.B.; Goud, V.V.; Das, C. Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology. Int. J. Biol. Macromol. 2019, 124, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Cheng, N.; Jiang, Y.; Grace, M.H.; Lila, M.A.; Hoskin, R.T.; Zheng, H. Colloidal and interfacial properties of spray dried pulse protein-blueberry polyphenol particles in model dispersion systems. Food Chem. 2024, 457, 140073. [Google Scholar] [CrossRef]
- Ravichandran, K.; Silva, E.; Moncada, M.; Perkins-Veazie, P.; Lila, M.; Greenlief, C.; Thomas, A.L.; Hoskin, R.; Krishnaswamy, K. Spray drying to produce novel phytochemical-rich ingredients from juice and pomace of American elderberry. Food Biosci. 2023, 55, 102981. [Google Scholar] [CrossRef]
- Marefati, A.; Wiege, B.; Haase, N.U.; Matos, M.; Rayner, M. Pickering emulsifiers based on hydrophobically modified small granular starches–Part I: Manufacturing and physico-chemical characterization. Carbohydr. Polym. 2017, 175, 473–483. [Google Scholar] [CrossRef]
- Romero, A.; Beaumal, V.; David-Briand, E.; Cordobes, F.; Guerrero, A.; Anton, M. Interfacial and emulsifying behaviour of rice protein concentrate. Food Hydrocoll. 2012, 29, 1–8. [Google Scholar] [CrossRef]
- Gozé, P.; Rhazi, L.; Pauss, A.; Aussenac, T. Starch characterization after ozone treatment of wheat grains. J. Cereal Sci. 2016, 70, 207–213. [Google Scholar] [CrossRef]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. Physical and flow properties of rice protein powders. J. Food Eng. 2016, 190, 1–9. [Google Scholar] [CrossRef]
- da Silva, E.S.; Xiong, J.; de Medeiros, F.G.M.; Grace, M.; Moncada, M.; Lila, M.A.; Hoskin, R.T. Spray dried insect protein-polyphenol particles deliver health-relevant value-added food ingredients. Future Foods 2024, 9, 100315. [Google Scholar] [CrossRef]
- Obadi, M.; Zhu, K.-X.; Peng, W.; Sulieman, A.A.; Mohammed, K.; Zhou, H.-M. Effects of ozone treatment on the physicochemical and functional properties of whole grain flour. J. Cereal Sci. 2018, 81, 127–132. [Google Scholar] [CrossRef]
- Alpert, P.A.; Arroyo, P.C.; Dou, J.; Krieger, U.K.; Steimer, S.S.; Förster, J.-D.; Ditas, F.; Pöhlker, C.; Rossignol, S.; Passananti, M.; et al. Visualizing reaction and diffusion in xanthan gum aerosol particles exposed to ozone. Phys. Chem. Chem. Phys. 2019, 21, 20613–20627. [Google Scholar] [CrossRef]
- Asokapandian, S.; Venkatachalam, S.; Swamy, G.J.; Kuppusamy, K. Optimization of foaming properties and foam mat drying of muskmelon using soy protein. J. Food Process Eng. 2016, 39, 692–701. [Google Scholar] [CrossRef]
- Almeida, R.F.; Gomes, M.H.G.; Kurozawa, L.E. Rice bran protein increases the retention of anthocyanins by acting as an encapsulating agent in the spray drying of grape juice. Food Res. Int. 2023, 172, 113237. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.C.; Ribeiro, C.P.; Aguirre, J.M.D. Secagem por atomização de polpa de amora-preta usando maltodextrina como agente carreador. Braz. J. Food Technol. 2012, 15, 157–165. [Google Scholar] [CrossRef]
