Effect of Non-Meat Protein Addition on the 3D Printing Performance of Chicken Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Rheology Measurement
2.3. Printing Process
2.4. Texture Profile Analysis (TPA)
2.5. Cooking Loss
2.6. Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.7. Scanning Electron Microscopy (SEM)
2.8. Statistical Analysis
3. Results
3.1. Rheological Properties
3.2. Texture Profile Analysis
3.3. Cooking Loss of Gels
3.4. LF-NMR Analysis
3.5. Microstructure of Gels
3.6. Three-Dimensional Printing Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nawa, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M.; et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef]
- Belova, A.V.; Smutka, L.; Rosochatecká, E. World chicken meat market–its development and current status. Acta Univ. Agric. Silvic. Mendel. Brun. 2012, 60, 15–30. [Google Scholar] [CrossRef]
- Cui, B.; Wang, L.D.L.; Chen, X.; Xu, M.Y.; Ke, J.; Tian, Y. Chicken meat taste preferences, perceived risk of human infection with avian influenza virus, and self-reported chicken meat consumption in China. Prev. Vet. Med. 2022, 203, 105658. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S. Digital phenoty: A game changer for the broiler industry. Animals 2023, 13, 2585. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhou, W.; Yan, L.; Huang, D.; Lin, L. Extrusion-based food printing for digitalized food design and nutrition control. J. Food Eng. 2018, 220, 1–11. [Google Scholar] [CrossRef]
- Ramachandraiah, K. Potential development of sustainable 3D-printed meat analogues: A review. Sustainability 2021, 13, 938. [Google Scholar] [CrossRef]
- Nachal, N.; Moses, J.A.; Karthik, P.; Anandharamakrishnan, C. Applications of 3D printing in food processing. Food Eng. Rev. 2019, 11, 123–141. [Google Scholar] [CrossRef]
- Lipton, J.; Arnold, D.; Nigl, F.; Lopez, N.; Cohen, D.; Norén, N.; Lipson, H. Multi-material food printing with complex internal structure suitable for conventional post-processing. In Proceedings of the 2010 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 23 September 2010. [Google Scholar] [CrossRef]
- Dick, A.; Bhandari, B.; Prakash, S. Effect of reheating method on the post-processing characterisation of 3D printed meat products for dysphagia patients. LWT 2021, 150, 111915. [Google Scholar] [CrossRef]
- Dong, X.; Pan, Y.; Zhao, W.; Huang, Y.; Qu, W.; Pan, J.; Qi, H.; Prakash, S. Impact of microbial transglutaminase on 3D printing quality of Scomberomorus niphonius surimi. LWT 2020, 124, 109123. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Q.; Wei, S.; Xia, Q.; Pan, Y.; Ji, H.; Deng, C.; Hao, J.; Liu, S. Insight into the correlations among rheological behaviour, protein molecular structure and 3D printability during the processing of surimi from golden pompano (Trachinotus ovatus). Food Chem. 2022, 371, 131046. [Google Scholar] [CrossRef]
- Dong, H.; Wang, P.; Yang, Z.; Xu, X. 3D printing based on meat materials: Challenges and opportunities. Curr. Res. Food Sci. 2023, 6, 100423. [Google Scholar] [CrossRef] [PubMed]
- Dick, A.; Bhandari, B.; Prakash, S. Printability and textural assessment of modified-texture cooked beef pastes for dysphagia patients. Future Foods 2021, 3, 100006. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Bhandari, B.; Yang, C. Investigation on fish surimi gel as promising food material for 3D printing. J. Food Eng. 2018, 220, 101–108. [Google Scholar] [CrossRef]
