Baru Proteins: Extraction Methods and Techno-Functional Properties for Sustainable Nutrition and Food Innovation
Abstract
:1. Introduction
2. Baru (Dipteryx alata): Biome, Characteristics and Almond Composition
3. Nutritional Proprieties of Baru Proteins
4. Extraction of Baru Almond Proteins
5. Baru Almonds Techno-Functional Properties
5.1. Solubility
5.2. Emulsifying Activity and Stability
5.3. Foam Capacity and Stability
5.4. Gelation
5.5. Water- and Oil-Holding Capacity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPC | Baru protein concentrate |
BPI | Baru protein isolate |
DBF | Defatted baru almond flour |
DES | Deep eutectic solvents |
EA | Enzyme-assisted extraction |
EAAs | Essential amino acids |
EC | Emulsifying capacity |
ES | Emulsifying kinetic stability |
FC | Foam capacity |
FS | Foam stability |
GE | Gelation |
HBA | Hydrogen bond acceptor |
HBD | Hydrogen bond donor |
IPD | In vitro protein digestibility |
OHC | Oil-holding capacity |
PEF | Pulsed electric field |
pI | Isoelectric point |
SPI | Soybean protein isolate |
US | Ultrasound-assisted extraction |
WHC | Water-holding capacity |
References
- Mohammad, Z.H.; Ahmad, F.; Ibrahim, S.A. Biotechnology Approaches to Food Security: Risks and Solutions. In Microbial Biotechnology in the Food Industry; Springer International Publishing: Cham, Switzerland, 2024; pp. 1–13. [Google Scholar]
- Wang, J.; Azam, W. Natural Resource Scarcity, Fossil Fuel Energy Consumption, and Total Greenhouse Gas Emissions in Top Emitting Countries. Geosci. Front. 2024, 15, 101757. [Google Scholar] [CrossRef]
- Messina, M.; Duncan, A.M.; Glenn, A.J.; Mariotti, F. Perspective: Plant-Based Meat Alternatives Can Help Facilitate and Maintain a Lower Animal to Plant Protein Intake Ratio. Adv. Nutr. 2023, 14, 392–405. [Google Scholar] [CrossRef]
- Webb, D.; Dogan, H.; Li, Y.; Alavi, S. Use of Legume Flours and Fiber for Tailoring Structure and Texture of Pea Protein-based Extruded Meat Alternatives. J. Food Sci. 2023, 88, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Webb, D.; Dogan, H.; Li, Y.; Alavi, S. Physico-Chemical Properties and Texturization of Pea, Wheat and Soy Proteins Using Extrusion and Their Application in Plant-Based Meat. Foods 2023, 12, 1586. [Google Scholar] [CrossRef]
- Webb, D.; Li, Y.; Alavi, S. Chemical and Physicochemical Features of Common Plant Proteins and Their Extrudates for Use in Plant-Based Meat. Trends Food Sci. Technol. 2023, 131, 129–138. [Google Scholar]
- Zhang, X.; Zhao, Y.; Zhang, T.; Zhang, Y.; Jiang, L.; Sui, X. Potential of Hydrolyzed Wheat Protein in Soy-Based Meat Analogues: Rheological, Textural and Functional Properties. Food Chem. 2023, 20, 100921. [Google Scholar] [CrossRef]
- Khatri, P.; Kumar, P.; Shakya, K.S.; Kirlas, M.C.; Tiwari, K.K. Understanding the Intertwined Nature of Rising Multiple Risks in Modern Agriculture and Food System. Environ. Dev. Sustain. 2023, 26, 24107–24150. [Google Scholar] [CrossRef]
- Deprá, M.C.; Dias, R.R.; Sartori, R.B.; de Menezes, C.R.; Zepka, L.Q.; Jacob-Lopes, E. Nexus on Animal Proteins and the Climate Change: The Plant-Based Proteins Are Part of the Solution? Food Bioprod. Process. 2022, 133, 119–131. [Google Scholar] [CrossRef]
- Colgrave, M.L.; Dominik, S.; Tobin, A.B.; Stockmann, R.; Simon, C.; Howitt, C.A.; Belobrajdic, D.P.; Paull, C.; Vanhercke, T. Perspectives on Future Protein Production. J. Agric. Food Chem. 2021, 69, 15076–15083. [Google Scholar] [CrossRef]
