Effect of Solvent and Grain Color on the Biological Activities of Maize Grain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extract Preparation
Maize Grain Identity | Color of the Grain | Pigment Location ◊ | Endosperm Type ◊ | Maize Race Name † | Code of the Accesión † | Main Food Uses † | Grain Picture |
---|---|---|---|---|---|---|---|
BR03 | Brick red | Pericarp | Floury | Olotón | CHIS-1082 | Tortillas | |
BR06 | Brick red | Pericarp | Floury | Dulce | JAL-188 | Pinole | |
CR14 | Cherry red | Aleurone | Floury | Elotes Cónicos | QRO-94 | Tortillas | |
CR20 | Cherry red | Aleurone | Floury | Elotes Cónicos | PUE-149 | Tortillas | |
BP36 | Blue–purple | Aleurone | Floury | Bolita | OAX-766 | Tlayudas, tortillas | |
BP51 | Blue–purple | Aleurone | Floury | Elotes Occidentales | NAY-38 | Pozole, tortillas and immature corn |
2.2. Phenolic Compounds Analysis
- Total anthocyanins (TACs) were quantified using a spectrophotometer (Lambda 25 UV/Vis, Perkin Elmer, Waltham, MA, USA) at a wavelength of 520 nm. The results were expressed as milligrams of cyanidin-3-glucoside equivalents per kilogram of dry weight (C3GE/kg DW) (Figure S2), following the methodology described by Salinas-Moreno et al. [22].
2.3. Biological Activities Analysis
2.3.1. Antioxidant Capacity
2.3.2. Antifungal Activity
2.3.3. Antimutagenic Activity
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Type of Solvent in the Phenolic Composition of Maize Grain Extracts
3.2. Antioxidant Capacity
3.3. Antifungal Activity
3.4. Antimutagenic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) |
ANOVA | Analysis of variance |
AWAC | Acetone–water–acetic acid |
BP | Blue–purple grain |
BR | Brick red grain |
CNRG | National Center for Genetic Resources |
CR | Cherry red grain |
DMAC | (4-(Dimethyl amino) cinnamaldehyde) |
DMSO | Dimethyl sulfoxide |
DPPH | 1,1-diphenyl-2-picryl-hydrazyl |
FLAV | Flavonoids |
FRAP | Ferric ion-reducing antioxidant power |
INIFAP | Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias |
MGPC | Mycelial growth of the positive control |
MGT | Mycelial growth of the treatment |
MIC | Minimum inhibitory concentration |
MMS | Methyl methanosulfonate |
MTFA | Methanol acidified with trifluoroacetic acid at 1% |
OD570nm | Optical density |
PAs | Proanthocyanidins |
TA100 | Salmonella typhimurium |
TA98 | Salmonella typhimurium |
TAC | Total anthocyanins |
TSP | Total soluble phenolic |
References
- Salinas-Moreno, Y.; García-Salinas, C.; Ramírez-Díaz, J.L.; Alemán-de la Torre, I. Phenolic compounds in maize grains and its nixtamalized products. In Phenolic Compounds-Natural Sources, Importance and Applications; Soto-Hernández, M., Palma-Tenango, M., Garcia-Mateos, M., Eds.; IntechOpen: Rijeka, Croatia, 2017; Volume 8, pp. 215–232. [Google Scholar]
- Van Hung, P. Phenolic compounds of cereals and their antioxidant capacity. Crit. Rev. Food Sci. Nutr. 2016, 56, 25–35. [Google Scholar] [CrossRef]
- Bani, C.; Di Lorenzo, C.; Restani, P.; Mercogliano, F.; Colombo, F. Phenolic profile and in vitro antioxidant activity of different corn and rice varieties. Plants 2023, 12, 448. [Google Scholar] [CrossRef] [PubMed]
- Burt, A.J.; Arnason, J.T.; García-Lara, S. Natural variation of hydroxycinnamic acid amides in maize landraces. J. Cereal Sci. 2019, 88, 145–149. [Google Scholar] [CrossRef]
- Paulsmeyer, M.; Chatham, L.; Becker, T.; West, M.; West, L.; Juvik, J. Survey of anthocyanin composition and concentration in diverse maize germplasms. J. Agric. Food Chem. 2017, 65, 4341–4350. [Google Scholar] [CrossRef]
