Artificial Intelligence-Driven Recommendations and Functional Food Purchases: Understanding Consumer Decision-Making
Abstract
:1. Introduction
2. Conceptual Framework and Hypotheses Development
2.1. Conceptual Framework
2.2. Hypotheses Development
2.2.1. Direct Effects of AI Recommendation and Functional Food Attributes on Purchase Intention
2.2.2. The Mediating Role of Perceived Packaging
2.2.3. The Mediating Role of Perceived Value
2.2.4. The Influence of Mediating Variables on Purchase Intention
3. Materials and Methods
3.1. Research Design
3.2. Measures
3.3. Data Analysis Methods
3.4. Data Analysis Procedure
4. Results
4.1. Descriptive Statistics
4.2. Measurement Model Evaluation
4.2.1. Reliability and Convergent Validity
4.2.2. Discriminant Validity
4.3. Correlation Analysis
4.4. Structural Equation Modeling Analysis
4.4.1. Model Fit Assessment
4.4.2. Path Analysis
4.4.3. Mediation Analysis
5. Discussion
5.1. Summary and Interpretation of Key Findings
5.2. Theoretical Implications
5.3. Managerial Implications
5.4. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
TAM | Technology Acceptance Model |
AVE | Average Variance Extracted |
CFA | Confirmatory Factor Analysis |
CR | Composite Reliability |
EFA | Exploratory Factor Analysis |
MLE | Maximum Likelihood Estimation |
PI | Purchase Intention of Functional Foods |
PLAR | AI Recommendation Personalization |
TAR | AI Recommendation Transparency |
PHB | Perceived Health Benefits of Functional Foods |
FFA | Perceived Naturalness of Functional Foods |
PPF | Perceived Packaging of Functional Foods |
PV | Perceived Value of Functional Foods |
SOR | Stimulus–Organism–Response |
RR | Recommendation Relevance |
RD | Recommendation Diversity |
RMT | Recommendation Mechanism Transparency |
IT | Information Transparency |
IB | Immediate Health Benefits |
LB | Long-term Health Benefits |
HP | Health Perception |
IN | Ingredient Naturalness |
FPA | Functional Packaging Attributes |
APA | Aesthetic Packaging Appeal |
SEV | Self-esteem Value |
RFH | Responsibility for Health |
HSV | Health and Safety Value |
References
- The Trends Defining the $1.8 Trillion Global Wellness Market in 2024. Available online: https://www.mckinsey.com/industries/consumer-packaged-goods/our-insights/the-trends-defining-the-1-point-8-trillion-dollar-global-wellness-market-in-2024 (accessed on 3 March 2025).
- Irene Goetzke, B.; Spiller, A. Health-improving lifestyles of organic and functional food consumers. Br. Food J. 2014, 116, 510–526. [Google Scholar] [CrossRef]
- Annunziata, A.; Vecchio, R. Functional foods development in the European market: A consumer perspective. J. Funct. Foods 2011, 3, 223–228. [Google Scholar] [CrossRef]
- Hong, J.Y.; Kim, Y.J. Application of Big Data and Artificial Intelligence in The Research of Health Functional Foods. Food Suppl. Biomater. Health 2024, 4, e19. [Google Scholar] [CrossRef]
- Mengucci, C.; Ferranti, P.; Romano, A.; Masi, P.; Picone, G.; Capozzi, F. Food structure, function and artificial intelligence. Trends Food Sci. Technol. 2022, 123, 251–263. [Google Scholar] [CrossRef]
- Kumar, V.; Ashraf, A.R.; Nadeem, W. AI-powered marketing: What, where, and how? Int. J. Inf. Manag. 2024, 77, 102783. [Google Scholar] [CrossRef]
- Sgroi, F.; Sciortino, C.; Baviera-Puig, A.; Modica, F. Analyzing consumer trends in functional foods: A cluster analysis approach. J. Agric. Food Res. 2024, 15, 101041. [Google Scholar] [CrossRef]