- Sharma, G.M.; Ma, Y.; Luccioli, S. Recalls Associated with Food Allergens and Gluten in FDA-Regulated Foods from Fiscal Years 2013 to 2019. J. Food Prot. 2023, 86, 100069. [Google Scholar] [CrossRef]
- Boukid, F.; Hassoun, A.; Zouari, A.; Tülbek, M.; Mefleh, M.; Aït-Kaddour, A.; Castellari, M. Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023, 12, 1005. [Google Scholar] [CrossRef] [PubMed]
- Nikbakht Nasrabadi, M.; Sedaghat Doost, A.; Mezzenga, R. Modification Approaches of Plant-Based Proteins to Improve Their Techno-Functionality and Use in Food Products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Lima, D.S.; Egea, M.B.; Cabassa, I.D.C.C.; de Almeida, A.B.; de Sousa, T.L.; de Lima, T.M.; Loss, R.A.; Volp, A.C.P.; de Vasconcelos, L.G.; Dall’Oglio, E.L.; et al. Technological Quality and Sensory Acceptability of Nutritive Bars Produced with Brazil Nut and Baru Almond Coproducts. Lwt 2021, 137, 110467. [Google Scholar] [CrossRef]
- Alves-Santos, A.M.; Fernandes, D.C.; Naves, M.M.V. Baru (Dipteryx alata Vog.) Fruit as an Option of Nut and Pulp with Advantageous Nutritional and Functional Properties: A Comprehensive Review. NFS J. 2021, 24, 26–36. [Google Scholar] [CrossRef]
- Lima, M.d.C.; do Nascimento, H.M.A.; da Silva, J.Y.P.; de Brito Alves, J.L.; de Souza, E.L. Evidence for the Beneficial Effects of Brazilian Native Fruits and Their By-Products on Human Intestinal Microbiota and Repercussions on Non-Communicable Chronic Diseases—A Review. Foods 2023, 12, 3491. [Google Scholar] [CrossRef]
- WWF-Brazil Conversion in the Brazilian Cerrado Increases by 25% in 2022 and Registers the Highest Rate in 7 Years. Available online: https://www.wwf.org.br/?84401/Deforestation-in-the-Brazilian-Cerrado-increases-by-25-in-2022-and-registers-the-highest-rate-in-seven-years (accessed on 27 March 2025).
- Silva, B.d.O.; Moitinho, M.R.; Panosso, A.R.; Oliveira, D.M.d.S.; Montanari, R.; Moraes, M.L.T.d.; Milori, D.M.B.P.; Bicalho, E.d.S.; La Scala, N. Implications of Converting Native Forest Areas to Agricultural Systems on the Dynamics of CO2 Emission and Carbon Stock in a Cerrado Soil, Brazil. J. Environ. Manag. 2024, 358, 120796. [Google Scholar] [CrossRef]
- Fact MR Baru Nuts Market. Available online: https://www.factmr.com/report/1362/baru-nuts-market (accessed on 27 March 2025).
- Oliveira-Alves, S.C.; Pereira, R.S.; Pereira, A.B.; Ferreira, A.; Mecha, E.; Silva, A.B.; Serra, A.T.; Bronze, M.R. Identification of Functional Compounds in Baru (Dipteryx alata Vog.) Nuts: Nutritional Value, Volatile and Phenolic Composition, Antioxidant Activity and Antiproliferative Effect. Food Res. Int. 2020, 131, 109026. [Google Scholar] [CrossRef]
- Souza, R.G.M.; Gomes, A.C.; de Castro, I.A.; Mota, J.F. A Baru Almond–Enriched Diet Reduces Abdominal Adiposity and Improves High-Density Lipoprotein Concentrations: A Randomized, Placebo-Controlled Trial. Nutrition 2018, 55–56, 154–160. [Google Scholar] [CrossRef]
- da Cruz, K.S.; da Silva, M.A.; de Freitas, O.D.; Neves, V.A. Partial Characterization of Proteins from Baru (Dipteryx alata Vog) Seeds. J. Sci. Food Agric. 2011, 91, 2006–2012. [Google Scholar] [CrossRef]
- Siqueira, A.P.S.; Pacheco, M.T.B.; Naves, M.M.V. Nutritional Quality and Bioactive Compounds of Partially Defatted Baru Almond Flour. Food Sci. Technol. 2015, 35, 127–132. [Google Scholar] [CrossRef]