- Gani, A.; Wani, S.; Masoodi, F.; Hameed, G. Whole-grain cereal bioactive compounds and their health benefits: A review. Food Process. Technol. 2012, 3, 146–156. [Google Scholar] [CrossRef]
- Rocha-Guzmán, N.E.; Herzog, A.; González-Laredo, R.F.; Ibarra-Pérez, F.J.; Zambrano-Galván, G.; Gallegos-Infante, J.A. Antioxidant and antimutagenic activity of phenolic compounds in three different colour groups of common bean cultivars (Phaseolus vulgaris). Food Chem. 2007, 103, 521–527. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Hapsari, S.; Yohed, I.; Kristianita, R.A.; Jadid, N.; Aparamarta, H.W.; Gunawan, S. Phenolic and flavonoid compounds extraction from Calophyllum inophyllum leaves. Arab. J. Chem. 2022, 15, 103666. [Google Scholar] [CrossRef]
- Pedreschi, R.; Cisneros-Zevallos, L. Antimutagenic and antioxidant properties of phenolic fractions from Andean purple corn (Zea mays L.). J. Agric. Food Chem. 2006, 54, 4557–4567. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Muñoz, A.M.; Alvarado-Ortíz, C.; Alvarado, Á.; Yáñez, J.A. Purple Corn (Zea mays L.) Phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J. Med. Food 2012, 15, 206–215. [Google Scholar] [CrossRef]
- Salinas-Moreno, Y.; Soto-Hernández, M.; Martínez-Bustos, F.; González-Hernández, V.; Ortega-Paczka, R. Análisis de antocianinas en maíces de grano azul y rojo provenientes de cuatro razas. Rev. Fitotec. Mex. 1999, 22, 161. [Google Scholar] [CrossRef]
- Chen, C.; Somavat, P.; Singh, V.; Gonzalez de Mejia, E. Chemical characterization of proanthocyanidins in purple, blue, and red maize coproducts from different milling processes and their anti-inflammatory properties. Ind. Crops Prod. 2017, 109, 464–475. [Google Scholar] [CrossRef]
- Pilu, R.; Cassani, E.; Sirizzotti, A.; Petroni, K.; Tonelli, C. Effect of flavonoid pigments on the accumulation of fumonisin B1 in the maize kernel. J. Appl. Genet. 2011, 52, 145–152. [Google Scholar] [CrossRef]
- Çetin-Babaoğlu, H.; Yalım, N.; Kale, E.; Tontul, S.A. Pigmented whole maize grains for functional value added and low glycemic index snack production. Food Biosci. 2021, 44, 101349. [Google Scholar] [CrossRef]
- Vázquez-Carrillo, M.G.; Palos-Hernández, A.; González-Paramás, A.M.; Santos-Buelga, C.; García-Cruz, L.; Arellano-Vázquez, J.L.; Rojas-Martínez, I. Blue maize with pigmented germ: Phytochemical compounds and tortilla color. Food Chem. 2025, 463, 141109. [Google Scholar] [CrossRef]
- Žilić, S.; Serpen, A.; Akıllıoğlu, G.; Gökmen, V.; Vančetović, J. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored caize (Zea mays L.) Kernels. J. Agric. Food Chem. 2012, 60, 1224–1231. [Google Scholar] [CrossRef]
- Suriano, S.; Balconi, C.; Valoti, P.; Redaelli, R. Comparison of total polyphenols, profile anthocyanins, color analysis, carotenoids and tocols in pigmented maize. LWT 2021, 144, 111257. [Google Scholar] [CrossRef]
- Prior, R.L.; Fan, E.; Ji, H.; Howell, A.; Nio, C.; Payne, M.J.; Reed, J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agric. 2010, 90, 1473–1478. [Google Scholar] [CrossRef]
- CONABIO. Base de Datos del Proyecto Global “Recopilación, Generación, Actualización y Análisis de Información Acerca de la Diversidad Genética de Maíces y Sus Parientes Silvestres en México”. 2017. Available online: https://www.biodiversidad.gob.mx/diversidad/proyectoMaices (accessed on 6 March 2025).