- Alfaro-Galarza, O.; López-Villegas, E.; Rivero-Pérez, N.; Maruri, D.T.; Jiménez–Aparicio, A.; Palma-Rodríguez, H.; Vargas-Torres, A. Protective effects of the use of taro and rice starch as wall material on the viability of encapsulated Lactobacillus paracasei subsp. Paracasei. LWT 2020, 117, 108686. [Google Scholar] [CrossRef]
- Perrechil, F.; Louzi, V.C.; da Silva Paiva, L.A.; Natal, G.S.V.; Braga, M.B. Evaluation of modified starch and rice protein concentrate as wall materials on the microencapsulation of flaxseed oil by freeze-drying. LWT 2021, 140, 110760. [Google Scholar] [CrossRef]
- Ngo, T.V.; Kusumawardani, S.; Kunyanee, K.; Luangsakul, N. Polyphenol-modified starches and their applications in the food industry: Recent updates and future directions. Foods 2022, 11, 3384. [Google Scholar] [CrossRef]
- Alzate-Arbeláez, A.F.; Dorta, E.; López-Alarcón, C.; Cortés, F.B.; Rojano, B.A. Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chem. 2019, 294, 503–517. [Google Scholar] [CrossRef]
- Estupiñan-Amaya, M.; Fuenmayor, C.A.; López-Córdoba, A. New freeze-dried Andean blueberry juice powders for potential application as functional food ingredients: Effect of maltodextrin on bioactive and morphological features. Molecules 2020, 25, 5635. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Du, X.; Cui, D.; Wang, X.; Yang, Z.; Zhu, G. Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocoll. 2019, 91, 238–245. [Google Scholar] [CrossRef]
- Lv, Y.; Tahir, I.I.; Olsson, M.E. Effect of ozone application on bioactive compounds of apple fruit during short-term cold storage. Sci. Hortic. 2019, 253, 49–60. [Google Scholar] [CrossRef]
- Ribeiro, D.N.; Borges, K.C.; Matsui, K.N.; Hoskin, R.T. Spray dried acerola (Malpighia emarginata DC) juice particles to produce phytochemical-rich starch-based edible films. J. Microencapsul. 2024, 41, 112–126. [Google Scholar] [CrossRef] [PubMed]
- da Silva, G.M.; de Figueirêdo, R.M.F.; Queiroz, A.J.d.M.; Silva, E.T.d.V.; Moura, H.V.; Silva, A.P.d.F.; Santos, N.C.; Buriti, F.C.A.; Carvalho, A.J.d.B.A.; Lima, M.d.S. Blanching, cooking, and ethanol are effective strategies for preserving biofunctional compounds in purple-fleshed sweet potato powder. Food Bioprod. Process. 2025, 150, 118–130. [Google Scholar] [CrossRef]
- Almeida, R.L.J.; Santos, N.C.; Monteiro, S.S.; Monteiro, S.S.; Feitoza, J.V.F.; de Almeida Mota, M.M.; da Silva Eduardo, R.; Sampaio, P.M.; da Costa, G.A.; de Bittencourt Pasquali, M.A.; et al. Synergistic effect of ozone treatment with α-amylase on the modification of microstructure and paste properties of japonica rice starch. Food Chem. 2025, 465, 142145. [Google Scholar] [CrossRef]
- Marsiglia, W.I.M.d.L.; Oliveira, L.d.S.C.; Almeida, R.L.J.; Santos, N.C.; Neto, J.M.d.S.; Santiago, Â.M.; de Melo, B.C.A.; da Silva, F.L.H. Thermal stability of total phenolic compounds and antioxidant activities of jaboticaba peel: Effect of solvents and extraction methods. J. Indian Chem. Soc. 2023, 100, 100995. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Gorzelany, J.; Balawejder, M. Effects of ozone treatment on microbial status and the contents of selected bioactive compounds in Origanum majorana L. plants. Plants 2020, 9, 1637. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Balawejder, M. Effects of post-harvest ozone treatment on some molecular stability markers of Amelanchier alnifolia Nutt. fruit during cold storage. Int. J. Mol. Sci. 2022, 23, 11152. [Google Scholar] [CrossRef] [PubMed]