- Ravindran, N.; Kumar Singh, S.; Singha, P. A Comprehensive Review on the Recent Trends in Extractions, Pretreatments and Modifications of Plant-Based Proteins. Food Res. Int. 2024, 190, 114575. [Google Scholar] [CrossRef] [PubMed]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition; FAO: Auckland, New Zealand, 2011. [Google Scholar]
- Fernandes, D.C.; Freitas, J.B.; Czeder, L.P.; Naves, M.M.V. Nutritional Composition and Protein Value of the Baru (Dipteryx alata Vog.) Almond from the Brazilian Savanna. J. Sci. Food Agric. 2010, 90, 1650–1655. [Google Scholar] [CrossRef]
- Clatterbuck, K.L.; Kehrberg, N.L.; Marable, N.L. Solubility and in Vitro Digestibility of Soy Flours, Concentrates and Isolates. J. Food Sci. 1980, 45, 931–935. [Google Scholar] [CrossRef]
- Pires, C.V.; Oliveira, M.G.d.A.; Rosa, J.C.; Costa, N.M.B. Qualidade Nutricional e Escore Químico de Aminoácidos. Ciênc. Tecnol. Aliment. 2006, 26, 179–187. [Google Scholar]
- Pedersen, B.; Eggum, B.O. Prediction of Protein Digestibility by an in Vitro Enzymatic PH-stat Procedure. Z. Tierphysiol. Tierernahr. Futtermittelkd. 1983, 49, 265–277. [Google Scholar] [CrossRef]
- Benhammouche, T.; Melo, A.; Martins, Z.; Faria, M.A.; Pinho, S.C.M.; Ferreira, I.M.L.P.V.O.; Zaidi, F. Nutritional Quality of Protein Concentrates from Moringa oleifera Leaves and in Vitro Digestibility. Food Chem. 2021, 348, 128858. [Google Scholar] [CrossRef]
- Millar, K.A.; Gallagher, E.; Burke, R.; McCarthy, S.; Barry-Ryan, C. Proximate Composition and Anti-Nutritional Factors of Fava-Bean (Vicia faba), Green-Pea and Yellow-Pea (Pisum sativum) Flour. J. Food Compos. Anal. 2019, 82, 103233. [Google Scholar] [CrossRef]
- Trigo, C.; Castelló, M.L.; Ortolá, M.D. Potentiality of Moringa oleifera as a Nutritive Ingredient in Different Food Matrices. Plant Foods Hum. Nutr. 2023, 78, 25–37. [Google Scholar] [CrossRef]
- Aracava, K.K.; Capellini, M.C.; Gonçalves, D.; Soares, I.D.; Margoto, C.M.; Rodrigues, C.E.C. Valorization of the Baru (Dipteryx alata Vog.) Processing Chain: Technological Properties of Defatted Nut Flour and Oil Solubility in Ethanol and Isopropanol. Food Chem. 2022, 383, 132587. [Google Scholar] [CrossRef]
- Lima, D.C.; Noguera, N.H.; del Pilar Flores Granados, A.; Rodrigues, R.A.F. Hydrocolloids and Partially Defatted Cake on Encapsulation of Baru Oil (Dipteryx alata Vogel): A Study on Emulsion, Particle, and Oxidative Stability. Food Bioproc Tech. 2023, 16, 2598–2610. [Google Scholar] [CrossRef]
- Choudhry, R.; Yasmin, A.; Aslam, M.A.; Imran, A.; Ahmad, R.S.; Saeed, F.; Islam, F.; Zahoor, T.; Shah, M.A.; Rasool, A. Extraction of Protein from Apricot Kernel Oil Press Cake through Innovative Techniques and the Formulation of Supplemented Yogurt. Food Sci. Nutr. 2023, 11, 6085–6095. [Google Scholar] [CrossRef] [PubMed]
- Chañi-Paucar, L.O.; Osorio-Tobón, J.F.; Johner, J.C.F.; Meireles, M.A.A. A Comparative and Economic Study of the Extraction of Oil from Baru (Dipteryx alata) Seeds by Supercritical CO2 with and without Mechanical Pressing. Heliyon 2021, 7, e05971. [Google Scholar] [CrossRef] [PubMed]
- Nunes, Â.A.; Favaro, S.P.; Miranda, C.H.B.; Neves, V.A. Preparation and Characterization of Baru (Dipteryx alata Vog) Nut Protein Isolate and Comparison of Its Physico-Chemical Properties with Commercial Animal and Plant Protein Isolates. J. Sci. Food Agric. 2016, 97, 151–157. [Google Scholar] [CrossRef]
