Use of Mealworm (Tenebrio molitor) Flour as Meat Replacer in Dry Fermented Sausages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mealworm Flour Preparation
2.2. Sausage Manufacture
2.3. Analysis of the Typical Microbiota of Sausages
2.4. pH and Water Activity
2.5. Proximate Composition
2.6. Chemical Determinations
2.6.1. Fatty Acid Profile
2.6.2. Determination of Lipid Hydroperoxides and Thiobarbituric Acid-Reactive Substances (TBARs)
2.6.3. Volatile Compound Analysis
2.7. Color Analysis
2.8. Texture Analysis
2.9. Sensory Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Microbiological and Physicochemical Characterization
3.2. Proximate Composition
3.3. Fatty Acid Profile
3.4. Oxidative Stability
3.5. Volatile Profile
3.6. Color Analysis
3.7. Texture Profile
3.8. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of the World’s Biodiversity for Food and Agriculture. In FAO Commission on Genetic Resources for Food and Agriculture Assessments; Bélanger, J., Pilling, D., Eds.; FAO: Rome, Italy, 2019. [Google Scholar]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Vinci, G.; Prencipe, S.A.; Masiello, L.; Zaki, M.G. The application of life cycle assessment to evaluate the environmental impacts of edible insects as a protein source. Earth 2022, 3, 925–938. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Knutsen, H.K. Safety of frozen and dried formulations from whole yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06778. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Alkoaik, F.N. The yellow mealworm as a novel source of protein. Am. J. Agric. Biol. Sci. 2009, 4, 319–331. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2022/169 of 8 February 2022 authorising the placing on the market of frozen, dried and powder forms of yellow mealworm (Tenebrio molitor larva) as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470. Off. J. Eur. Union 2022, 28, 10–22. [Google Scholar]
- Azzollini, D.; Derossi, A.; Fogliano, V.; Lakemond, C.M.M.; Severini, C. Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-riched snacks. Innov. Food Sci. Emerg. Technol. 2018, 45, 344–353. [Google Scholar] [CrossRef]
- Kim, T.K.; Yong, H.I.; Cha, J.Y.; Park, S.Y.; Jung, S.; Choi, Y.S. Drying-induced restructured jerky analog developed using a combination of edible insect protein and textured vegetable protein. Food Chem. 2022, 373, 131519. [Google Scholar] [CrossRef]
- Xie, X.; Yuan, Z.; Fu, K.; An, J.; Deng, L. Effect of partial substitution of flour with mealworm (Tenebrio molitor L.) powder on dough and biscuit properties. Foods 2022, 11, 2156. [Google Scholar] [CrossRef]
- Ardila, P.; Honrado, A.; Marquina, P.; Beltrán, J.A.; Calanche, J.B. Innovative Plant-Based Burger Enriched with Tenebrio Molitor Meal: Characterization and Shelf-Life. Foods 2023, 12, 3460. [Google Scholar] [CrossRef]
- Lemke, B.; Siekmann, L.; Grabowski, N.T.; Plötz, M.; Krischek, C. Impact of the addition of Tenebrio molitor and Hermetia illucens on the physicochemical and sensory quality of cooked meat products. Insects 2023, 14, 487. [Google Scholar] [CrossRef]
