The Potential of Cultivated Mushrooms as Salt Substitutes in Meat Products
Abstract
:1. Introduction
2. Mushrooms: Composition, Functional Properties, and Food Applications
2.1. Composition and Functional Properties of Edible Mushrooms
2.2. Applications of Cultivated Mushrooms as Substitutes for Food Ingredients and/or Additives
3. Reduced Salt Meat Products
3.1. Functions of Salt in Meat Products
- (a)
- Technological role of salt in meat products: Salt is essential for the solubilization of meat myofibrillar proteins, which are responsible for the gelling and emulsifying properties of the meat matrix [69]. In addition, salt activates the extraction of meat proteins by improving hydration and water-holding capacity, contributing to improved post-cooking yields of meat products. Other associated effects are increased juiciness and viscosity of meat batters, resulting in the formation of heat-stable emulsions (e.g., frankfurters) [70].
- (b)
- Antimicrobial role of salt in meat products: the antimicrobial activity of salt is based on its ability to reduce the water activity of the meat product, which depends on the amount of salt in the aqueous phase. The presence of salt in the meat matrix can either cause an osmotic shock to the micro-organisms, resulting in their death, or cause serious damage to bacterial cells, resulting in a significant decrease in their multiplication [71]. This property is closely related to the preservation and shelf life of the meat products in which it is incorporated and must be taken into account when reducing the salt content. For example, a study [72] found that reducing salt in bacon from 3.5% to 2.3% decreased shelf life from 56 to 28 days.
- (c)
- Sensory role of salt in meat products: Salt by itself has a very important flavoring effect on the foods in which it is incorporated, although it has also been described as a flavor enhancer. In the case of meat products, the sensory aspects that are affected by salt are not only flavor and aroma but also many textural attributes such as juiciness, cohesiveness, hardness, etc., which are determined by the technological effects mentioned above [68,70].
3.2. Strategies to Reduce Salt in Meat Products
- (a)
- Reformulation of the meat product: Firstly, sodium chloride and other sodium-containing additives typical in the production of cured meat products (such as sodium phosphate, sodium ascorbate, etc.) were replaced by other salts such as potassium chloride or calcium chloride, potassium phosphate, potassium ascorbate, etc. [73]. However, drawbacks such as the appearance of bitter and metallic flavors in the products were reported [74]. To overcome this problem, 50% salt substitutions (using 50% sodium chloride and 50% potassium chloride) combined with the addition of some additives or spices were tested in order to mask these bitter flavors. Some successful studies have been reported, such as the development of a low-salt cured ham (50% salt reduction compared to traditional ham) using potassium lactate as a partial salt substitute [75]. It has also been reported that a balanced combination of potassium and sodium phosphate in the formulation of meat products can effectively reduce the sodium content by 10% and 30% in the finished product without affecting its sensory properties or safety.
- (b)
- Technological developments make it possible to apply treatments that improve the diffusion of salt in the meat structure so that the same technological functionality can be achieved with a lower salt content without compromising the safety, texture, and flavor of the final product. In this sense, there are very interesting studies on the application of ultrasound [78]. This technology uses sound waves with frequencies higher than those detected by the human ear (>20 kHz). These applications have been performed at intensities higher than 1 W/cm2 and at frequencies between 20 and 100 kHz, proving effective in many areas, but especially in protein extraction and inactivation of micro-organisms (by modifications of the permeability of their membranes), two of the most important functions of salt [79]. These effects would accelerate processes such as curing, marinating, and drying meat and meat products, with lower amounts of salt required to achieve the same effects. Many of the parameters involved still need to be optimized for each particular product because it can sometimes increase lipid oxidation and modify sensory characteristics [78], but results on chicken meat products are very promising [80].