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Salinas Moreno, Y.; Sánchez, G.S.; Hernández, D.R.; Lobato, N.R. Characterization of anthocyanin extracts from maize kernels. J. Chromatogr. Sci. 2005, 43, 483–487. [Google Scholar] [CrossRef]
- Sumczynski, D.; Bubelova, Z.; Sneyd, J.; Erb-Weber, S.; Mlcek, J. Total phenolics, flavonoids, antioxidant activity, crude fibre and digestibility in non-traditional wheat flakes and muesli. Food Chem. 2015, 174, 319–325. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Evaluation of parameters that affect the 4-Dimethylaminocinnamaldehyde assay for flavanols and proanthocyanidins. J. Food Sci. 2010, 75, C619–C625. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Chadha, S.; Kale, S.P. Simple fluorescence-based high throughput cell viability assay for filamentous fungi. Lett. Appl. Microbiol. 2015, 61, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Fuentes, Y.; Cerna-Chávez, E.; Landeros-Flores, J.; Hernández-Camacho, S.; Delgado-Ortiz, J. Evaluación in vitro de la actividad antifúngica de cuatro extractos vegetales metanólicos para el control de tres especies de Fusarium spp. Phyton 2012, 81, 69–73. [Google Scholar]
- Edenharder, R.; Tang, X. Inhibition of the mutagenicity of 2-nitrofluorene, 3-nitrofluoranthene and 1-nitropyrene by flavonoids, coumarins, quinones and other phenolic compounds. Food Chem. Toxicol. 1997, 35, 357–372. [Google Scholar] [CrossRef]
- Socaci, S.A.; Fărcaş, A.C.; Diaconeasa, Z.M.; Vodnar, D.C.; Rusu, B.; Tofană, M. Influence of the extraction solvent on phenolic content, antioxidant, antimicrobial and antimutagenic activities of brewers’ spent grain. J. Cereal Sci. 2018, 80, 180–187. [Google Scholar] [CrossRef]
- Cruz, L.; Basílio, N.; Mateus, N.; de Freitas, V.; Pina, F. Natural and synthetic flavylium-based dyes: The chemistry behind the color. Chem. Rev. 2022, 122, 1416–1481. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Rafie, R. Extraction solvents affect anthocyanin yield, color, and profile of strawberries. Plants 2023, 12, 1833. [Google Scholar] [CrossRef]
- Cassani, E.; Puglisi, D.; Cantaluppi, E.; Landoni, M.; Giupponi, L.; Giorgi, A.; Pilu, R. Genetic studies regarding the control of seed pigmentation of an ancient European pointed maize (Zea mays L.) rich in phlobaphenes: The “Nero Spinoso” from the Camonica valley. Genet. Resour. Crop Evol. 2017, 64, 761–773. [Google Scholar] [CrossRef]
- Hu, C.; Li, Q.; Shen, X.; Quan, S.; Lin, H.; Duan, L.; Wang, Y.; Luo, Q.; Qu, G.; Han, Q.; et al. Characterization of factors underlying the metabolic shifts in developing kernels of colored maize. Sci. Rep. 2016, 6, 35479. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.D.; Monsierra, L.; Mansilla, P.S.; Pérez, G.T.; de Pascual-Teresa, S. Phenolic characterization of a purple maize (Zea mays cv. “Moragro”) by HPLC–QTOF-MS and study of its bioaccessibility using a simulated in vitro digestion/Caco-2 culture model. J. Agric. Food Chem. 2024, 72, 6327–6338. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 1998, 46, 4267–4274. [Google Scholar] [CrossRef]
- Ramírez-García, O.; Salinas-Moreno, Y.; Santillán-Fernández, A.; Sumaya-Martínez, M.T. Screening antioxidant capacity of Mexican maize (Zea mays L.) landraces with colored grain using ABTS, DPPH and FRAP methods. Cereal Res. Commun. 2022, 50, 1075–1083. [Google Scholar] [CrossRef]
- Kelm, M.A.; Hammerstone, J.F.; Schmitz, H.H. Identification and quantitation of flavanols and proanthocyanidins in foods: How good are the datas? J. Immunol. Res. 2005, 12, 252869. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Antioxidant activity of anthocyanins and anthocyanidins: A critical review. Int. J. Mol. Sci. 2024, 25, 12001. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B.; Kumar, S.; Kaur, C.; Devi, V.; Chaudhary, D.P.; Singh, A.; Dagla, M.C.; Karjagi, C.G.; Saleena, L.A.K.; Chandran, D.; et al. Beyond colors: The health benefits of maize anthocyanins. Appl. Food Res. 2024, 4, 100399. [Google Scholar] [CrossRef]