- Kim, H.W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. Innov. Food Sci. Emerg. Technol. 2016, 38, 116–123. [Google Scholar] [CrossRef]
- Cruz-López, S.O.; Escalona-Buendía, H.B.; Román-Guerrero, A.; Domínguez-Soberanes, J.; Alvarez-Cisneros, Y.M. Characterization of cooked meat models using grasshopper (Sphenarium purpurascens) soluble protein extracted by alkalisation and ultrasound as meat-extender. Food Sci. Anim. Resour. 2022, 42, 536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Cao, C.; Kong, B.; Sun, F.; Shen, X.; Yao, X.; Liu, Q. Pre-dried mealworm larvae flour could partially replace lean meat in frankfurters: Effect of pre-drying methods and replacement ratios. Meat Sci. 2022, 188, 108802. [Google Scholar] [CrossRef] [PubMed]
- Bessa, L.W.; Pieterse, E.; Marais, J.; Hoffman, L.C. Black soldier fly larvae (Hermetia illucens) as a meat replacer in a burger patty. J. Insects Food Feed 2023, 9, 1211–1222. [Google Scholar] [CrossRef]
- Vlahova-Vangelova, D.; Balev, D.; Kolev, N.; Dragoev, S. Possibilities for partial replacement of pork meat in cooked sausages by mealworm flour. Carpathian J. Food Sci. Technol. 2023, 15, 5. [Google Scholar] [CrossRef]
- Cavalheiro, C.P.; Ruiz-Capillas, C.; Herrero, A.M.; Pintado, T.; Cruz, T.D.M.P.; da Silva, M.C.A. Cricket (Acheta domesticus) flour as meat replacer in frankfurters: Nutritional, technological, structural, and sensory characteristics. Innov. Food Sci. Emerg. Technol. 2023, 83, 103245. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 22nd ed.; AOAC International: Rockville, MD, USA, 2023. [Google Scholar]
- Bußler, S.; Rumpold, B.A.; Jander, E.; Rawel, H.M.; Schlüter, O.K. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2016, 2, e00218. [Google Scholar] [CrossRef]
- Otero, P.; Gutierrez-Docio, A.; Del Hierro, J.N.; Reglero, G.; Martin, D. Extracts from the edible insects Acheta domesticus and Tenebrio molitor with improved fatty acid profile due to ultrasound assisted or pressurized liquid extraction. Food Chem. 2020, 314, 126200. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F.J.L.P.S. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs: II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Hospital, X.F.; Hierro, E.; Martín-Cabrejas, I.; Caballero, N.; Jiménez, B.; Sánchez-Martín, V.; Fernández, M. Bee products as an alternative for the preservation of nitrate and nitrite-reduced dry fermented sausages. Food Biosci. 2024, 59, 104048. [Google Scholar] [CrossRef]
- Acree, T.E.; Arn, H. Flavornet and Human Odor Space. Gas Chromatography-Olfactometry (GCO) of Natural Products. Available online: http://www.flavornet.org/index.html (accessed on 31 July 2024).
- Kondjoyan, N.; Berdagué, J.L.A. Compilation of Relative Retention Indices for the Analysis of Aromatic Compounds; Laboratoire Flaveur (INRA): Theix, France, 1996. [Google Scholar]
- Bourne, M. Food Texture and Viscosity: Concept and Measurement; Academic Press: New York, NY, USA, 2002; pp. 175, 253. [Google Scholar]
- ISO 6658:2017; Sensory analysis—Methodology—General guidance. International Organization for Standardization: Geneva, Switzerland, 2017.