4. Application of Cultivated Mushrooms as Salt Substitutes in Food Production
Mushroom Species | Meat Product | Reduction of Salt | Features Affected | Reference |
---|---|---|---|---|
A. bisporus | Mixed beef for tacos | 25% | Improved aroma and flavor | [84] |
A. bisporus | Taco meat mix | 25% | Improved aroma and flavor | [40] |
A. bisporus/P. ostreatus | Frankfurter sausages | 50% | Color (dark) Sensory acceptable | [48] |
A. bisporus/P. ostreatus | Beef burger | 50% | Changes in texture and color Sensory acceptable | [49] |
A. bisporus/P. ostreatus | Pâté | 50% | Sensory acceptable Improved texture Color (dark) | [89] |
A. bisporus | Taco meat mix | 45% | Improved aroma and flavor | [45] |
F. velutipes | Chicken sausages | 25% | Delays lipid oxidation Textural changes No change in color or sensory properties | [60] |
A. bisporus | Chicken nuggets | 25 and 50% | Improved aroma and flavor Improved textural changes due to salt reduction | [74] |
L. edodes | Beef burger | 50% | Improved aroma and flavor | [86] |
A. bisporus | Beef burger | 38 and 75% | Sensory modifications at high % substitution Retards oxidation | [50] |
P. ostreatus/A. bisporus/A. brunnescen | Beef burger | 55 and 61% | Increased cooking loss and shrinkage Sensory acceptable | [87] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FEN. Federación Española de la Nutrición. La Ingesta de Sodio Procedente de Alimentos y Bebidas Excede los Límites Reco-mendados en la Población Española: Estudio Científico ANIBES. nº 30. 2020. Available online: https://www.fen.org.es/anibes/archivos/documentos/ANIBES_numero_30.pdf (accessed on 10 February 2024).
- Ruusunen, M.; Puolanne, E. Reducing sodium intake from meat products. Meat Sci. 2005, 70, 531–541. [Google Scholar] [CrossRef] [PubMed]
- UE. Reglamento (CE) No 1924/2006 Del Parlamento Europeo y Del Consejo de 20 de Diciembre de 2006 Relativo a Las Decla-raciones Nutricionales y de Propiedades Saludables en los Alimentos. 2006. Available online: https://www.boe.es/doue/2006/404/L00009-00025.pdf (accessed on 1 March 2024).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 6 September 2022).
- Michael, H.W.; Bultosa, G.; Pant, L.M. Nutritional contents of three edible oyster mushrooms grown on two substrates at Haramaya, Ethiopia, and sensory properties of boiled mushroom and mushroom sauce. Int. J. Food Sci. Technol. 2011, 46, 732–738. [Google Scholar] [CrossRef]
- Dermiki, M.; Phanphensophon, N.; Mottram, D.S.; Methven, L. Contributions of non-volatile and volatile compounds to the umami taste and overall flavour of shiitake mushroom extracts and their application as flavour enhancers in cooked minced meat. Food Chem. 2013, 141, 77–83. [Google Scholar] [CrossRef]
- Phat, C.; Moon, B.K.; Lee, C. Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system. Food Chem. 2016, 192, 1068–1077. [Google Scholar] [CrossRef]
- Singh, U.; Tiwari, P.; Kelkar, S.; Kaul, D.; Tiwari, A.; Kapri, M.; Sharma, S. Edible mushrooms: A sustainable novel ingredient for meat analogs. eFood 2023, 4, e122. [Google Scholar] [CrossRef]
- Lewin, B. Mushrooms: Coming Soon to a Burger near You. Nature 2018, 555, 560. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Popović-Djordjević, J.; Solak, M.H. Wild edible mushrooms from Mediterranean region: Metal concentrations and health risk assessment. Ecotoxicol. Environ. Saf. 2020, 190, 110058. [Google Scholar] [CrossRef]
- Jasinska, A. Sustainability of Mushroom Cultivation Systems. Horticulturae 2023, 9, 1191. [Google Scholar] [CrossRef]