Parameters | BPP | BPS | BPP-O3 | BPS-O3 |
---|---|---|---|---|
Drying yield (%) | 55.26 ± 0.27 a | 52.50 ± 0.42 b | - | - |
Moisture content (%) | 4.25 ± 0.06 b | 5.03 ± 0.05 a | 4.40 ± 0.10 b | 4.97 ± 0.04 a |
Water activity | 0.201 ± 0.01 a | 0.208 ± 0.00 a | 0.203 ± 0.01 a | 0.206 ± 0.02 a |
Solubility (%) | 76.17 ± 0.37 c | 74.19 ± 0.10 d | 89.10 ± 0.12 b | 91.27 ± 0.21 a |
Hygroscopicity (%) | 14.60 ± 0.25 a | 13.80 ± 0.17 b | 10.06 ± 0.38 c | 9.25 ± 0.11 d |
Bulk density (g cm−3) | 0.275 ± 0.01 b | 0.270 ± 0.01 b | 0.300 ± 0.01 a | 0.304 ± 0.02 a |
Tapped density (g cm−3) | 0.393 ± 0.01 a | 0.389 ± 0.01 a | 0.330 ± 0.02 b | 0.325 ± 0.01 b |
Hausner ratio | 1.43 ± 0.11 a | 1.44 ± 0.19 a | 1.10 ± 0.11 b | 1.06 ± 0.19 b |
Carr index (%) | 42.90 ± 0.45 a | 44.07 ± 0.63 a | 10.00 ± 1.02 b | 6.91 ± 0.77 c |
Size particle (µm) | 11.70 ± 0.14 c | 16.67 ± 0.10 a | 14.55 ± 0.25 b | 12.03 ± 0.33 c |
Parameters | BPP | BPS | BPP-O3 | BPS-O3 |
---|---|---|---|---|
TPC (mg GAE/100 g) | 308.60 ± 5.01 a | 286.02 ± 4.20 b | 293.11 ± 3.15 b | 274.46 ± 2.51 c |
TFC (mg CE/100 g) | 30.17 ± 1.10 b | 33.84 ± 1.20 a | 27.13 ± 0.80 c | 30.35 ± 0.74 b |
Anthocyanins (mg/100 g) | 85.26 ± 2.05 a | 79.88 ± 2.20 b | 77.16 ± 1.50 b | 72.78 ± 1.23 c |
ABTS (μmol TE/g) | 65.38 ± 1.09 a | 61.68 ± 0.84 b | 50.47 ± 0.30 c | 46.30 ± 0.82 d |
DPPH (μmol TE/g) | 72.85 ± 0.76 a | 69.11 ± 1.03 b | 64.66 ± 1.50 c | 58.71 ± 0.53 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, N.C.; Almeida, R.L.J.; Tomé, A.E.S.; Teles, F.G.; Araújo, R.H.C.R.; Farias, J.Q.; Fonseca, M.T.S.d.; Silva, V.M.d.A.; Ribeiro, V.H.d.A.; Pedrini, M.R.d.S.; et al. Ozone Aeration Enhance Flowability, Structure, and Antioxidant Activity in Blueberry Pulp Powder. Foods 2025, 14, 1419. https://doi.org/10.3390/foods14081419
Santos NC, Almeida RLJ, Tomé AES, Teles FG, Araújo RHCR, Farias JQ, Fonseca MTSd, Silva VMdA, Ribeiro VHdA, Pedrini MRdS, et al. Ozone Aeration Enhance Flowability, Structure, and Antioxidant Activity in Blueberry Pulp Powder. Foods. 2025; 14(8):1419. https://doi.org/10.3390/foods14081419
Chicago/Turabian StyleSantos, Newton C., Raphael L. J. Almeida, Anna E. S. Tomé, Fábio G. Teles, Railene H. C. R. Araújo, Juanne Q. Farias, Maria T. S. d. Fonseca, Virgínia M. d. A. Silva, Victor H. d. A. Ribeiro, Márcia R. d. S. Pedrini, and et al. 2025. "Ozone Aeration Enhance Flowability, Structure, and Antioxidant Activity in Blueberry Pulp Powder" Foods 14, no. 8: 1419. https://doi.org/10.3390/foods14081419
APA StyleSantos, N. C., Almeida, R. L. J., Tomé, A. E. S., Teles, F. G., Araújo, R. H. C. R., Farias, J. Q., Fonseca, M. T. S. d., Silva, V. M. d. A., Ribeiro, V. H. d. A., Pedrini, M. R. d. S., Gomes, J. P., & Rocha, A. P. T. (2025). Ozone Aeration Enhance Flowability, Structure, and Antioxidant Activity in Blueberry Pulp Powder. Foods, 14(8), 1419. https://doi.org/10.3390/foods14081419