- Fernández, M.; Hospital, X.F.; Cabellos, C.; Hierro, E. Effect of pulsed light treatment on Listeria inactivation, sensory quality and oxidation in two varieties of Spanish dry-cured ham. Food Chem. 2020, 316, 126294. [Google Scholar] [CrossRef] [PubMed]
- Newell, G.J.; MacFarlane, J.D. Expanded tables for multiple comparison procedures in the analysis of ranked data. J. Food Sci. 1987, 52, 1721–1725. [Google Scholar] [CrossRef]
- Leroy, S.; Lebert, I.; Talon, R. Microorganisms in traditional fermented meats. In Handbook of Fermented Meat and Poultry; Blackwell Publishing: Oxford, UK, 2015; pp. 99–105. [Google Scholar]
- Wang, X.; Ren, H.; Wang, W.; Zhang, Y.; Bai, T.; Li, J.; Zhu, W. Effects of inoculation of commercial starter cultures on the quality and histamine accumulation in fermented sausages. J. Food Sci. 2015, 80, M377–M384. [Google Scholar] [CrossRef]
- De Smet, J.; Lenaerts, S.; Borremans, A.; Scholliers, J.; Van Der Borght, M.; Van Campenhout, L. Stability assessment and laboratory scale fermentation of pastes produced on a pilot scale from mealworms (Tenebrio molitor). LWT 2019, 102, 113–121. [Google Scholar] [CrossRef]
- Borremans, A.; Crauwels, S.; Vandeweyer, D.; Smets, R.; Verreth, C.; Van der Borght, M.; Van Campenhout, L. Comparison of six commercial meat starter cultures for the fermentation of yellow mealworm (Tenebrio molitor) paste. Microorganisms 2019, 7, 540. [Google Scholar] [CrossRef]
- Hierro, E.; Fernández, M.; de la Hoz, L.; Ordóñez, J.A. Mediterranean products. In Handbook of Fermented Meat and Poultry; Blackwell Publishing: Oxford, UK, 2015; pp. 301–312. [Google Scholar]
- Capita, R.; Llorente-Marigómez, S.; Prieto, M.; Alonso-Calleja, C. Microbiological profiles, pH, and titratable acidity of chorizo and salchichón (two Spanish dry fermented sausages) manufactured with ostrich, deer, or pork meat. J. Food Prot. 2006, 69, 1183–1189. [Google Scholar] [CrossRef]
- Committee on the Review of the Use of Scientific Criteria. Performance Standards for Safe Food. In Scientific Criteria to Ensure Safe Food; Grove/Atlantic, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Kim, T.K.; Lee, M.Y.; Yong, H.I.; Jung, S.; Paik, H.D.; Jang, H.W.; Choi, Y.S. Effect of interaction between mealworm protein and myofibrillar protein on the rheological properties and thermal stability of the prepared emulsion systems. Foods 2020, 9, 1443. [Google Scholar] [CrossRef]