- Guimarães, R.d.C.A.; Favaro, S.P.; de Souza, A.D.V.; Soares, C.M.; Nunes, Â.A.; de Oliveira, L.C.S.; Honer, M.R. Thermal Properties of Defatted Meal, Concentrate, and Protein Isolate of Baru Nuts (Dipteryx alata Vog.). Food Sci. Technol. 2012, 32, 52–55. [Google Scholar] [CrossRef]
- Yang, J.; Kornet, R.; Ntone, E.; Meijers, M.G.J.; van den Hoek, I.A.F.; Sagis, L.M.C.; Venema, P.; Meinders, M.B.J.; Berton-Carabin, C.C.; Nikiforidis, C.V. Plant Protein Aggregates Induced by Extraction and Fractionation Processes: Impact on Techno-Functional Properties. Food Hydrocoll. 2024, 155, 110223. [Google Scholar] [CrossRef]
- Hernández-Álvarez, A.J.; Mondor, M.; Nosworthy, M.G. Green Protein Processing Technologies from Plants: Novel Extraction and Purification Methods for Product Development; Springer International Publishing: Cham, Switzerland, 2023; ISBN 9783031169687. [Google Scholar]
- Gao, K.; Rao, J.; Chen, B. Plant Protein Solubility: A Challenge or Insurmountable Obstacle. Adv. Colloid. Interface Sci. 2024, 324, 103074. [Google Scholar] [CrossRef]
- Hadidi, M.; Aghababaei, F.; McClements, D.J. Enhanced Alkaline Extraction Techniques for Isolating and Modifying Plant-Based Proteins. Food Hydrocoll. 2023, 145, 109132. [Google Scholar] [CrossRef]
- Das, R.S.; Zhu, X.; Hannon, S.; Mullins, E.; Alves, S.; Garcia-Vaquero, M.; Tiwari, B.K. Exploring Osborne Fractionation and Laboratory/Pilot Scale Technologies (Conventional Extraction, Ultrasound-Assisted Extraction, High-Pressure Processing and Hydrodynamic Cavitation) for Protein Extraction from Faba Bean (Vicia faba L.). Innov. Food Sci. Emerg. Technol. 2023, 89, 103487. [Google Scholar] [CrossRef]
- Tirgar, M.; Silcock, P.; Carne, A.; Birch, E.J. Effect of Extraction Method on Functional Properties of Flaxseed Protein Concentrates. Food Chem. 2017, 215, 417–424. [Google Scholar] [CrossRef]
- Perović, M.N.; Pajin, B.S.; Antov, M.G. The Effect of Enzymatic Pretreatment of Chickpea on Functional Properties and Antioxidant Activity of Alkaline Protein Isolate. Food Chem. 2022, 374, 131809. [Google Scholar] [CrossRef]
- Thongkong, S.; Klangpetch, W.; Unban, K.; Tangjaidee, P.; Phimolsiripol, Y.; Rachtanapun, P.; Jantanasakulwong, K.; Schönlechner, R.; Thipchai, P.; Phongthai, S. Impacts of Electroextraction Using the Pulsed Electric Field on Properties of Rice Bran Protein. Foods 2023, 12, 835. [Google Scholar] [CrossRef] [PubMed]
- Purdi, T.S.; Setiowati, A.D.; Ningrum, A. Ultrasound-Assisted Extraction of Spirulina Platensis Protein: Physicochemical Characteristic and Techno-Functional Properties. J. Food Meas. Charact. 2023, 17, 5474–5486. [Google Scholar] [CrossRef]
- Sert, D.; Rohm, H.; Struck, S. Ultrasound-Assisted Extraction of Protein from Pumpkin Seed Press Cake: Impact on Protein Yield and Techno-Functionality. Foods 2022, 11, 4029. [Google Scholar] [CrossRef]
- Tang, Q.; Roos, Y.H.; Miao, S. Structure, Gelation Mechanism of Plant Proteins versus Dairy Proteins and Evolving Modification Strategies. Trends Food Sci. Technol. 2024, 147, 104464. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Bala Krishnan, S. Pulsed Electric Field Treatment in Extracting Proteins from Legumes: A Review. Processes 2024, 12, 2667. [Google Scholar] [CrossRef]
- Lin, Z.; Jiao, G.; Zhang, J.; Celli, G.B.; Brooks, M.S.-L. Optimization of Protein Extraction from Bamboo Shoots and Processing Wastes Using Deep Eutectic Solvents in a Biorefinery Approach. Biomass Convers. Biorefin. 2021, 11, 2763–2774. [Google Scholar] [CrossRef]