- Chadha, K.; Sharma, S. Mushroom Research in India-History, Infrastructure and Achievements. In Advances in Horticulture; Chadha, K.L., Ed.; Malhotra Publishing House: New Delhi, India, 1995; pp. 1–8. [Google Scholar]
- Kakon, A.; Choudhury, B.K.; Saha, S. Mushroom is an Ideal Food Supplement. J. Dhaka Natl. Med. Coll. Hosp. 2012, 18, 58–62. [Google Scholar] [CrossRef]
- Fufa, B.K.; Tadesse, B.A.; Tulu, M.M. Cultivation of Pleurotus ostreatus on Agricultural Wastes and Their Combination. Int. J. Agron. 2021, 2021, 1–6. [Google Scholar] [CrossRef]
- Desisa, B.; Muleta, D.; Dejene, T.; Jida, M.; Goshu, A.; Negi, T.; Martin-Pinto, P. Utilization of local agro-industrial by-products based substrates to enhance production and dietary value of mushroom (P. ostreatus) in Ethiopia. World J. Microbiol. Biotechnol. 2024, 40, 277. [Google Scholar] [CrossRef]
- Torres-Martínez, B.d.M.; Vargas-Sánchez, R.D.; Torrescano-Urrutia, G.R.; Esqueda, M.; Rodríguez-Carpena, J.G.; Fernández-López, J.; Perez-Alvarez, J.A.; Sánchez-Escalante, A. Pleurotus Genus as a Potential Ingredient for Meat Products. Foods 2022, 11, 779. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Nanda, P.K.; Dandapat, P.; Bandyopadhyay, S.; Gullón, P.; Sivaraman, G.K.; McClements, D.J.; Gullón, B.; Lorenzo, J.M. Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules 2021, 26, 2463. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Montes, A.; Rangel-Vargas, E.; Lorenzo, J.M.; Romero, L.; Santos, E.M. Edible mushrooms as a novel trend in the development of healthier meat products. Curr. Opin. Food Sci. 2021, 37, 118–124. [Google Scholar] [CrossRef]
- Effiong, M.E.; Umeokwochi, C.P.; Afolabi, I.S.; Chinedu, S.N. Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Front. Nutr. 2024, 10, 1279208. [Google Scholar] [CrossRef]
- Beulah, H.; Margret, A.A.; Nelson, J. Marvelous Medicinal Mushrooms. Int. J. Pharma Bio Sci. 2013, 3, 611–615. [Google Scholar]
- Real Decreto 30/2009. Por el Que Se Establecen las Condiciones Sanitarias para la Comercialización de Setas para Uso Alimentario. 2009. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2009-1110 (accessed on 16 February 2024).
- López-Díaz, M.T. Propiedades Nutricionales y Funcionales de Las Setas. (Blog de Divulgación Científica Dra. Teresa Ma López Díaz). Available online: https://propiedadesnutricionalessetas.blogspot.com/2016/11/composicion-quimica-de-las-setas.html (accessed on 6 September 2022).
- Kalac, P. Edible Mushrooms. Chemical Composition and Nutritional, 1st ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Tolera, K.D.; Abera, S. Nutritional quality of Oyster Mushroom (Pleurotus ostreatus) as affected by osmotic pretreatments and drying methods. Food Sci. Nutr. 2017, 5, 989–996. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Kolonas, A.; Mourtakos, S.; Androutsos, O.; Gortzi, O. Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species. Appl. Sci. 2022, 12, 8074. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture. Food Data Central. 2022. Available online: https://fdc.nal.usda.gov/ (accessed on 10 April 2024).
- Bach, F.; Helm, C.V.; Bellettini, M.B.; Maciel, G.M.; Haminiuk, C.W.I. Edible mushrooms: A potential source of essential amino acids, glucans and minerals. Int. J. Food Sci. Technol. 2017, 52, 2382–2392. [Google Scholar] [CrossRef]
- Bermúdez-Gómez, P.; Fernández-López, J.; Pérez-Clavijo, M.; Viuda-Martos, M. Evaluation of Sample Size Influence on Chemical Characterization and In Vitro Antioxidant Properties of Flours Obtained from Mushroom Stems Coproducts. Antioxidants 2024, 13, 349. [Google Scholar] [CrossRef]