- Tadimarri, A.; Jangoan, S.; Sharma, K.K.; Gurusamy, A. AI-powered marketing: Transforming consumer engagement and brand growth. Int. J. Multidiscip. Res. 2024, 6, 1–11. [Google Scholar]
- Mavani, N.R.; Ali, J.M.; Othman, S.; Hussain, M.; Hashim, H.; Rahman, N.A. Application of artificial intelligence in food industry—A guideline. Food Eng. Rev. 2022, 14, 134–175. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, C.K.; Jung, T. Exploring consumer behavior in virtual reality tourism using an extended stimulus-organism-response model. J. Travel Res. 2020, 59, 69–89. [Google Scholar] [CrossRef]
- Russell, J.A.; Mehrabian, A. Distinguishing anger and anxiety in terms of emotional response factors. J. Consult. Clin. Psychol. 1974, 42, 79. [Google Scholar] [CrossRef]
- Yadav, N.; Verma, S.; Chikhalkar, R.D. eWOM, destination preference and consumer involvement—A stimulus-organism-response (SOR) lens. Tour. Rev. 2022, 77, 1135–1152. [Google Scholar] [CrossRef]
- Gatautis, R.; Vitkauskaite, E.; Gadeikiene, A.; Piligrimiene, Z. Gamification as a mean of driving online consumer behaviour: SOR model perspective. Eng. Econ. 2016, 27, 90–97. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Alcántara-Pilar, J.M.; Singh, N.; Pavluković, V. Overview of the adoption of online food ordering services in Spain and India. An analytical approach based on the stimulus-organism-response model. Int. J. Hum.–Comput. Interact. 2024, 40, 3748–3762. [Google Scholar] [CrossRef]
- Vignesh, A.; Amal, T.C.; Sarvalingam, A.; Vasanth, K. A review on the influence of nutraceuticals and functional foods on health. Food Chem. Adv. 2024, 5, 100749. [Google Scholar] [CrossRef]
- Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univers. Access Inf. Soc. 2015, 14, 81–95. [Google Scholar] [CrossRef]
- Horowitz, M.C.; Kahn, L.; Macdonald, J.; Schneider, J. Adopting AI: How familiarity breeds both trust and contempt. AI Soc. 2024, 39, 1721–1735. [Google Scholar] [CrossRef]
- Knijnenburg, B.P.; Willemsen, M.C.; Gantner, Z.; Soncu, H.; Newell, C. Explaining the user experience of recommender systems. User Model. User-Adapt. Interact. 2012, 22, 441–504. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, W.; Xu, J.D.; Liu, T.; Gu, J. Perceived information transparency in B2C e-commerce: An empirical investigation. Inf. Manag. 2018, 55, 912–927. [Google Scholar] [CrossRef]
- Paschen, U.; Pitt, C.; Kietzmann, J. Artificial intelligence: Building blocks and an innovation typology. Bus. Horiz. 2020, 63, 147–155. [Google Scholar] [CrossRef]
- Loureiro, S.M.C.; Guerreiro, J.; Tussyadiah, I. Artificial intelligence in business: State of the art and future research agenda. J. Bus. Res. 2021, 129, 911–926. [Google Scholar] [CrossRef]
- Simonson, I. Determinants of customers’ responses to customized offers: Conceptual framework and research propositions. J. Mark. 2005, 69, 32–45. [Google Scholar] [CrossRef]
- Vlačić, B.; Corbo, L.; e Silva, S.C.; Dabić, M. The evolving role of artificial intelligence in marketing: A review and research agenda. J. Bus. Res. 2021, 128, 187–203. [Google Scholar] [CrossRef]
- Felzmann, H.; Fosch-Villaronga, E.; Lutz, C.; Tamò-Larrieux, A. Towards transparency by design for artificial intelligence. Sci. Eng. Ethics 2020, 26, 3333–3361. [Google Scholar] [CrossRef]