- Franzen, K.L.; Kinsella, J.E. Functional Properties of Succinylated and Acetylated Soy Protein. J. Agric. Food Chem. 1976, 24, 788–795. [Google Scholar] [CrossRef]
- Roger, R.A.; Rawdkuen, S. Properties of Moringa oleifera Leaf Protein from Alkaline-acid Extraction. Food Appl. Biosci. J. 2020, 8, 43–67. [Google Scholar]
- Liang, H.N.; Tang, C.H. PH-Dependent Emulsifying Properties of Pea [Pisum sativum (L.)] Proteins. Food Hydrocoll. 2013, 33, 309–319. [Google Scholar] [CrossRef]
- Foley, J.; O’Connell, C. Comparative Emulsifying Properties of Sodium Caseinate and Whey Protein Isolate in 18% Oil in Aqueous Systems. J. Dairy. Res. 1990, 57, 377–391. [Google Scholar] [CrossRef]
- Qi, X.; Luo, Y.; Fei, W.; Shen, M.; Chen, Y.; Yu, Q.; Xie, J. Effects of Enzyme Hydrolysis-Assisted Fibrillation Treatment on the Solubility, Emulsifying Properties and Antioxidant Activity of Rice Protein. Int. J. Biol. Macromol. 2024, 279, 135378. [Google Scholar] [CrossRef]
- Alrosan, M.; Tan, T.; Easa, A.M.; Gammoh, S.; Alu’datt, M.H. Mechanism of the Structural Interaction between Whey and Lentil Proteins in the Unique Creation of a Protein Structure. J. Food Sci. 2021, 86, 5282–5294. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, T.; Song, T.; Chen, C.; Venkitasamy, C.; Pan, Z.; Zhang, H. Solubility, Structural Properties, and Immunomodulatory Activities of Rice Dreg Protein Modified with Sodium Alginate under Microwave Heating. Food Sci. Nutr. 2019, 7, 2556–2564. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.H.; Wen, Q.H.; He, F.; Xu, F.Y.; Chen, B.R.; Zeng, X.A. Combination of Pulsed Electric Field and PH Shifting Improves the Solubility, Emulsifying, Foaming of Commercial Soy Protein Isolate. Food Hydrocoll. 2023, 134, 108049. [Google Scholar] [CrossRef]
- Zha, F.; Dong, S.; Rao, J.; Chen, B. The Structural Modification of Pea Protein Concentrate with Gum Arabic by Controlled Maillard Reaction Enhances Its Functional Properties and Flavor Attributes. Food Hydrocoll. 2019, 92, 30–40. [Google Scholar] [CrossRef]
- Ahern, N.; Arendt, E.K.; Sahin, A.W. Protein Soft Drinks: A Retail Market Analysis and Selected Product Characterization. Beverages 2023, 9, 73. [Google Scholar] [CrossRef]
- Guimarães, R.d.C.A.; Favaro, S.P.; Viana, A.C.A.; Braga Neto, J.A.; Neves, V.A.; Honer, M.R. Study of the Proteins in the Defatted Flour and Protein Concentrate of Baru Nuts (Dipteryx alata Vog). Food Sci. Technol. 2012, 32, 464–470. [Google Scholar] [CrossRef]
- Bocarando-Guzmán, M.D.; Luna-Suárez, S.; Hernández-Cázares, A.S.; Herrera-Corredor, J.A.; Hidalgo-Contreras, J.V.; Ríos-Corripio, M.A. Comparison of the Physicochemical and Functional Properties of Flour and Protein Isolate from Moringa (Moringa oleifera Lam.) Leaves. Int. J. Food Prop. 2022, 25, 733–747. [Google Scholar] [CrossRef]
- Tang, Q.; Roos, Y.H.; Miao, S. Plant Protein versus Dairy Proteins: A PH-Dependency Investigation on Their Structure and Functional Properties. Foods 2023, 12, 368. [Google Scholar] [CrossRef]
- Furtado, G.d.F.; Mantovani, R.A.; Consoli, L.; Hubinger, M.D.; da Cunha, R.L. Structural and Emulsifying Properties of Sodium Caseinate and Lactoferrin Influenced by Ultrasound Process. Food Hydrocoll. 2017, 63, 178–188. [Google Scholar] [CrossRef]