- Yadav, D.; Negi, P.S. Bioactive components of mushrooms: Processing effects and health benefits. Food Res. Int. 2021, 148, 110599. [Google Scholar] [CrossRef]
- Cheung, P.C. Mini-review on edible mushrooms as source of dietary fiber: Preparation and health benefits. Food Sci. Hum. Wellness 2013, 2, 162–166. [Google Scholar] [CrossRef]
- Adebayo, E.A.; Martínez-Carrera, D.; Morales, P.; Sobal, M.; Escudero, H.; Meneses, M.E.; Avila-Nava, A.; Castillo, I.; Bonilla, M. Comparative Study of Antioxidant and Antibacterial Properties of the Edible Mushrooms Pleurotus levis, P. ostreatus, P. pulmonarius and P. tuber-regium. Int. J. Food. Sci. Technol. 2018, 53, 1316–1330. [Google Scholar] [CrossRef]
- Buruleanu, L.C.; Radulescu, C.; Georgescu, A.A.; Danet, F.A.; Olteanu, R.L.; Nicolescu, C.M.; Dulama, I.D. Statistical Characterization of the Phytochemical Characteristics of Edible Mushroom Extracts. Anal. Lett. 2018, 51, 1039–1059. [Google Scholar] [CrossRef]
- Ramos, M.; Burgos, N.; Barnard, A.; Evans, G.; Preece, J.; Graz, M.; Ruthes, A.C.; Jiménez-Quero, A.; Martínez-Abad, A.; Vilaplana, F.; et al. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem. 2019, 292, 176–187. [Google Scholar] [CrossRef]
- Borchers, A.T.; Krishnamurthy, A.; Keen, C.L.; Meyers, F.J.; Gershwin, M.E. The Immunobiology of Mushrooms. Exp. Biol. Med. 2008, 233, 259–276. [Google Scholar] [CrossRef]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol. 2015, 2015, 1–14. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Aida, F.M.N.A.; Shuhaimi, M.; Yazid, M.; Maaruf, A.G. Mushroom as a Potential Source of Prebiotics: A Review. Trends Food Sci. Technol. 2009, 20, 567–575. [Google Scholar] [CrossRef]
- Chou, W.; Sheih, I.; Fang, T.J. The Applications of Polysaccharides from Various Mushroom Wastes as Prebiotics in Different Systems. J. Food Sci. 2013, 78, M1041–M1048. [Google Scholar] [CrossRef]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.; Wang, W. Recent developments on umami ingredients of edible mushrooms–A review. Trends Food Sci. Technol. 2013, 33, 78–92. [Google Scholar] [CrossRef]
- Guinard, J.-X.; Myrdal Miller, A.; Mills, K.; Wong, T.; Lee, S.M.; Sirimuangmoon, C.; Schaefer, S.E.; Drescher, G. Consumer Acceptance of Dishes in Which Beef Has Been Partially Substituted with Mushrooms and Sodium Has Been Reduced. Appetite 2016, 105, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zhang, L.-L.; Zhao, J.; Zhang, Y.-Y.; Sun, B.-G.; Chen, H.-T. Isolation and identification of the umami peptides from shiitake mushroom by consecutive chromatography and LC-Q-TOF-MS. Food Res. Int. 2019, 121, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.-H.; Asyikeen Zulkifli, N.; Tan, T.-C. Edible Mushroom: Nutritional Properties, Potential Nutraceutical Values, and Its Utilisation in Food Product Development. In An Introduction to Mushroom; IntechOpen: London, UK, 2020. [Google Scholar]
- Marçal, S.; Sousa, A.S.; Taofiq, O.; Antunes, F.; Morais, A.M.M.B.; Freitas, A.C.; Barros, L.; Ferreira, I.C.F.R.; Pintado, M. Impact of Postharvest Preservation Methods on Nutritional Value and Bioactive Properties of Mushrooms. Trends Food Sci. Technol. 2021, 110, 418–431. [Google Scholar] [CrossRef]
- Bermúdez-Gómez, P.; Fernández-López, J.; Pérez-Clavijo, M.; Viuda-Martos, M. Optimization of Mushroom (Agaricus bisporus and Pleurotus ostreatus) By-Products Processing for Prospective Functional Flour Development. Foods 2024, 13, 4046. [Google Scholar] [CrossRef]
- Wong, K.M.; Decker, E.A.; Autio, W.R.; Toong, K.; DiStefano, G.; Kinchla, A.J. Utilizing Mushrooms to Reduce Overall Sodium in Taco Filling Using Physical and Sensory Evaluation. J. Food Sci. 2017, 82, 2379–2386. [Google Scholar] [CrossRef]