- Schelenz, L.; Segal, A.; Adelio, O.; Gal, K. Transparency-check: An instrument for the study and design of transparency in ai-based personalization systems. ACM J. Responsible Comput. 2024, 1, 8. [Google Scholar] [CrossRef]
- Walmsley, J. Artificial intelligence and the value of transparency. AI Soc. 2021, 36, 585–595. [Google Scholar] [CrossRef]
- Mitova, E.; Blassnig, S.; Strikovic, E.; Urman, A.; de Vreese, C.; Esser, F. Exploring users’ desire for transparency and control in news recommender systems: A five-nation study. Journalism 2024, 25, 2001–2021. [Google Scholar] [CrossRef]
- Ares, G.; Gámbaro, A. Influence of gender, age and motives underlying food choice on perceived healthiness and willingness to try functional foods. Appetite 2007, 49, 148–158. [Google Scholar] [CrossRef]
- Urala, N. Functional Foods in Finland: Consumers’ Views, Attitudes and Willingness to Use. Ph.D. Thesis, Helsingin yliopisto, Helsinki, Finland, 2005. [Google Scholar]
- Kraus, A. Factors influencing the decisions to buy and consume functional food. Br. Food J. 2015, 117, 1622–1636. [Google Scholar] [CrossRef]
- Etale, A.; Siegrist, M. Food processing and perceived naturalness: Is it more natural or just more traditional? Food Qual. Prefer. 2021, 94, 104323. [Google Scholar] [CrossRef]
- Roman, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Grunert, K.G.; Lähteenmäki, L.; Boztug, Y.; Martinsdóttir, E.; Ueland, Ø.; Åström, A.; Lampila, P. Perception of health claims among Nordic consumers. J. Consum. Policy 2009, 32, 269–287. [Google Scholar] [CrossRef]
- Pappalardo, G.; Lusk, J.L. The role of beliefs in purchasing process of functional foods. Food Qual. Prefer. 2016, 53, 151–158. [Google Scholar] [CrossRef]
- Marques da Rosa, V.; Spence, C.; Miletto Tonetto, L. Influences of visual attributes of food packaging on consumer preference and associations with taste and healthiness. Int. J. Consum. Stud. 2019, 43, 210–217. [Google Scholar] [CrossRef]
- Schifferstein, H.N.; de Boer, A.; Lemke, M. Conveying information through food packaging: A literature review comparing legislation with consumer perception. J. Funct. Foods 2021, 86, 104734. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Yến-Khanh, N.; Thuan, N.H. Consumers’ purchase intention and willingness to pay for eco-friendly packaging in Vietnam. In Sustainable Packaging; Springer: Singapore, 2021; pp. 289–323. [Google Scholar]
- Annunziata, A.; Vecchio, R. Consumer perception of functional foods: A conjoint analysis with probiotics. Food Qual. Prefer. 2013, 28, 348–355. [Google Scholar] [CrossRef]
- Sánchez-Fernández, R.; Iniesta-Bonillo, M.Á. The concept of perceived value: A systematic review of the research. Mark. Theory 2007, 7, 427–451. [Google Scholar] [CrossRef]
- Baidoun, S.D.; Salem, M.Z. The moderating role of perceived trust and perceived value on online shopping behavioral intention of Palestinian millennials during COVID-19. Compet. Rev. Int. Bus. J. 2024, 34, 125–143. [Google Scholar] [CrossRef]
- Rezai, G.; Teng, P.K.; Shamsudin, M.N.; Mohamed, Z.; Stanton, J.L. Effect of perceptual differences on consumer purchase intention of natural functional food. J. Agribus. Dev. Emerg. Econ. 2017, 7, 153–173. [Google Scholar] [CrossRef]