- Kim, H.W.; Setyabrata, D.; Lee, Y.; Jones, O.G.; Kim, Y.H.B. Effect of house cricket (Acheta domesticus) flour addition on physicochemical and textural properties of meat emulsion under various formulations. J. Food Sci. 2017, 82, 2787–2793. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, T.K.; Choi, H.D.; Park, J.D.; Sung, J.M.; Jeon, K.H.; Kim, Y.B. Optimization of replacing pork meat with yellow worm (Tenebrio molitor L.) for frankfurters. Korean J. Food Sci. Anim. Resour. 2017, 37, 617. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Yi, L.; van Valenberg, H.J.F.; van Boekel, M.A.J.S.; Lakemond, C.M.M. Insect lipid profile: Aqueous versus organic solvent-based extraction methods. Food Res. Int. 2014, 62, 1087–1094. [Google Scholar] [CrossRef]
- Paul, A.; Frederich, M.; Megido, R.C.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Danthine, S. Insect fatty acids: A comparison of lipids from three orthopterans and Tenebrio molitor L. larvae. J. Asia-Pac. Entomol. 2017, 20, 337–340. [Google Scholar] [CrossRef]
- Fontaneto, D.; Tommaseo-Ponzetta, M.; Galli, C.; Risé, P.; Glew, R.H.; Paoletti, M.G. Differences in fatty acid composition between aquatic and terrestrial insects used as food in human nutrition. Ecol. Food Nutr. 2011, 50, 351–367. [Google Scholar] [CrossRef]
- Wittkopp, P.J.; Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 2009, 20, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Olivares, A. Flavor. In Handbook of Fermented Meat and Poultry; Blackwell Publishing: Oxford, UK, 2015; pp. 217–225. [Google Scholar]
- Perez-Santaescolastica, C.; De Winne, A.; Devaere, J.; Fraeye, I. Comparing the aromatic profile of seven unheated edible insect species. Food Res. Int. 2023, 164, 112389. [Google Scholar] [CrossRef]
- Park, M.K.; Shin, D.M.; Choi, Y.S. Comparison of volatile compound profiles derived from various livestock protein alternatives including edible-insect, and plant-based proteins. Food Chem. X 2024, 23, 101570. [Google Scholar] [CrossRef]
- Vermassen, A.; Dordet-Frisoni, E.; de La Foye, A.; Micheau, P.; Laroute, V.; Leroy, S.; Talón, R. Adaptation of Staphylococcus xylosus to nutrients and osmotic stress in a salted meat model. Front. Microbiol. 2016, 7, 87. [Google Scholar] [CrossRef]
- Ferrocino, I.; Bellio, A.; Giordano, M.; Macori, G.; Romano, A.; Rantsiou, K.; Decastelli, L.; Cocolin, L. Shotgun metagenomics and volatilome profile of the microbiota of fermented sausages. Appl. Environ. Microbiol. 2018, 84, e02120-17. [Google Scholar] [CrossRef]
- Flores, M.; Piornos, J.A. Fermented meat sausages and the challenge of their plant-based alternatives: A comparative review on aroma-related aspects. Meat Sci. 2021, 182, 108636. [Google Scholar] [CrossRef]