- Wang, L.; Guo, H.; Liu, X.; Jiang, G.; Li, C.; Li, X.; Li, Y. Roles of Lentinula edodes as the pork lean meat replacer in production of the sausage. Meat Sci. 2019, 156, 44–51. [Google Scholar] [CrossRef]
- Wan-Mohtar, W.A.A.Q.I.; Halim-Lim, S.A.; Kamarudin, N.Z.; Rukayadi, Y.; Abd Rahim, M.H.; Jamaludin, A.A.; Ilham, Z. Fruiting-body-base Flour from an Oyster Mushroom Waste in the Development of Antioxidative Chicken Patty. J. Food Sci. 2020, 85, 3124–3133. [Google Scholar] [CrossRef]
- Cerón-Guevara, M.I.; Rangel-Vargas, E.; Lorenzo, J.M.; Bermúdez, R.; Pateiro, M.; Rodríguez, J.A.; Sánchez-Ortega, I.; Santos, E.M. Reduction of Salt and Fat in Frankfurter Sausages by Addition of Agaricus bisporus and Pleurotus ostreatus Flour. Foods 2020, 9, 760. [Google Scholar] [CrossRef]
- Cerón-Guevara, M.I.; Rangel-Vargas, E.; Lorenzo, J.M.; Bermúdez, R.; Pateiro, M.; Rodriguez, J.A.; Sanchez-Ortega, I.; Santos, E.M. Effect of the addition of edible mushroom flours (Agaricus bisporus and Pleurotus ostreatus) on physicochemical and sensory properties of cold-stored beef patties. J. Food Process. Preserv. 2020, 44, e14351. [Google Scholar] [CrossRef]
- Patinho, I.; Selani, M.M.; Saldaña, E.; Bortoluzzi, A.C.T.; Rios-Mera, J.D.; da Silva, C.M.; Kushida, M.M.; Contreras-Castillo, C.J. Agaricus bisporus mushroom as partial fat replacer improves the sensory quality maintaining the instrumental characteristics of beef burger. Meat Sci. 2021, 172, 108307. [Google Scholar] [CrossRef]
- Heo, S.; Jeon, S.; Lee, S. Utilization of Lentinus edodes mushroom β-glucan to enhance the functional properties of gluten-free rice noodles. LWT-Food Sci. Technol. 2014, 55, 627–631. [Google Scholar] [CrossRef]
- Ng, S.H.; Robert, S.D.; Wan Ahmad, W.A.N.; Wan Ishak, W.R. Incorporation of Dietary Fibre-Rich Oyster Mushroom (Pleurotus sajor-caju) Powder Improves Postprandial Glycaemic Response by Interfering with Starch Granule Structure and Starch Digestibility of Biscuit. Food Chem. 2017, 227, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Zhao, L.; Yang, W.; McClements, D.J.; Hu, Q. Enrichment of Bread with Nutraceutical-Rich Mushrooms: Impact of Auricularia auricula (Mushroom) Flour Upon Quality Attributes of Wheat Dough and Bread. J. Food Sci. 2017, 82, 2041–2050. [Google Scholar] [CrossRef] [PubMed]
- Arora, B.; Kamal, S.; Sharma, V.P. Nutritional and quality characteristics of instant noodles supplemented with oyster mushroom (P. ostreatus). J. Food Process. Preserv. 2018, 42, e13521. [Google Scholar] [CrossRef]
- Rathore, H.; Sehwag, S.; Prasad, S.; Sharma, S. Technological, nutritional, functional and sensorial attributes of the cookies fortified with Calocybe indica mushroom. J. Food Meas. Charact. 2019, 13, 976–987. [Google Scholar] [CrossRef]
- Salehi, F. Characterization of different mushrooms powder and its application in bakery products: A review. Int. J. Food Prop. 2019, 22, 1375–1385. [Google Scholar] [CrossRef]
- Parvin, R.; Farzana, T.; Mohajan, S.; Rahman, H.; Rahman, S.S. Quality improvement of noodles with mushroom fortified and its comparison with local branded noodles. NFS J. 2020, 20, 37–42. [Google Scholar] [CrossRef]
- Contato, A.G.; Conte-Junior, C.A. Mushrooms in innovative food products: Challenges and potential opportunities as meat substitutes, snacks and functional beverages. Trends Food Sci. Technol. 2025, 156, 104868. [Google Scholar] [CrossRef]