- Dong, X.; Huang, Y.; Pan, Y.; Wang, K.; Prakash, S.; Zhu, B. Investigation of sweet potato starch as a structural enhancer for three-dimensional printing of Scomberomorus niphonius surimi. J. Texture Stud. 2019, 50, 316–324. [Google Scholar] [CrossRef]
- Yu, W.; Wang, Z.; Pan, Y.; Jiang, P.; Pan, J.; Yu, C.; Dong, X. Effect of κ-carrageenan on quality improvement of 3D printed Hypophthalmichthys molitrix-sea cucumber compound surimi product. LWT 2022, 154, 112279. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Q.; Yan, B.; Gao, W.; Jiao, X.; Huang, J.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. Innov. Food Sci. Emerg. Technol. 2021, 67, 102546. [Google Scholar] [CrossRef]
- Bulut, E.G.; Candoğan, K. Development and characterization of a 3D printed functional chicken meat based snack: Optimization of process parameters and gelatin level. LWT 2022, 154, 112768. [Google Scholar] [CrossRef]
- D’Almeida, A.P.; de Albuquerque, T.L. Is It Possible to Produce Meat Without Animals? The Potential of Microorganisms as Protein Sources. Fermentation 2025, 11, 24. [Google Scholar] [CrossRef]
- Muniz, E.N.; Montenegro, R.T.Q.; da Silva, D.N.; D’Almeida, A.P.; Gonçalves, L.R.B.; de Albuquerque, T.L. Advances in Biotechnological Strategies for Sustainable Production of Non-Animal Proteins: Challenges, Innovations, and Applications. Fermentation 2024, 10, 638. [Google Scholar] [CrossRef]
- Bohrer, B.M. Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Liu, L.; Meng, Y.; Dai, X.; Chen, K.; Zhu, Y. 3D printing complex egg white protein objects: Properties and optimization. Food Bioprocess Technol. 2019, 12, 267–279. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Wei, G.; Ma, Y.; Bhandari, B.; Zhou, P. 3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innov. Food Sci. Emerg. Technol. 2018, 49, 116–126. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Bhandari, B. 3D printing of steak-like foods based on textured soybean protein. Foods 2011, 10, 2011. [Google Scholar] [CrossRef]
- Herrero, A.M.; Carmona, P.; Cofrades, S.; Jiménez-Colmenero, F. Raman spectroscopic determination of structural changes in meat batters upon soy protein addition and heat treatment. Food Res. Int. 2008, 41, 765–772. [Google Scholar] [CrossRef]
- Li, Y.; Sukmanov, V.; Kang, Z.L.; Ma, H. Effect of soy protein isolate on the techno—Functional properties and protein conformation of low-sodium pork meat batters treated by high pressure. J. Food Process Eng. 2020, 43, e13343. [Google Scholar] [CrossRef]
- Gao, X.; Xiong, G.; Fu, L.; Liu, S. Water distribution of raw and heat-induced gelation of minced pork paste prepared by soy protein isolates and carrageenan: Ingredients modify the gelation of minced pork. J. Food Process. Preserv. 2019, 43, e14221. [Google Scholar] [CrossRef]
- Chen, J.; Mu, T.; Goffin, D.; Blecker, C.; Richard, G.; Richel, A.; Haubruge, E. Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing. J. Food Eng. 2019, 261, 76–86. [Google Scholar] [CrossRef]
- Qiu, Y.; McClements, D.J.; Chen, J.; Li, C.; Liu, C.; Dai, T. Construction of 3D printed meat analogs from plant-based proteins: Improving the printing performance of soy protein-and gluten-based pastes facilitated by rice protein. Food Res. Int. 2023, 167, 112635. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef]
- Jiang, Q.; Wei, X.; Liu, Q.; Zhang, T.; Chen, Q.; Yu, X.; Jiang, H. Rheo-fermentation properties of bread dough with different gluten contents processed by 3D printing. Food Chem. 2024, 433, 137318. [Google Scholar] [CrossRef]