- Spears, N.; Singh, S.N. Measuring attitude toward the brand and purchase intentions. J. Curr. Issues Res. Advert. 2004, 26, 53–66. [Google Scholar] [CrossRef]
- Dash, G.; Kiefer, K.; Paul, J. Marketing-to-Millennials: Marketing 4.0, customer satisfaction and purchase intention. J. Bus. Res. 2021, 122, 608–620. [Google Scholar] [CrossRef]
- Zeqiri, J.; Koku, P.S.; Dobre, C.; Milovan, A.-M.; Hasani, V.V.; Paientko, T. The impact of social media marketing on brand awareness, brand engagement and purchase intention in emerging economies. Mark. Intell. Plan. 2025, 43, 28–49. [Google Scholar] [CrossRef]
- Kumar, V.; Rajan, B.; Venkatesan, R.; Lecinski, J. Understanding the role of artificial intelligence in personalized engagement marketing. Calif. Manag. Rev. 2019, 61, 135–155. [Google Scholar] [CrossRef]
- Jeyanthi, P.; Durga, R. Artificial Intelligence based Food Nutrients Recommendation System using Enhanced Customer Behavior Learning Approaches. In Proceedings of the 2024 8th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 6–8 November 2024; pp. 793–800. [Google Scholar]
- Babatunde, S.O.; Odejide, O.A.; Edunjobi, T.E.; Ogundipe, D.O. The role of AI in marketing personalization: A theoretical exploration of consumer engagement strategies. Int. J. Manag. Entrep. Res. 2024, 6, 936–949. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, C.; Zhang, L. Personalized design of food packaging driven by user preferences. In Advances in Usability and User Experience: Proceedings of the AHFE 2019 International Conferences on Usability & User Experience, and Human Factors and Assistive Technology, Washington, DC, USA, 24–28 July 2019; Springer: Cham, Switzerland, 2020; pp. 514–523. [Google Scholar]
- Kim, J.; Giroux, M.; Lee, J.C. When do you trust AI? The effect of number presentation detail on consumer trust and acceptance of AI recommendations. Psychol. Mark. 2021, 38, 1140–1155. [Google Scholar] [CrossRef]
- Trienekens, J.H.; Wognum, P.; Beulens, A.J.; Van Der Vorst, J.G. Transparency in complex dynamic food supply chains. Adv. Eng. Inform. 2012, 26, 55–65. [Google Scholar] [CrossRef]
- Esmaeily, R.; Razavi, M.A.; Razavi, S.H. A step forward in food science, technology and industry using artificial intelligence. Trends Food Sci. Technol. 2024, 143, 104286. [Google Scholar] [CrossRef]
- Abedin, M.M.; Chourasia, R.; Phukon, L.C.; Sarkar, P.; Ray, R.C.; Singh, S.P.; Rai, A.K. Lactic acid bacteria in the functional food industry: Biotechnological properties and potential applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 10730–10748. [Google Scholar] [CrossRef]
- Milner, J.A. Functional foods: The US perspective. Am. J. Clin. Nutr. 2000, 71, 1654S–1659S. [Google Scholar] [CrossRef]
- Alongi, M.; Anese, M. Re-thinking functional food development through a holistic approach. J. Funct. Foods 2021, 81, 104466. [Google Scholar] [CrossRef]
- Ponte, L.G.S.; Ribeiro, S.F.; Pereira, J.C.V.; Antunes, A.E.C.; Bezerra, R.M.N.; da Cunha, D.T. Consumer Perceptions of Functional Foods: A Scoping Review Focusing on Non-Processed Foods. Food Rev. Int. 2025, 1–19. [Google Scholar] [CrossRef]
- Hagen, L. Pretty healthy food: How and when aesthetics enhance perceived healthiness. J. Mark. 2021, 85, 129–145. [Google Scholar] [CrossRef]
- Meijer, G.W.; Lähteenmäki, L.; Stadler, R.H.; Weiss, J. Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Crit. Rev. Food Sci. Nutr. 2021, 61, 97–115. [Google Scholar] [CrossRef]