- Hospital, X.F.; Hierro, E.; Fernández, M. Survival of Listeria innocua in dry fermented sausages and changes in the typical microbiota and volatile profile as affected by the concentration of nitrate and nitrite. Int. J. Food Microbiol. 2012, 153, 395–401. [Google Scholar] [CrossRef]
- Marco, A.; Navarro, J.L.; Flores, M. Quantitation of selected odor-active constituents in dry fermented sausages prepared with different curing salts. J. Agric. Food Chem. 2007, 55, 3058–3065. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Ventanas, J.; Cava, R.; Andrés, A.; García, C. Volatile compounds of dry cured Iberian ham as affected by the length of the curing process. Meat Sci. 1999, 52, 19–27. [Google Scholar] [CrossRef]
- Hierro, E.; de la Hoz, L.; Ordóñez, J.A. Contribution of the microbial and meat endogenous enzymes to the free amino acid and amine contents of dry fermented sausages. J. Agric. Food Chem. 1999, 47, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.A.; Melgosa, M.; Pérez, M.M.; Hita, E.A.I.N.S.; Negueruela, A.I. Note. Visual and instrumental color evaluation in red wines. Food Sci. Technol. Int. 2001, 7, 439–444. [Google Scholar] [CrossRef]
- Ortolá, M.D.; Martínez-Catalá, M.; Yuste Del Carmen, A.; Castelló, M.L. Physicochemical and sensory properties of biscuits formulated with Tenebrio molitor and Alphitobius diaperinus flours. J. Texture Stud. 2022, 53, 540–549. [Google Scholar] [CrossRef]
- Gkinali, A.A.; Matsakidou, A.; Vasileiou, E. Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends Food Sci. Technol. 2022, 119, 495–507. [Google Scholar] [CrossRef]
- Tobolková, B.; Takác, P.; Mangová, B.; Kozánek, M. A comparative study of colour characteristics of thermally/non thermally treated mealworm larvae (Tenebrio molitor) by means of UV/Vis spectroscopy and multivariate analysis. J. Food Meas. Charact. 2021, 15, 3791–3799. [Google Scholar] [CrossRef]
Mealworm Flour (%) | |||||
---|---|---|---|---|---|
Parameter | 0 | 5 | 10 | 15 | p-Value |
Typical microbiota (log cfu/g) | |||||
LAB | 8.61 ± 0.39 | 9.00 ± 0.13 | 9.06 ± 0.11 | 9.00 ± 0.14 | 0.1376 |
GCC+ | 7.06 ± 0.41 b | 7.40 ± 0.13 b | 7.92 ± 0.27 a | 8.04 ± 0.36 a | 0.0072 |
Enterobacteriaceae | <1.5 | <1.5 | <1.5 | <1.5 | - |
pH | 5.26 ± 0.01 | 5.27 ± 0.09 | 5.28 ± 0.02 | 5.37 ± 0.08 | 0.3905 |
aw | 0.838 ± 0.016 | 0.844 ± 0.010 | 0.854 ± 0.008 | 0.861 ± 0.014 | 0.1283 |
Composition (g/100 g) | |||||
Moisture | 24.26 ± 0.55 c | 25.65 ± 0.22 bc | 27.19 ± 0.65 ab | 27.96 ± 0.64 a | 0.0085 |
Protein (dry matter) | 32.54 ± 0.40 b | 33.36 ± 0.35 ab | 34.00 ± 0.25 ab | 34.62 ± 0.34 a | 0.0160 |
Fat (dry matter) | 52.93 ± 0.57 a | 51.95 ± 0.28 ab | 51.08 ± 0.24 b | 50.41 ± 0.35 b | 0.0155 |