- Cheng, Z.; Qiu, Y.; Bian, M.; He, Y.; Xu, S.; Li, Y.; Ahmad, I.; Ding, Y.; Lyu, F. Effect of insoluble dietary fiber on printing properties and molecular interactions of 3D-printed soy protein isolate-wheat gluten plant-based meats. Int. J. Biol. Macromol. 2024, 258, 128803. [Google Scholar] [CrossRef] [PubMed]
- Fitzsimons, S.M.; Mulvihill, D.M.; Morris, E.R. Co-gels of whey protein isolate with crosslinked waxy maize starch: Analysis of solvent partition and phase structure by polymer blending laws. Food Hydrocoll. 2008, 22, 468–484. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, M.; Chen, H. Effect of whey protein on the 3D printing performance of konjac hybrid gel. LWT 2021, 140, 110716. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Potkule, J.; Reetu; Punia, S.; Dhakane-Lad, J.; Singh, S.; Dhumal, S.; Pradhan, C.P.; Bhushan, B.; et al. Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocoll. 2022, 123, 106986. [Google Scholar] [CrossRef]
- Wang, Y.; Lyu, B.; Fu, H.; Li, J.; Ji, L.; Gong, H.; Zhang, R.; Liu, J.; Yu, H. The development process of plant-based meat alternatives: Raw material formulations and processing strategies. Food Res. Int. 2023, 167, 112689. [Google Scholar] [CrossRef] [PubMed]
- Dick, A.; Bhandari, B.; Prakash, S. 3D printing of meat. Meat Sci. 2019, 153, 35–44. [Google Scholar] [CrossRef]
- Huang, M.; Wang, H.; Xu, X.; Lu, X.; Song, X.; Zhou, G. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-L-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocoll. 2020, 102, 105576. [Google Scholar] [CrossRef]
- Yang, G.; Tao, Y.; Wang, P.; Xu, X.; Zhu, X. Optimizing 3D printing of chicken meat by response surface methodology and genetic algorithm: Feasibility study of 3D printed chicken product. LWT 2022, 154, 112693. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, L.; Zou, Y.; Tong, Z.; Han, S.; Wang, S. 3D food printing: Main components selection by considering rheological properties. Crit. Rev. Food Sci. Nutr. 2019, 59, 2335–2347. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, M.; Bhandari, B.; Liu, Y. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT 2018, 87, 67–76. [Google Scholar] [CrossRef]
- Binsi, P.K.; Shamasundar, B.A.; Dileep, A.O.; Badii, F.; Howell, N.K. Rheological and functional properties of gelatin from the skin of Bigeye snapper (Priacanthus hamrur) fish: Influence of gelatin on the gel-forming ability of fish mince. Food Hydrocoll. 2009, 23, 132–145. [Google Scholar] [CrossRef]
- Wagner, J.; Biliaderis, C.G.; Moschakis, T. Whey proteins: Musings on denaturation, aggregate formation and gelation. Crit. Rev. Food Sci. Nutr. 2020, 60, 3793–3806. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Chen, C.; Zheng, L.; Zhou, C.; Cai, K. Effect of high pressure processing on the gel properties of salt-soluble meat protein containing CaCl2 and κ-carrageenan. Meat Sci. 2013, 95, 22–26. [Google Scholar] [CrossRef]
- Cheng, Q.; Sun, D.W. Factors affecting the water holding capacity of red meat products: A review of recent research advances. Crit. Rev. Food Sci. Nutr. 2008, 48, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, Z.; Wang, Y.; Xue, Y.; Xue, C. Effects of konjac glucomannan on heat-induced changes of physicochemical and structural properties of surimi gels. Food Res. Int. 2016, 83, 152–161. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Benjakul, S.; Visessanguan, W.; Lanier, T.C. Chicken plasma protein affects gelation of surimi from bigeye snapper (Priacanthus tayenus). Food Hydrocoll. 2004, 18, 259–270. [Google Scholar] [CrossRef]