- Tenbült, P.; de Vries, N.K.; Dreezens, E.; Martijn, C. Perceived naturalness and acceptance of genetically modified food. Appetite 2005, 45, 47–50. [Google Scholar] [CrossRef]
- Saintives, C.; Meral, H. Is it really natural? How minimalist food packaging influences consumers’ perception of product naturalness. Br. Food J. 2024, 126, 3888–3905. [Google Scholar] [CrossRef]
- Govaerts, F.; Olsen, S.O. Consumers’ values, attitudes and behaviours towards consuming seaweed food products: The effects of perceived naturalness, uniqueness, and behavioural control. Food Res. Int. 2023, 165, 112417. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Rana, N.P.; Slade, E.L.; Singh, N.; Kizgin, H. Editorial introduction: Advances in theory and practice of digital marketing. J. Retail. Consum. Serv. 2020, 53, 101909. [Google Scholar] [CrossRef]
- Zatsu, V.; Shine, A.E.; Tharakan, J.M.; Peter, D.; Ranganathan, T.V.; Alotaibi, S.S.; Mugabi, R.; Muhsinah, A.B.; Waseem, M.; Nayik, G.A. Revolutionizing the food industry: The transformative power of artificial intelligence—A review. Food Chem. X 2024, 24, 101867. [Google Scholar] [CrossRef]
- Lam, T.K.; Heales, J.; Hartley, N.; Hodkinson, C. Consumer trust in food safety requires information transparency. Australas. J. Inf. Syst. 2020, 24. [Google Scholar] [CrossRef]
- Schmidt, P.; Biessmann, F.; Teubner, T. Transparency and trust in artificial intelligence systems. J. Decis. Syst. 2020, 29, 260–278. [Google Scholar] [CrossRef]
- Segijn, C.M.; Strycharz, J.; Riegelman, A.; Hennesy, C. A literature review of personalization transparency and control: Introducing the transparency-awareness-control framework. Media Commun. 2021, 9, 120–133. [Google Scholar] [CrossRef]
- Veltri, G.A.; Lupiáñez-Villanueva, F.; Folkvord, F.; Theben, A.; Gaskell, G. The impact of online platform transparency of information on consumers’ choices. Behav. Public Policy 2023, 7, 55–82. [Google Scholar] [CrossRef]
- Janz, N.K.; Becker, M.H. The health belief model: A decade later. Health Educ. Q. 1984, 11, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef] [PubMed]
- Gigerenzer, G. From tools to theories: A heuristic of discovery in cognitive psychology. Psychol. Rev. 1991, 98, 254. [Google Scholar] [CrossRef]
- Rundh, B. Linking packaging to marketing: How packaging is influencing the marketing strategy. Br. Food J. 2013, 115, 1547–1563. [Google Scholar] [CrossRef]
- Jatain, A.; Bajaj, S.B.; Vashisht, P.; Narang, A. AI Based food quality recommendation system. Int. J. Innov. Res. Comput. Sci. Technol. 2023, 11, 20–26. [Google Scholar] [CrossRef]
- Abhari, S.; Safdari, R.; Azadbakht, L.; Lankarani, K.B.; Kalhori, S.R.N.; Honarvar, B.; Abhari, K.; Ayyoubzadeh, S.; Karbasi, Z.; Zakerabasali, S. A systematic review of nutrition recommendation systems: With focus on technical aspects. J. Biomed. Phys. Eng. 2019, 9, 591. [Google Scholar] [CrossRef]
- Lalicic, L.; Weismayer, C. Consumers’ reasons and perceived value co-creation of using artificial intelligence-enabled travel service agents. J. Bus. Res. 2021, 129, 891–901. [Google Scholar] [CrossRef]
- Akinrinola, O.; Okoye, C.C.; Ofodile, O.C.; Ugochukwu, C.E. Navigating and reviewing ethical dilemmas in AI development: Strategies for transparency, fairness, and accountability. GSC Adv. Res. Rev. 2024, 18, 050–058. [Google Scholar] [CrossRef]