- Shilpashree, B.G.; Arora, S.; Chawla, P.; Vakkalagadda, R.; Sharma, A. Succinylation of Sodium Caseinate and Its Effect on Physicochemical and Functional Properties of Protein. LWT-Food Sci. Technol. 2015, 64, 1270–1277. [Google Scholar] [CrossRef]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.H. Comparison of the Functional Properties of Pea, Chickpea and Lentil Protein Concentrates Processed Using Ultrafiltration and Isoelectric Precipitation Techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Yamauchi, K.; Shimizu, M.; Kamiya, T. Emulsifying Properties of Whey Protein. J. Food Sci. 1980, 45, 1237–1242. [Google Scholar] [CrossRef]
- Li, J.; Fu, J.; Ma, Y.; He, Y.; Fu, R.; Qayum, A.; Jiang, Z.; Wang, L. Low Temperature Extrusion Promotes Transglutaminase Cross-Linking of Whey Protein Isolate and Enhances Its Emulsifying Properties and Water Holding Capacity. Food Hydrocoll. 2022, 125, 107410. [Google Scholar] [CrossRef]
- Jiang, S.; Hussain, M.A.; Cheng, J.; Jiang, Z.; Geng, H.; Sun, Y.; Sun, C.; Hou, J. Effect of Heat Treatment on Physicochemical and Emulsifying Properties of Polymerized Whey Protein Concentrate and Polymerized Whey Protein Isolate. Lwt 2018, 98, 134–140. [Google Scholar] [CrossRef]
- Chobert, J.-M.; Catherine Bertrand-Harb, J.; Nicolas, M.-G. Solubility and Emulsifying Properties of Caseins and Whey Proteins Modified Enzymatically by Trypsin. J. Agric. Food Chem. 1988, 36, 883–892. [Google Scholar] [CrossRef]
- Mao, X.; Hua, Y. Composition, Structure and Functional Properties of Protein Concentrates and Isolates Produced from Walnut (Juglans regia L.). Int. J. Mol. Sci. 2012, 13, 1561–1581. [Google Scholar] [CrossRef]
- Tang, C.H. Emulsifying Properties of Soy Proteins: A Critical Review with Emphasis on the Role of Conformational Flexibility. Crit. Rev. Food Sci. Nutr. 2017, 57, 2636–2679. [Google Scholar] [CrossRef]
- Ma, J.; Pan, C.; He, R.; Chen, W.; Pei, J.; Zhong, Q.; Chen, H.; Chen, W. Physicochemical Properties and Oil-Water Interfacial Behavior of Subcritical Water-Treated Coconut (Cocos nucifera L.) Globulins. Food Hydrocoll. 2024, 152, 109897. [Google Scholar] [CrossRef]
- Pineli, L.d.L.d.O.; de Carvalho, M.V.; de Aguiar, L.A.; de Oliveira, G.T.; Celestino, S.M.C.; Botelho, R.B.A.; Chiarello, M.D. Use of Baru (Brazilian Almond) Waste from Physical Extraction of Oil Toproduce Flour and Cookies. LWT-Food Sci. Technol. 2015, 60, 50–55. [Google Scholar] [CrossRef]
- de Jesus, E.P.; Techi Diniz, L.G.; Alves, V.; da Silva, Y.P.; Schmitz, A.C.; Quast, L.B.; dos Passos Francisco, C.T.; Tormen, L.; Bertan, L.C. From Nut to Dulce de Leche: Development of a Vegan Alternative–Physicochemical Characterization, Microbiological Evaluation and Sensory Analysis. Food Humanit. 2023, 1, 581–588. [Google Scholar] [CrossRef]
- Zeng, M.; Adhikari, B.; He, Z.; Qin, F.; Huang, X.; Chen, J. Improving the Foaming Properties of Soy Protein Isolate Through Partial Enzymatic Hydrolysis. Dry. Technol. 2013, 31, 1545–1552. [Google Scholar] [CrossRef]
- Morales, R.; Martínez, K.D.; Pizones Ruiz-Henestrosa, V.M.; Pilosof, A.M.R. Modification of Foaming Properties of Soy Protein Isolate by High Ultrasound Intensity: Particle Size Effect. Ultrason. Sonochem 2015, 26, 48–55. [Google Scholar] [CrossRef]
- Shen, P.; Ha, S.M.L.; Peng, J.; Landman, J.; Sagis, L.M.C. Role of Pulse Globulins and Albumins in Air-Water Interface and Foam Stabilization. Food Hydrocoll. 2025, 160, 110792. [Google Scholar] [CrossRef]
- Shen, P.; Peng, J.; Sagis, L.M.C.; Landman, J. Molecular, Interfacial and Foaming Properties of Pulse Proteins. Food Hydrocoll. 2024, 156, 110313. [Google Scholar] [CrossRef]