Ingredients (g) | Control | 5%SP-CMP | 10%SP-CMP | 15%SP-CMP | 5%WG-CMP | 10%WG-CMP | 15%WG-CMP | 5%WP-CMP | 10%WP-CMP | 15%WP-CMP |
---|---|---|---|---|---|---|---|---|---|---|
CMP | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
SP | 0 | 5 | 10 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
WG | 0 | 0 | 0 | 0 | 5 | 10 | 15 | 0 | 0 | 0 |
WP | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 10 | 15 |
Hardness (g) | Springiness | Cohesiveness | Gumminess | Resilience | |
---|---|---|---|---|---|
control | 826.02 ± 61.91 a | 0.811 ± 0.002 a | 0.69 ± 0.01 b | 568.95 ± 43.85 a | 0.27 ± 0.01 a |
5% SP-CMP | 1097.69 ± 62.58 c | 0.87 ± 0.01 d | 0.72 ± 0.01 d | 715.46 ± 64.97 d | 0.30 ± 0.01 cd |
10% SP-CMP | 1238.22 ± 94.22 de | 0.90 ± 0.01 e | 0.71 ± 0.02 cd | 826.80 ± 35.47 e | 0.342 ± 0.001 e |
15% SP-CMP | 1991.40 ± 88.22 g | 0.922 ± 0.002 f | 0.72 ± 0.01 d | 1299.14 ± 21.21 g | 0.34 ± 0.01 e |
5% WG-CMP | 1050.68 ± 58.11 c | 0.84 ± 0.01 c | 0.692 ± 0.004 bc | 672.06 ± 60.00 cd | 0.28 ± 0.01 ab |
10% WG-CMP | 1177.88 ± 72.30 cd | 0.87 ± 0.01 d | 0.70 ± 0.01 bcd | 836.08 ± 56.59 e | 0.29 ± 0.01 bc |
15% WG-CMP | 1418.08 ± 55.19 f | 0.892 ± 0.001 e | 0.72 ± 0.01 d | 1019.80 ± 48.84 f | 0.34 ± 0.01 e |
5% WP-CMP | 837.78 ± 13.58 a | 0.82 ± 0.01 ab | 0.62 ± 0.01 a | 523.59 ± 10.34 a | 0.272 ± 0.001 a |
10% WP-CMP | 944.10 ± 32.98 b | 0.83 ± 0.01 bc | 0.63 ± 0.01 a | 610.12 ± 57.85 bc | 0.27 ± 0.01 a |
15% WP-CMP | 1062.48 ± 38.35 c | 0.84 ± 0.01 c | 0.63 ± 0.01 a | 738.11 ± 62.40 d | 0.28 ± 0.01 ab |
T21 (ms) | T22 (ms) | T23 (ms) | P21 (%) | P22 (%) | P23 (%) | |
---|---|---|---|---|---|---|
Control | 7.75 ± 0.32 f | 71.49 ± 0.00 g | 489.49 ± 17.24 f | 1.09 ± 0.06 a | 96.23 ± 0.22 de | 2.68 ± 0.24 g |
5%SP-CMP | 1.82 ± 0.08 a | 56.07 ± 0.00 e | 460.59 ± 0.00 e | 3.69 ± 0.06 f | 95.86 ± 0.01 cd | 0.45 ± 0.05 b |
10%SP-CMP | 1.63 ± 0.08 a | 45.21 ± 2.14 c | 381.27 ± 18.06 c | 3.30 ± 0.04 de | 96.53 ± 0.97 e | 0.12 ± 0.02 a |
15%SP-CMP | 1.59 ± 0.00 a | 37.40 ± 0.00 a | 329.27 ± 7.00 b | 3.33 ± 0.05 de | 96.35 ± 0.43 e | 0.051 ± 0.003 a |
5%WG-CMP | 5.81 ± 0.12 e | 62.51 ± 2.96 f | 364.95 ± 6.44 c | 3.08 ± 0.11 bc | 95.47 ± 0.33 c | 1.26 ± 0.06 c |
10%WG-CMP | 4.95 ± 0.40 bc | 53.16 ± 2.52 d | 335.75 ± 4.53 b | 3.24 ± 0.05 cd | 94.78 ± 0.08 b | 1.98 ± 0.10 e |
15%WG-CMP | 4.68 ± 0.22 bc | 40.56 ± 0.00 b | 282.64 ± 1.15 a | 5.33 ± 0.08 g | 93.81 ± 0.45 a | 1.06 ± 0.24 c |
5%WP-CMP | 5.82 ± 0.47 e | 60.80 ± 0.00 f | 521.59 ± 20.52 g | 2.95 ± 0.07 b | 94.79 ± 0.06 b | 2.25 ± 0.13 f |
10%WP-CMP | 5.22 ± 0.24 cd | 51.71 ± 0.00 d | 405.04 ± 11.55 d | 4.20 ± 0.24 h | 93.92 ± 0.25 a | 1.88 ± 0.07 de |
15%WP-CMP | 4.32 ± 0.20 b | 43.98 ± 0.00 c | 361.23 ± 0.00 c | 3.46 ± 0.19 e | 94.86 ± 0.17 b | 1.68 ± 0.09 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Huang, M.; Chen, D.; Xiao, E.; Li, Y. Effect of Non-Meat Protein Addition on the 3D Printing Performance of Chicken Meat. Foods 2025, 14, 1015. https://doi.org/10.3390/foods14061015
Li X, Huang M, Chen D, Xiao E, Li Y. Effect of Non-Meat Protein Addition on the 3D Printing Performance of Chicken Meat. Foods. 2025; 14(6):1015. https://doi.org/10.3390/foods14061015
Chicago/Turabian StyleLi, Xin, Mingyuan Huang, Dan Chen, Enquan Xiao, and Yuqing Li. 2025. "Effect of Non-Meat Protein Addition on the 3D Printing Performance of Chicken Meat" Foods 14, no. 6: 1015. https://doi.org/10.3390/foods14061015
APA StyleLi, X., Huang, M., Chen, D., Xiao, E., & Li, Y. (2025). Effect of Non-Meat Protein Addition on the 3D Printing Performance of Chicken Meat. Foods, 14(6), 1015. https://doi.org/10.3390/foods14061015