- Simonetti, G.; Brasili, E.; Pasqua, G. Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules 2020, 25, 3748. [Google Scholar] [CrossRef]
- Glazer, I.; Masaphy, S.; Marciano, P.; Bar-Ilan, I.; Holland, D.; Kerem, Z.; Amir, R. Partial identification of antifungal compounds from Punica granatum peel extracts. J. Agric. Food Chem. 2012, 60, 4841–4848. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jiang, L.; Ran, W.; Zhong, K.; Zhao, Y.; Gao, H. Antimicrobial activities of natural flavonoids against foodborne pathogens and their application in food industry. Food Chem. 2024, 460, 140476. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Díaz, S.; Ortiz-Valerio, M.d.C.; Castaño-Tostado, E.; Figueroa-Cárdenas, J.d.D.; Reynoso-Camacho, R.; Ramos-Gómez, M.; Campos-Vega, R.; Loarca-Piña, G. Antioxidant capacity and antimutagenic activity of anthocyanin and carotenoid extracts from nixtamalized pigmented creole maize races (Zea mays L.). Plant Foods Hum. Nutr. 2012, 67, 442–449. [Google Scholar] [CrossRef] [PubMed]
Grain Color | Sample ID | Acetonic Extract (AWAC) | |
---|---|---|---|
OD570nm | PFI | ||
BR | |||
03 | 0.133 ± 0.001 | 41.5 ± 0.3 | |
06 | 0.132 ± 0.001 | 21.0 ± 0.4 | |
CR | |||
14 | 0.134 ± 0.001 | 19.0 ± 0.1 | |
20 | 0.130 ± 0.002 | 51.5 ± 0.2 | |
BP | |||
36 | 0.136 ± 0.001 | 16.5 ± 0.2 | |
51 | 0.137 ± 0.002 | 43.5 ± 0.1 | |
Positive control (Itraconazole) | 0.135 ± 0.001 | 63.0 ± 0.2 | |
Negative control | 0.189 ± 0.001 | 0.0 |
Extract | TAC | TSP | FLAV | PAs |
---|---|---|---|---|
AWACBR06 | 0.37 ± 0.01 | 105.39 ± 0.49 | 28.64 ± 0.06 | 2.29 ± 0.0 |
AWACCR20 | 1.19 ± 0.00 | 97.09 ± 1.23 | 44.0 ± 1.41 | 3.01 ± 0.02 |
AWACBP51 | 2.35 ± 0.01 | 78.93 ± 0.09 | 43.32 ± 1.67 | 1.87 ± 0.02 |
MTFABR06 | 1.23 ± 0.0 | 85.54 ± 0.7 | 14.64 ± 0.58 | 2.37 ± 0.0 |
MTFACR20 | 3.56 ± 0.02 | 71.57 ± 1.1 | 9.80 ± 0.22 | 2.71 ± 0.08 |
MTFABP51 | 11.06 ± 0.03 | 86.17 ± 0.06 | 9.84 ± 0.48 | 3.06 ± 0.0 |
Type of Solvent | Sample | Number of Revertants | |||
---|---|---|---|---|---|
TA98 | TA100 | ||||
Mean | % IN | Mean | % IN | ||
Control (−) | 32 ± 0.6 | 90.5 ± 3.5 | |||
AWAC | BP51 | NG | ------ | NG | ------ |
CR20 | NG | ------ | NG | ------ | |
BR06 | NG | ------ | NG | ------ | |
AWAC † | |||||
BP51 | 36 ± 4.6 | 72.7 | 237 ± 5.7 | 40.2 | |
CR20 | 19 ± 2.7 | 85.6 | 330 ± 1.73 | 16.7 | |
BR06 | NG | 325 ± 3.0 | 17.9 | ||
MTFA | |||||
BP51 | 14 | 89.4 | 222 | 43.9 | |
CR20 | 25 | 81.1 | 242 | 38.9 | |
BR06 | 36.5 | 72.3 | 232 | 41.4 | |
MTFA † | |||||
BP51 | 29.3 ± 2.5 | 77.6 | 131 ± 3.0 | 66.9 | |
CR20 | 36.5 ± 5.5 | 72.3 | 152 ± 10.3 | 61.6 | |
BR06 | 23 ± 3.0 | 82.6 | 168 ± 4.6 | 57.6 | |
MMS a | 132 ± 7.4 | 396 ± 22.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas-Moreno, Y.; Martínez-Ortiz, M.Á.; Padilla-Camberos, E.; Ramírez-Díaz, J.L.; Ledesma-Miramontes, A.; Alemán de la Torre, I.; Santillán-Fernández, A. Effect of Solvent and Grain Color on the Biological Activities of Maize Grain. Foods 2025, 14, 1163. https://doi.org/10.3390/foods14071163
Salinas-Moreno Y, Martínez-Ortiz MÁ, Padilla-Camberos E, Ramírez-Díaz JL, Ledesma-Miramontes A, Alemán de la Torre I, Santillán-Fernández A. Effect of Solvent and Grain Color on the Biological Activities of Maize Grain. Foods. 2025; 14(7):1163. https://doi.org/10.3390/foods14071163
Chicago/Turabian StyleSalinas-Moreno, Yolanda, Miguel Ángel Martínez-Ortiz, Eduardo Padilla-Camberos, José Luis Ramírez-Díaz, Alejandro Ledesma-Miramontes, Ivone Alemán de la Torre, and Alberto Santillán-Fernández. 2025. "Effect of Solvent and Grain Color on the Biological Activities of Maize Grain" Foods 14, no. 7: 1163. https://doi.org/10.3390/foods14071163
APA StyleSalinas-Moreno, Y., Martínez-Ortiz, M. Á., Padilla-Camberos, E., Ramírez-Díaz, J. L., Ledesma-Miramontes, A., Alemán de la Torre, I., & Santillán-Fernández, A. (2025). Effect of Solvent and Grain Color on the Biological Activities of Maize Grain. Foods, 14(7), 1163. https://doi.org/10.3390/foods14071163