- Shao, Y.; Lin, K.; Kao, Y. Modification of Foaming Properties of Commercial Soy Protein Isolates and Concentrates by Heat Treatments. J. Food Qual. 2016, 39, 695–706. [Google Scholar] [CrossRef]
- Li, Q.; Li, W.; Li, L.; Zong, X.; Coldea, T.E.; Yang, H.; Zhao, H. Enhancing the Foaming Properties of Brewer’s Spent Grain Protein by Ultrasound Treatment and Glycation Reaction. Food Funct. 2023, 14, 2781–2792. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.K.; Grossmann, L.; Nolden, A.A.; McClements, D.J.; Kinchla, A.J. Functional and Physical Properties of Commercial Pulse Proteins Compared to Soy Derived Protein. Future Foods 2022, 6, 100155. [Google Scholar] [CrossRef]
- Nakamura, R.; Sugiyama, H.; Sato, Y. Factors Contributing to the Heat-Induced Aggregation of Ovalbumin. Agric. Biol. Chem. 1978, 42, 819–824. [Google Scholar] [CrossRef]
- Gravel, A.; Dubois-Laurin, F.; Turgeon, S.L.; Doyen, A. The Role of the 7S/11S Globulin Ratio in the Gelling Properties of Mixed β-Lactoglobulin/Pea Proteins Systems. Food Hydrocoll. 2024, 156, 110273. [Google Scholar] [CrossRef]
- Devnani, B.; Ong, L.; Kentish, S.; Gras, S. Heat Induced Denaturation, Aggregation and Gelation of Almond Proteins in Skim and Full Fat Almond Milk. Food Chem. 2020, 325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Bhandari, B.; Gaiani, C.; Prakash, S. Altering Almond Protein Function through Partial Enzymatic Hydrolysis for Creating Gel Structures in Acidic Environment. Curr. Res. Food Sci. 2022, 5, 653–664. [Google Scholar] [CrossRef]
- Tarahi, M.; Abdolalizadeh, L.; Hedayati, S. Mung Bean Protein Isolate: Extraction, Structure, Physicochemical Properties, Modifications, and Food Applications. Food Chem. 2024, 444, 138626. [Google Scholar] [CrossRef] [PubMed]
- Hamid, M.A.; Shan, T.P.; Devi, M.; Pindi, W.; Akanda, J.H.; Mamat, H.; Yin, F.H. Effect of Seaweed Powder on the Quality of the Pineapple-Chili Sauce. Adv. Soc. Sci. Educ. Humanit. Res. 2020, 406, 34–39. [Google Scholar]
- Langendörfer, L.J.; Wüst, A.; Hensel, O.; Diakité, M. Functional Properties of Legume Protein and Their Application in the Development of a Plant-Based Hollandaise Sauce. Chem. Eng. Trans. 2023, 102, 1–6. [Google Scholar] [CrossRef]
- Han, Z.; Liu, S.; Cao, J.; Yue, X.; Shao, J.-H. A Review of Oil and Water Retention in Emulsified Meat Products: The Mechanisms of Gelation and Emulsification, the Application of Multi-Layer Hydrogels. Crit. Rev. Food Sci. Nutr. 2024, 64, 8308–8324. [Google Scholar] [CrossRef]
- Wang, W.; Jia, R.; Hui, Y.; Zhang, F.; Zhang, L.; Liu, Y.; Song, Y.; Wang, B. Utilization of Two Plant Polysaccharides to Improve Fresh Goat Milk Cheese: Texture, Rheological Properties, and Microstructure Characterization. J. Dairy. Sci. 2023, 106, 3900–3917. [Google Scholar] [CrossRef]
- Jeong, M.S.; Cho, S.J. Effect of PH-Shifting on the Water Holding Capacity and Gelation Properties of Mung Bean Protein Isolate. Food Res. Int. 2024, 177. [Google Scholar] [CrossRef]
- Mitaku, S.; Hirokawa, T.; Tsuji, T. Amphiphilicity Index of Polar Amino Acids as an Aid in the Characterization of Amino Acid Preference at Membrane-Water Interfaces. Bioinformatics 2002, 18, 608–616. [Google Scholar] [CrossRef]
- Biswas, K.M.; DeVido, D.R.; Dorsey, J.G. Evaluation of Methods for Measuring Amino Acid Hydrophobicities and Interactions. J. Chromatogr. A 2003, 1000, 637–655. [Google Scholar] [CrossRef]
FAO [25] | Baru Almond Flour [22,26] | Soybean Flour [27,28] | Dehydrated Beef [28] | Bovine Casein Powder [28] | Eggs Powder [28,29] | Moringa oleifera Flour [30] * | Pea Flour [31] | |