- Choe, J.; Lee, J.; Jo, K.; Jo, C.; Song, M.; Jung, S. Application of winter mushroom powder as an alternative to phosphates in emulsion-type sausages. Meat Sci. 2018, 143, 114–118. [Google Scholar] [CrossRef]
- Jo, K.; Lee, J.; Jung, S. Quality Characteristics of Low-Salt Chicken Sausage Supplemented with a Winter Mushroom Powder. Korean J. Food Sci. Anim. Resour. 2018, 38, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, K.P.; Kerry, J.P.; Tiwari, B.K.; McDonnell, C.K. Novel processing technologies and ingredient strategies for the reduction of phosphate additives in processed meat. Trends Food Sci. Technol. 2019, 94, 43–53. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef]
- Du, X.; Muniz, A.; Sissons, J.; Wang, W.; Juma, S. Consumer acceptance of egg white partially substituted with mushrooms and mushroom–egg white flavor pairing. Food Sci. Nutr. 2021, 9, 1410–1421. [Google Scholar] [CrossRef]
- Van Ba, H.; Seo, H.-W.; Cho, S.-H.; Kim, Y.-S.; Kim, J.-H.; Ham, J.-S.; Park, B.Y.; Nam, S.P. Antioxidant and anti-foodborne bacteria activities of shiitake by-product extract in fermented sausages. Food Control. 2016, 70, 201–209. [Google Scholar] [CrossRef]
- Stojković, D.S.; Reis, F.S.; Ćirić, A.; Barros, L.; Glamočlija, J.; Ferreira, I.C.F.R.; Soković, M. Boletus aereus growing wild in Serbia: Chemical profile, in vitro biological activities, inactivation and growth control of food-poisoning bacteria in meat. J. Food Sci. Technol. 2015, 52, 7385–7392. [Google Scholar] [CrossRef]
- Rangel-Vargas, E.; Rodriguez, J.A.; Domínguez, R.; Lorenzo, J.M.; Sosa, M.E.; Andrés, S.C.; Rosmini, M.; Pérez-Alvarez, J.A.; Teixeira, A.; Santos, E.M. Edible Mushrooms as a Natural Source of Food Ingredient/Additive Replacer. Foods 2021, 10, 2687. [Google Scholar] [CrossRef]
- Mounir, S.; Mohamed, R.; Sunooj, K.V.; El-Saidy, S.; Farid, E. Assessing the effects of partially substituting chicken breast meat with oyster mushroom stalk powder on the quality attributes of mushroom-chicken burgers. Sci. Rep. 2025, 15, 4361. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yong, H.-I.; Jung, S.; Kim, H.-W.; Choi, Y.-S. Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review. Foods 2021, 10, 957. [Google Scholar] [CrossRef]
- Desmond, E. Reducing salt: A challenge for the meat industry. Meat Sci. 2006, 74, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Petit, G.; Jury, V.; de Lamballerie, M.; Duranton, F.; Pottier, L.; Martin, J. Salt Intake from Processed Meat Products: Benefits, Risks and Evolving Practices. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1453–1473. [Google Scholar] [CrossRef] [PubMed]
- Shelef, L.A.; Seites, J. Antimicrobials in Food. In Indirect and Miscellaneous Antimicrobials; Davidson, P.M., Sofos, J.N., Branen, A.L., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 573–598. ISBN 9780429116841. [Google Scholar]
- Stringer, S.C.; Pin, C. Microbial Risks Associated with Salt Reduction in Certain Foods and Alternative Options for Preservation; Technical Report; Institute of Food Research: Norwich, UK, 2005. [Google Scholar]
- Pateiro, M.; Munekata, P.E.; Cittadini, A.; Domínguez, R.; Lorenzo, J.M. Metallic-based salt substitutes to reduce sodium content in meat products. Curr. Opin. Food Sci. 2021, 38, 21–31. [Google Scholar] [CrossRef]
- Akesowan, A.; Jariyawaranugoon, U. Optimization of salt reduction and eggplant powder for chicken nugget formulation with white button mushroom as a meat extender. Food Res. 2021, 5, 277–284. [Google Scholar] [CrossRef]
- IRTA. Sesión de Demostración Sobre Jamón Curado Con Contenido de Sal Reducido. Available online: http://hdl.handle.net/2072/47937 (accessed on 7 September 2022).