Ash (dry matter) | 5.51 ± 0.01 | 5.42 ± 0.08 | 5.32 ± 0.17 | 5.25 ± 0.14 | 0.3289 |
Total fiber (dry matter) | 0.14 ± 0.01 d | 0.49 ± 0.03 c | 0.78 ± 0.02 b | 1.04 ± 0.01 a | 0.0000 |
Carbohydrates (dry matter) | 8.87 | 8.82 | 8.87 | 8.86 | - |
Lipid oxidation | |||||
Hydroperoxides (mmol/kg) | 51.23 ± 19.23 | 42.56 ± 17.01 | 49.75 ± 6.66 | 38.87 ± 6.62 | 0.6300 |
TBARs (mg MDA/kg) | 3.91 ± 0.34 | 3.12 ± 0.91 | 3.47 ± 0.59 | 3.32 ± 0.43 | 0.2106 |
Mealworm Flour (%) | |||||
---|---|---|---|---|---|
FAME | 0 | 5 | 10 | 15 | p-Value |
Capric (C10:0) | 0.07 ± 0.00 | 0.07 ± 0.01 | 0.07 ± 0.00 | 0.07 ± 0.00 | 0.5835 |
Lauric (C12:0) | 0.09 ± 0.00 | 0.10 ± 0.01 | 0.09 ± 0.01 | 0.10 ± 0.01 | 0.8567 |
Myristoleic (C14:1n-5) | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.02 ± 0.00 | 0.2422 |
Myristic (C14:0) | 1.15 ± 0.02 c | 1.25 ± 0.03 b | 1.28 ± 0.00 b | 1.38 ± 0.01 a | 0.0002 |
Pentadecanoic (C15:0) | 0.07 ± 0.00 | 0.07 ± 0.00 | 0.07 ± 0.00 | 0.07 ± 0.00 | 0.2036 |
Palmitoleic (C16:1n-7) | 2.20 ± 0.22 | 2.02 ± 0.03 | 2.05 ± 0.05 | 1.94 ± 0.04 | 0.3302 |
Palmitic (C16:0) | 22.69 ± 0.14 | 22.54 ± 0.01 | 22.49 ± 0.06 | 22.48 ± 0.09 | 0.1861 |
Heptadecenoic (C17:1n-7) | 0.36 ± 0.00 a | 0.35 ± 0.02 ab | 0.34 ± 0.01 ab | 0.31 ± 0.02 b | 0.0331 |
Heptadecanoic (C17:0) | 0.38 ± 0.00 a | 0.38 ± 0.02 a | 0.37 ± 0.01 ab | 0.34 ± 0.00 b | 0.0305 |
Linoleic (C18:2n-6c) | 12.25 ± 0.08 b | 12.90 ± 0.28 a | 13.04 ± 0.13 a | 12.99 ± 0.01 a | 0.0051 |
Oleic (C18:1n-9c) | 45.69 ± 0.35 | 45.35 ± 0.51 | 45.71 ± 0.27 | 45.64 ± 0.28 | 0.7355 |
Stearic (C18:0) | 12.35 ± 0.14 | 12.31 ± 0.23 | 11.94 ± 0.15 | 12.13 ± 0.20 | 0.1588 |
Nonadecenoic (C19:1n-9) | 0.12 ± 0.00 a | 0.11 ± 0.00 ab | 0.11 ± 0.00 ab | 0.10 ± 0.00 b | 0.0155 |
Nonadecanoic (C19:0) | 0.05 ± 0.01 | 0.05 ± 0.00 | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.6618 |
Arachidonic (C20:4n-6) | 0.27 ± 0.01 ab | 0.28 ± 0.01 a | 0.24 ± 0.00 b | 0.24 ± 0.01 b | 0.0191 |
Eicosatrienoic (C20:3n-6) | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.10 ± 0.00 | 0.4022 |
Eicosadienoic (C20:2n-6) | 0.63 ± 0.02 a | 0.60 ± 0.01 ab | 0.57 ± 0.00 b | 0.56 ± 0.01 b | 0.0158 |
Eicosenoic (C20:1n-9) | 1.10 ± 0.02 | 1.08 ± 0.02 | 1.06 ± 0.01 | 1.08 ± 0.03 | 0.4919 |
Arachidic (C20:0) | 0.23 ± 0.01 | 0.24 ± 0.01 | 0.23 ± 0.01 | 0.25 ± 0.00 | 0.1253 |
Docosapentaenoic (C22:5n-3) | 0.08 ± 0.01 | 0.08 ± 0.00 | 0.07 ± 0.01 | 0.07 ± 0.00 | 0.233 |
Adrenic (C22:4n-6) | 0.09 ± 0.00 | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.00 | 0.1617 |
ΣSFA | 37.08 ± 0.12 | 37.00 ± 0.23 | 36.58 ± 0.21 | 36.86 ± 0.29 | 0.1619 |
ΣUFA | 62.92 ± 0.12 | 63.00 ± 0.23 | 63.42 ± 0.21 | 63.14 ± 0.29 | 0.1449 |