- Yücetürk, M.; Aksoy, E.; Seydibeyoğlu, M.Ö. Development of Eco-Friendly Food Packaging Films Using Bio-Based Polyethylene and Natural Pigments. Packag. Technol. Sci. 2025, 38, 241–253. [Google Scholar] [CrossRef]
- Topolska, K.; Florkiewicz, A.; Filipiak-Florkiewicz, A. Functional food—Consumer motivations and expectations. Int. J. Environ. Res. Public Health 2021, 18, 5327. [Google Scholar] [CrossRef]
- Messinese, E.; Pitirollo, O.; Grimaldi, M.; Milanese, D.; Sciancalepore, C.; Cavazza, A. By-products as sustainable source of bioactive compounds for potential application in the field of food and new materials for packaging development. Food Bioprocess Technol. 2024, 17, 606–627. [Google Scholar] [CrossRef]
- Sebastián-Morillas, A.; Monfort, A.; López-Vázquez, B. Effects of perceived value and customer service on brand satisfaction. J. Promot. Manag. 2024, 30, 187–203. [Google Scholar] [CrossRef]
- Mendonça da Costa Birchal, R.A.; Cunha Moura, L.R.; Vasconcelos, F.C.W. Perceived value by consumers in vegetarian food and its consequences: A study in Brazil. J. Foodserv. Bus. Res. 2025, 28, 114–144. [Google Scholar] [CrossRef]
- Etikan, I.; Musa, S.A.; Alkassim, R.S. Comparison of convenience sampling and purposive sampling. Am. J. Theor. Appl. Stat. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2023. [Google Scholar]
- Tadesse, A.; Li, K.; Helton, J.; Huang, J.; Ansong, D. The Links Between Community-Based Financial Inclusion and Household Food Availability: Evidence from Mozambique. Foods 2025, 14, 212. [Google Scholar] [CrossRef]
- Asif, M.; Xuhui, W.; Nasiri, A.; Ayyub, S. Determinant factors influencing organic food purchase intention and the moderating role of awareness: A comparative analysis. Food Qual. Prefer. 2018, 63, 144–150. [Google Scholar] [CrossRef]
- Ullman, J.B.; Bentler, P.M. Structural equation modeling. In Handbook of Psychology, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; Volume 2. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hu, L.t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- De Bauw, M.; De La Revilla, L.S.; Poppe, V.; Matthys, C.; Vranken, L. Digital nudges to stimulate healthy and pro-environmental food choices in E-groceries. Appetite 2022, 172, 105971. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, H. Artificial intelligence-enabled personalization in interactive marketing: A customer journey perspective. J. Res. Interact. Mark. 2023, 17, 663–680. [Google Scholar] [CrossRef]
- Shin, D.; Zaid, B.; Biocca, F.; Rasul, A. In platforms we trust? Unlocking the black-box of news algorithms through interpretable AI. J. Broadcast. Electron. Media 2022, 66, 235–256. [Google Scholar] [CrossRef]
- André, Q.; Chandon, P.; Haws, K. Healthy through presence or absence, nature or science?: A framework for understanding front-of-package food claims. J. Public Policy Mark. 2019, 38, 172–191. [Google Scholar] [CrossRef]
- Homer, P.M.; Kahle, L.R. A structural equation test of the value-attitude-behavior hierarchy. J. Personal. Soc. Psychol. 1988, 54, 638. [Google Scholar] [CrossRef]
- Milner, J. Functional foods and health: A US perspective. Br. J. Nutr. 2002, 88, S152–S158. [Google Scholar] [CrossRef]