- dos Santos, B.A.; Campagnol, P.C.B.; Morgano, M.A.; Pollonio, M.A.R. Monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl with KCl. Meat Sci. 2014, 96, 509–513. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, X.; Liu, Y. Characterization and evaluation of umami taste: A review. TrAC Trends Anal. Chem. 2020, 127, 115876. [Google Scholar] [CrossRef]
- Gómez-Salazar, J.A.; Galván-Navarro, A.; Lorenzo, J.M.; Sosa-Morales, M.E. Ultrasound effect on salt reduction in meat products: A review. Curr. Opin. Food Sci. 2021, 38, 71–78. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Leal-Ramos, M.Y.; Alarcon-Rojo, A.D.; Mason, T.J.; Paniwnyk, L.; Alarjah, M. Ultrasound-enhanced mass transfer in Halal compared with non-Halal chicken. J. Sci. Food Agric. 2011, 91, 130–133. [Google Scholar] [CrossRef]
- Ros-Polski, V.; Koutchma, T.; Xue, J.; Defelice, C.; Balamurugan, S. Effects of high hydrostatic pressure processing parameters and NaCl concentration on the physical properties, texture and quality of white chicken meat. Innov. Food Sci. Emerg. Technol. 2015, 30, 31–42. [Google Scholar] [CrossRef]
- Rodrigues, I.; Trindade, M.A.; Caramit, F.R.; Candoğan, K.; Pokhrel, P.R.; Barbosa-Cánovas, G.V. Effect of high pressure processing on physicochemical and microbiological properties of marinated beef with reduced sodium content. Innov. Food Sci. Emerg. Technol. 2016, 38, 328–333. [Google Scholar] [CrossRef]
- Clariana, M.; Guerrero, L.; Sárraga, C.; Díaz, I.; Valero, Á.; García-Regueiro, J.A. Influence of high pressure application on the nutritional, sensory and microbiological characteristics of sliced vacuum packed dry-cured ham. Effects along the storage period. Innov. Food Sci. Emerg. Technol. 2011, 12, 456–465. [Google Scholar] [CrossRef]
- Myrdal Miller, A.; Mills, K.; Wong, T.; Drescher, G.; Lee, S.M.; Sirimuangmoon, C.; Schaefer, S.; Langstaff, S.; Minor, B.; Guinard, J.-X. Flavor-Enhancing Properties of Mushrooms in Meat-Based Dishes in Which Sodium Has Been Reduced and Meat Has Been Partially Substituted with Mushrooms. J. Food Sci. 2014, 79, S1795–S1804. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.M.; Corradini, M.G.; Autio, W.; Kinchla, A.J. Sodium reduction strategies through use of meat extenders (white button mushrooms vs. textured soy) in beef patties. Food Sci. Nutr. 2019, 7, 506–518. [Google Scholar] [CrossRef]
- Mattar, T.V.; Gonçalves, C.S.; Pereira, R.C.; Faria, M.A.; de Souza, V.R.; Carneiro, J.d.D.S. A Shiitake Mushroom Extract as a Viable Alternative to NaCl for a Reduction in Sodium in Beef Burgers. Br. Food J. 2018, 120, 1366–1380. [Google Scholar] [CrossRef]
- Botella-Martínez, C.; Muñoz-Tebar, N.; Lucas-González, R.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Assessment of Chemical, Physico-Chemical and Sensory Properties of Low-Sodium Beef Burgers Formulated with Flours from Different Mushroom Types. Foods 2023, 12, 3591. [Google Scholar] [CrossRef]
- dos Santos, F.F.; Dantas, N.M.; Simoni, N.K.; Pontes, L.S.; Pinto-E-Silva, M.E.M. Are foods naturally rich in glutamic acid an alternative to sodium reduction? Food Sci. Technol. 2020, 40, 190–196. [Google Scholar] [CrossRef]