ΣMUFA | 49.48 ± 0.16 | 48.94 ± 0.51 | 49.29 ± 0.32 | 49.10 ± 0.26 | 0.3366 |
ΣPUFA | 13.44 ± 0.05 b | 14.06 ± 0.28 a | 14.13 ± 0.11 a | 14.05 ± 0.03 a | 0.0068 |
ΣPUFA/ΣSFA | 0.36 ± 0.00 c | 0.38 ± 0.01 b | 0.39 ± 0.00 a | 0.38 ± 0.00 b | 0.0000 |
h/H | 2.47 ± 0.03 | 2.49 ± 0.01 | 2.51 ± 0.01 | 2.49 ± 0.02 | 0.3321 |
Mealworm Flour (%) | ||||||
---|---|---|---|---|---|---|
LRI | Compound | 0 | 5 | 10 | 15 | p-Value |
Amino acid degradation | 1922 ± 95 a | 1431 ± 86 b | 1274 ± 64 b | 1016 ± 73 | 0.0040 | |
536 | Carbon disulfide | 142 ± 27 | 566 ± 40 a | 646 ± 62 a | 508 ± 70 a | 0.0090 |
654 | 3-Methylbutanal | 666 ± 75 a | 183 ± 37 b | 98 ± 11 b | 72 ± 8 b | 0.0004 |
662 | 2-Methylbutanal | 153 ± 43 a | 180 ± 38 a | 58 ± 1 b | 36 ± 1 b | 0.0186 |
731 | 3-Methyl-1-butanol | 80 ± 9 | 133 ± 40 | 144 ± 3 | 9 ± 5 | 0.0932 |
735 | 2-Methyl-1-butanol | 21 ± 0 a | 28 ± 0 a | 6 ± 2 b | 5 ± 0 b | 0.0213 |
739 | 2-Methyl-2-butenal | 143 ± 2 | 121 ± 37 | 179 ± 4 | 111 ± 9 | 0.0769 |
842 | 3-Methylbutanoic acid | 53 ± 1 c | 173 ± 0 a | 121 ± 9 b | 171 ± 17 a | 0.0008 |
982 | Benzaldehyde | 537 ± 25 a | 39 ± 3 b | 17 ± 2 b | 11 ± 2 b | 0.0000 |
1100 | Benzeneacetaldehyde | 127 ± 0 a | 8 ± 4 b | 5 ± 1 b | 7 ± 1 b | 0.0000 |
Carbohydrate fermentation | 10,020 ± 483 d | 21,298 ± 1000 c | 33,912 ± 852 b | 37,950 ± 517 a | 0.0000 | |
503 | Ethanol | 542 ± 64 c | 1221 ± 62 ab | 1608 ± 132 a | 1059 ± 128 b | 0.0022 |
503 | 2-Propanone (acetone) | 141 ± 16 b | 186 ± 26 b | 341 ± 13 a | 148 ± 0 a | 0.0008 |
583 | 2,3-Butanedione | 186 ± 26 c | 406 ± 24 c | 1617 ± 35 b | 2213 ± 115 a | 0.0000 |
604 | 2-Butanone | 369 ± 61 c | 744 ± 27 b | 1096 ± 96 a | 709 ± 28 b | 0.0013 |
649 | Acetic acid | 6762 ± 467 c | 14,588 ± 995 b | 20,244 ± 800 a | 20,500 ± 437 a | 0.0001 |
711 | 3-Hydroxy-2-butanone (acetoin) | 967 ± 75 d | 1977 ± 46 c | 7379 ± 235 b | 11,370 ± 154 a | 0.0000 |
808 | 2,3-Butanediol | 1053 ± 23 c | 2176 ± 46 a | 1627 ± 58 b | 1951 ± 148 a | 0.0007 |
Lipid oxidation | 12,447 ± 169 a | 1827 ± 111 b | 1630 ± 52 b | 1528 ± 86 b | 0.0000 | |
Aldehydes | 8587 ± 109 a | 763 ± 33 b | 85 ± 9 c | 44 ± 9 c | 0.0000 | |
696 | Pentanal | 1240 ± 66 a | 37 ± 11 b | nd | nd | 0.0017 |
825 | Hexanal | 6124 ± 51 a | 627 ± 18 b | 67 ± 8 c | 32 ± 9 c | 0.0000 |
927 | Heptanal | 686 ± 63 a | 58 ± 21 b | nd | nd | 0.0066 |
989 | 2-Heptenal | 228 ± 10 | nd | nd | nd | |
1029 | Octanal | 99 ± 9 a | 19 ± 5 b | 6 ± 0 bc | 4 ± 1 c | 0.0002 |
1091 | 2-Octenal | 58 ± 4 | nd | nd | nd | |
1131 | Nonanal | 152 ± 27 a | 22 ± 13 b | 12 ± 3 b | 8 ± 1 b | 0.0016 |
Hydrocarbons | 2020 ± 111 a | 688 ± 96 c | 1151 ± 49 b | 1083 ± 58 bc | 0.0010 | |