---|---|---|---|---|---|---|---|---|
EAA | Amino acid concentration (mg.g−1 of protein) | |||||||
Met + Cys | 22 | 22.00 | 18.65 | 35.59 | 30.14 | 40.05 | 71.40 | 23.00 |
His | 15 | 23.40 | 32.88 | 38.10 | 18.99 | 22.12 | 14.40 | 35.00 |
Ile | 30 | 37.50 | 37.36 | 39.43 | 46.91 | 34.64 | 28.80 | 35.00 |
Leu | 59 | 77.80 | 81.34 | 92.24 | 93.05 | 83.90 | 56.60 | 70.00 |
Lys | 45 | 48.40 | 82.69 | 95.28 | 78.66 | 91.44 | 58.20 | 63.00 |
Phe + Tyr | 38 | 87.33 | 96.99 | 83.86 | 109.71 | 98.64 | 74.10 | 65.00 |
Thr | 23 | 44.90 | 51.34 | 48.23 | 43.22 | 53.50 | 39.00 | 37.00 |
Trp | 6.0 | 20.20 | n.d. | n.d. | n.d. | n.d. | 17.60 | n.d. |
Val | 39 | 51.80 | 48.16 | 43.00 | 54.95 | 47.52 | 42.80 | 39.00 |
Total protein content (g.100 g−1) | ||||||||
25.81 | 41.85 | 81.76 | 81.57 | 48.56 | 23.60 | 21.50 | ||
IPD (%) | 86.00 | 78.90 | 80.00 | 91.00 | 81.40 | 57.22–64.70 | 86.20–86.90 |
Emulsifying Capacity (EC) (%) | Emulsifying Stability (ES) (%) | Foam Capacity (FC) (%) | Foam Stability (FS) (%) | Water- Holding Capacity (%) | Oil-Holding Capacity (%) | Experimental Conditions | |
---|---|---|---|---|---|---|---|
Baru almond protein isolate (BPI) [37] | 54.80 | 53.90 | 58.30 | 96.0 | 118.30 | 155.50 | pH 7.0; ES: 70 °C/30 min; FS: 60 min. |
Baru almond protein concentrate (BPC) [62] | 55.00 | 51.00 | 95.00 | 23.00 | 193.84 | 205.28 | pH 7.0; ES: 80 °C/30 min; FS: 60 min. |
Defatted baru almond flour (DBF) [62] | 51.00 | 50.00 | 69.00 | 35.00 | 225.98 | 199.80 | pH 7.0; ES: 80 °C/30 min; FS: 60 min. after. |
Soybean protein Isolate (SPI) [37] | 48.20 | 47.50 | 25.00 | 92.00 | 310.90 | 60.00 | pH 7.0; ES: 80 °C/30 min; FS: 60 min. |
Moringa oleifera leaf protein isolate [53,63] | 20.00 | 35.00 | 13.00 | 4.00 | 231–280.00 | 160–355.00 | pH 6.0; ES: 70 °C/30 min; FS: 10 min. |
Sodium caseinate [64,65,66] | 30.00 | 19.50 | 290.00 | 40.00 | 300.00 | 280.00 | pH 7.0; ES: 80 °C/30 min; FS: 30 min. |
Pea protein isolate [54,64,67] | 57.10 | 60.00 | 300.00 | 58.00 | 300–430.00 | 110–250.00 | pH 7.0; ES: 7 days; FS: 5 min. |
Whey protein isolate [64,68,69,70,71]. | 41.00 | 57.65 | 320.00 | 35.00 | 20.00 | 320.00 | pH 7.5; ES: 10 min; FS: 30 min. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyashita, N.M.R.; Hudson, E.A.; Rezende, J.d.P.; Vidigal, M.C.T.R.; Pires, A.C.d.S. Baru Proteins: Extraction Methods and Techno-Functional Properties for Sustainable Nutrition and Food Innovation. Foods 2025, 14, 1286. https://doi.org/10.3390/foods14081286
Miyashita NMR, Hudson EA, Rezende JdP, Vidigal MCTR, Pires ACdS. Baru Proteins: Extraction Methods and Techno-Functional Properties for Sustainable Nutrition and Food Innovation. Foods. 2025; 14(8):1286. https://doi.org/10.3390/foods14081286
Chicago/Turabian StyleMiyashita, Nayara Matiko Reis, Eliara Acipreste Hudson, Jaqueline de Paula Rezende, Márcia Cristina Teixeira Ribeiro Vidigal, and Ana Clarissa dos Santos Pires. 2025. "Baru Proteins: Extraction Methods and Techno-Functional Properties for Sustainable Nutrition and Food Innovation" Foods 14, no. 8: 1286. https://doi.org/10.3390/foods14081286
APA StyleMiyashita, N. M. R., Hudson, E. A., Rezende, J. d. P., Vidigal, M. C. T. R., & Pires, A. C. d. S. (2025). Baru Proteins: Extraction Methods and Techno-Functional Properties for Sustainable Nutrition and Food Innovation. Foods, 14(8), 1286. https://doi.org/10.3390/foods14081286