- Cerón-Guevara, M.I.; Santos, E.M.; Lorenzo, J.M.; Pateiro, M.; Bermúdez-Piedra, R.; Rodríguez, J.A.; Castro-Rosas, J.; Rangel-Vargas, E. Partial replacement of fat and salt in liver pâté by addition of Agaricus bisporus and Pleurotus ostreatus flour. Int. J. Food Sci. Technol. 2021, 56, 6171–6181. [Google Scholar] [CrossRef]
- Hu, S.; Feng, X.; Huang, W.; Ibrahim, S.A.; Liu, Y. Effects of drying methods on non-volatile taste components of Stropharia rugoso-annulata mushrooms. LWT 2020, 127, 109428. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, Y.; Gong, X.; Xu, H.; Xin, G. Evaluation of umami taste components of mushroom (Suillus granulatus) of different grades prepared by different drying methods. Food Sci. Hum. Wellness 2020, 9, 192–198. [Google Scholar] [CrossRef]
- Chen, W.; Li, W.; Yang, Y.; Yu, H.; Zhou, S.; Feng, J.; Li, X.; Liu, Y. Analysis and Evaluation of Tasty Components in the Pileus and Stipe of Lentinula edodes at Different Growth Stages. J. Agric. Food Chem. 2015, 63, 795–801. [Google Scholar] [CrossRef]
- Harada-Padermo, S.d.S.; Dias-Faceto, L.S.; Selani, M.M.; Alvim, I.D.; Floh, E.I.S.; Macedo, A.F.; Bogusz, S.; Dias, C.T.d.S.; Conti-Silva, A.C.; Vieira, T.M.F.d.S. Umami Ingredient: Flavor Enhancer from Shiitake (Lentinula edodes) Byproducts. Food Res. Int. 2020, 137, 109540. [Google Scholar] [CrossRef] [PubMed]
- França, F.; Harada-Padermo, S.d.S.; Frasceto, R.A.; Saldaña, E.; Lorenzo, J.M.; Vieira, T.M.F.d.S.; Selani, M.M. Umami ingredient from shiitake (Lentinula edodes) by-products as a flavor enhancer in low-salt beef burgers: Effects on physicochemical and technological properties. LWT 2022, 154, 112724. [Google Scholar] [CrossRef]
Water | Proteins | Lipids | Carbohydrates | Fiber | |
---|---|---|---|---|---|
A. bisporus | 91.4 | 1.4 | 0.2 | 3.2 | 2.0 |
P. ostreatus | 88.8 | 3.2 | 0.3 | 5.4 | 1.5 |
A. brunnescens | 91.5 | 2.7 | 0.3 | 4.7 | 2.1 |
L. edodes | 88.6 | 2.4 | 0.2 | 6.8 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-López, J.; Viuda-Martos, M.; Botella-Martínez, C.; Muñoz-Bas, C.; Bermúdez-Gómez, P.; Lucas-González, R.; Pérez-Álvarez, J.Á. The Potential of Cultivated Mushrooms as Salt Substitutes in Meat Products. Foods 2025, 14, 977. https://doi.org/10.3390/foods14060977
Fernández-López J, Viuda-Martos M, Botella-Martínez C, Muñoz-Bas C, Bermúdez-Gómez P, Lucas-González R, Pérez-Álvarez JÁ. The Potential of Cultivated Mushrooms as Salt Substitutes in Meat Products. Foods. 2025; 14(6):977. https://doi.org/10.3390/foods14060977
Chicago/Turabian StyleFernández-López, Juana, Manuel Viuda-Martos, Carmen Botella-Martínez, Clara Muñoz-Bas, Patricia Bermúdez-Gómez, Raquel Lucas-González, and José Ángel Pérez-Álvarez. 2025. "The Potential of Cultivated Mushrooms as Salt Substitutes in Meat Products" Foods 14, no. 6: 977. https://doi.org/10.3390/foods14060977
APA StyleFernández-López, J., Viuda-Martos, M., Botella-Martínez, C., Muñoz-Bas, C., Bermúdez-Gómez, P., Lucas-González, R., & Pérez-Álvarez, J. Á. (2025). The Potential of Cultivated Mushrooms as Salt Substitutes in Meat Products. Foods, 14(6), 977. https://doi.org/10.3390/foods14060977