- Iqbal, J.; Yu, D.; Zubair, M.; Rasheed, M.I.; Khizar, H.M.U.; Imran, M. Health consciousness, food safety concern, and consumer purchase intentions toward organic food: The role of consumer involvement and ecological motives. Sage Open 2021, 11, 21582440211015727. [Google Scholar] [CrossRef]
- Amil, Y. The Impact of AI-Driven Personalization Tools on Privacy Concerns and Consumer Trust in E-Commerce. Master’s Thesis, Université de Liège, Liège, Belgium, 2024. [Google Scholar]
- Carrasco-Ribelles, L.A.; Llanes-Jurado, J.; Gallego-Moll, C.; Cabrera-Bean, M.; Monteagudo-Zaragoza, M.; Violán, C.; Zabaleta-del-Olmo, E. Prediction models using artificial intelligence and longitudinal data from electronic health records: A systematic methodological review. J. Am. Med. Inform. Assoc. 2023, 30, 2072–2082. [Google Scholar] [CrossRef]
- Hofstede, G. Culture and organizations. Int. Stud. Manag. Organ. 1980, 10, 15–41. [Google Scholar] [CrossRef]
- Law, M.; Ng, M. Age and gender differences: Understanding mature online users with the online purchase intention model. J. Glob. Sch. Mark. Sci. 2016, 26, 248–269. [Google Scholar] [CrossRef]
- Grewal, D.; Hulland, J.; Kopalle, P.K.; Karahanna, E. The future of technology and marketing: A multidisciplinary perspective. J. Acad. Mark. Sci. 2020, 48, 1–8. [Google Scholar] [CrossRef]
- Jin, F.; Zhang, X. Artificial intelligence or human: When and why consumers prefer AI recommendations. Inf. Technol. People 2025, 38, 279–303. [Google Scholar] [CrossRef]
- Ueda, D.; Kakinuma, T.; Fujita, S.; Kamagata, K.; Fushimi, Y.; Ito, R.; Matsui, Y.; Nozaki, T.; Nakaura, T.; Fujima, N. Fairness of artificial intelligence in healthcare: Review and recommendations. Jpn. J. Radiol. 2024, 42, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, W. Functional foods: Consumer willingness to compromise on taste for health? Food Qual. Prefer. 2006, 17, 126–131. [Google Scholar] [CrossRef]
- Gibson, E.L. Emotional influences on food choice: Sensory, physiological and psychological pathways. Physiol. Behav. 2006, 89, 53–61. [Google Scholar] [CrossRef]
Constructs | Items | AVE | CR | Cronbach’s α |
---|---|---|---|---|
Personalization of AI Recommendations | Recommendation Relevance | 0.618 | 0.829 | 0.823 |
Recommendation Diversity | 0.58 | 0.805 | 0.805 | |
Transparency of AI Recommendations | Information Transparency | 0.551 | 0.786 | 0.779 |
Recommendation Mechanism Transparency | 0.492 | 0.744 | 0.743 | |
Perceived Health Benefits of Functional Foods | Immediate Health Benefits | 0.59 | 0.812 | 0.805 |
Long-term Health Benefits | 0.532 | 0.773 | 0.774 | |
Functional Food Attributes | Ingredient Naturalness | 0.604 | 0.82 | 0.812 |
Health Perception | 0.558 | 0.791 | 0.791 | |
Perceived Packaging of Functional Foods | Functional Packaging Attributes | 0.558 | 0.791 | 0.783 |
Aesthetic Packaging Appeal | 0.574 | 0.802 | 0.801 | |
Perceived Value of Functional Foods | Health and Safety Value | 0.551 | 0.786 | 0.781 |
Responsibility for Health | 0.596 | 0.816 | 0.815 | |
Self-esteem Value | 0.607 | 0.822 | 0.822 | |
Purchase Intention | Purchase Intention | 0.535 | 0.774 | 0.769 |
Variables | Mean | Standard Deviation | PLAR | TAR | PHB | FFA | PPF | PV | PI |
---|---|---|---|---|---|---|---|---|---|
PLAR | 4.541 | 1.263 | 1 | ||||||
TAR | 4.531 | 1.127 | 0.218 ** | 1 | |||||
PHB | 4.742 | 1.232 | 0.344 ** | 0.319 ** | 1 | ||||
FFA | 4.493 | 1.240 | 0.367 ** | 0.349 ** | 0.310 ** | 1 | |||
PPF | 4.621 | 1.197 | 0.365 ** | 0.269 ** | 0.376 ** | 0.311 ** | 1 | ||
PV | 4.602 | 1.135 | 0.439 ** | 0.326 ** | 0.404 ** | 0.405 ** | 0.387 ** | 1 | |
PI | 4.996 | 1.315 | 0.447 ** | 0.282 ** | 0.424 ** | 0.354 ** | 0.422 ** | 0.507 ** | 1 |
Hypothesis | Path | β | SE | t | p | Decision | ||
---|---|---|---|---|---|---|---|---|
H1a | PLAR | → | PI | 0.195 | 0.088 | 2.596 | 0.009 | Accepted |
H1b | TAR | → | PI | 0.037 | 0.084 | 0.561 | 0.574 | Rejected |
H1c | PHB | → | PI | 0.154 | 0.083 | 2.274 | 0.023 | Accepted |
H1d | FFA | → | PI | 0.032 | 0.083 | 0.462 | 0.644 | Rejected |
H2a | PLAR | → | PPF | 0.275 | 0.066 | 3.778 | *** | Accepted |
H2b | TAR | → | PPF | 0.122 | 0.072 | 1.713 | 0.087 | Rejected |
H2c | PHB | → | PPF | 0.273 | 0.068 | 3.836 | *** | Accepted |
H2d | FFA | → | PPF | 0.107 | 0.07 | 1.451 | 0.147 | Rejected |
H3a | PLAR | → | PV | 0.343 | 0.061 | 4.973 | *** | Accepted |
H3b | TAR | → | PV | 0.144 | 0.065 | 2.185 | 0.029 | Accepted |
H3c | PHB | → | PV | 0.201 | 0.061 | 3.103 | 0.002 | Accepted |
H3d | FFA | → | PV | 0.211 | 0.064 | 3.059 | 0.002 | Accepted |
H4a | PPF | → | PI | 0.2 | 0.09 | 2.844 | 0.004 | Accepted |
H4b | PV | → | PI | 0.326 | 0.104 | 4.099 | *** | Accepted |
Path | Estimate | SE | Lower | Upper | p |
---|---|---|---|---|---|
PLAR → PI (TE) | 0.362 | 0.068 | 0.226 | 0.492 | 0.001 |
PLAR → PI (DE) | 0.195 | 0.074 | 0.049 | 0.337 | 0.011 |
PLAR → PI (IE) | 0.167 | 0.042 | 0.095 | 0.262 | 0.000 |
PLAR → PPF → PI | 0.055 | 0.024 | 0.017 | 0.112 | 0.004 |
PLAR → PV → PI | 0.112 | 0.034 | 0.057 | 0.192 | 0.000 |
TAR → PI (TE) | 0.108 | 0.065 | −0.026 | 0.23 | 0.112 |
TAR → PI (DE) | 0.037 | 0.065 | −0.093 | 0.158 | 0.63 |
TAR → PI (IE) | 0.071 | 0.035 | 0.013 | 0.155 | 0.018 |
TAR → PPF → PI | 0.024 | 0.018 | −0.001 | 0.074 | 0.056 |
TAR → PV → PI | 0.047 | 0.026 | 0.005 | 0.11 | 0.025 |
PHB → PI (TE) | 0.275 | 0.068 | 0.139 | 0.404 | 0.001 |
PHB → PI (DE) | 0.154 | 0.068 | 0.023 | 0.288 | 0.021 |
PHB → PI (IE) | 0.12 | 0.04 | 0.053 | 0.214 | 0.001 |
PHB → PPF → PI | 0.055 | 0.025 | 0.017 | 0.122 | 0.003 |
PHB → PV → PI | 0.066 | 0.029 | 0.019 | 0.132 | 0.008 |
FFA → PI (TE) | 0.122 | 0.071 | −0.019 | 0.259 | 0.083 |
FFA → PI (DE) | 0.032 | 0.068 | −0.102 | 0.165 | 0.625 |
FFA → PI (IE) | 0.09 | 0.037 | 0.027 | 0.176 | 0.006 |
FFA → PPF → PI | 0.021 | 0.018 | −0.005 | 0.071 | 0.099 |
FFA → PV → PI | 0.069 | 0.029 | 0.022 | 0.141 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, Z.; Kuang, J. Artificial Intelligence-Driven Recommendations and Functional Food Purchases: Understanding Consumer Decision-Making. Foods 2025, 14, 976. https://doi.org/10.3390/foods14060976
Wang W, Chen Z, Kuang J. Artificial Intelligence-Driven Recommendations and Functional Food Purchases: Understanding Consumer Decision-Making. Foods. 2025; 14(6):976. https://doi.org/10.3390/foods14060976
Chicago/Turabian StyleWang, Wenxin, Zhiguang Chen, and Jiwei Kuang. 2025. "Artificial Intelligence-Driven Recommendations and Functional Food Purchases: Understanding Consumer Decision-Making" Foods 14, no. 6: 976. https://doi.org/10.3390/foods14060976
APA StyleWang, W., Chen, Z., & Kuang, J. (2025). Artificial Intelligence-Driven Recommendations and Functional Food Purchases: Understanding Consumer Decision-Making. Foods, 14(6), 976. https://doi.org/10.3390/foods14060976