500 | Pentane | 490 ± 97 a | 58 ± 15 b | 28 ± 3 b | 19 ± 4 b | 0.0016 |
700 | Heptane | 748 ± 39 a | 150 ± 37 b | 115 ± 7 b | 39 ± 33 b | 0.0001 |
792 | 1-Octene | 64 ± 9 a | 35 ± 7 b | 47 ± 1 ab | 56 ± 3 ab | 0.0327 |
800 | Octane | 718 ± 37 a | 240 ± 54 b | 399 ± 44 b | 396 ± 5 b | 0.0012 |
992 | 2,2,4,6,6-Pentamethylheptane | nd | 205 ± 68 b | 562 ± 20 a | 573 ± 47 a | 0.0079 |
Alcohols | 1415 ± 62 a | 195 ± 12 b | 143 ± 13 b | 95 ± 6 b | 0.0000 | |
512 | 2-Propanol | 45 ± 4 b | 52 ± 5 ab | 77 ± 12 a | 53 ± 6 ab | 0.0475 |
689 | 1-Penten-3-ol | 201 ± 30 a | 17 ± 9 b | 4 ± 1 b | nd | 0.0232 |
765 | 1-Pentanol | 488 ± 37 a | 55 ± 3 b | 21 ± 1 b | nd | 0.0004 |
885 | 1-Hexanol | 259 ± 31 a | 35 ± 3 b | 22 ± 2 b | 17 ± 2 b | 0.0003 |
987 | 1-Heptanol | 56 ± 4 | nd | nd | nd | - |
997 | 1-Octen-3-ol | 324 ± 23 a | 25 ± 3 b | 13 ± 3 b | 14 ± 0 b | 0.0000 |
1089 | 1-Octanol | 42 ± 8 | 11 ± 1 | 6 ± 1 | 11 ± 1 | 0.2766 |
Ketones | 98 ± 8 b | 54 ± 16 b | 100 ± 5 b | 203 ± 3 a | 0.0013 | |
716 | 2,3-Pentanedione | 29 ± 5 | 28 ± 15 | 13 ± 2 | 23 ± 1 | 0.0328 |
838 | 2-Hydroxy-3-pentanone | nd | nd | 77 ± 5 b | 163 ± 3 a | 0.0021 |
911 | 2-Heptanone | 69 ± 6 a | 26 ± 6 b | 10 ± 1 b | 17 ± 0 b | 0.0007 |
Furans | 327 ± 24 a | 127 ± 42 b | 151 ± 6 b | 103 ± 62 b | 0.0156 | |
600 | 2-Methylfuran | 57 ± 7 | 108 ± 42 | 150 ± 6 | 102 ± 62 | 0.2545 |
701 | 2-Ethylfuran | 147 ± 22 a | 17 ± 3 b | nd | nd | 0.0140 |
909 | 2-n-Butylfuran | 8 ± 3 a | 2 ± 0 b | 1 ± 0 b | 1 ± 0 b | 0.0133 |
1009 | 2-Pentylfuran | 115 ± 4 | nd | nd | nd | - |
Microbial esterification | 3729 ± 214 | 4830 ± 382 | 5764 ± 629 | 3834 ± 104 | 0.1208 | |
615 | Ethylacetate | 2820 ± 214 b | 3799 ± 375 ab | 4668 ± 628 a | 3044 ± 104 b | 0.0274 |
762 | Ethyl 2-methylpropanoate | 30 ± 4 | 68 ± 2 | 77 ± 29 | 46 ± 5 | 0.1459 |
815 | Ethyl butanoate | 162 ± 1 | 126 ± 35 | 164 ± 4 | 99 ± 7 | 0.0592 |
833 | Ethyl 2-hydroxypropionate | 35 ± 5 | 48 ± 22 | 65 ± 1 | 26 ± 3 | 0.0865 |
862 | Ethyl 2-methylbutanoate | 122 ± 9 | 191 ± 55 | 192 ± 6 | 150 ± 12 | 0.1697 |
867 | Ethyl 3-methylbutanoate | 342 ± 5 c | 525 ± 11 a | 530 ± 20 a | 410 ± 32 b | 0.0016 |
1012 | Ethyl hexanoate | 191 ± 4 a | 60 ± 13 b | 53 ± 1 b | 46 ± 2 b | 0.0001 |
1209 | Ethyl octanoate | 27 ± 1 a | 13 ± 0 b | 15 ± 2 b | 13 ± 1 b | 0.0011 |
Spices | 10,549 ± 200 | 9660 ± 611 | 10,318 ± 258 | 9028 ± 334 | 0.5444 | |
934 | α-Pinene | 288 ± 60 b | 505 ± 70 a | 607 ± 2 a | 460 ± 13 ab | 0.0102 |
1000 | β-Myrcene | 234 ± 15 a | 168 ± 24 ab | 180 ± 21 ab | 156 ± 4 b | 0.0395 |
1010 | β-Pinene | 475 ± 98 c | 764 ± 11 ab | 892 ± 9 a | 651 ± 6 bc | 0.0046 |
1034 | 3-Carene | 4455 ± 43 | 4255 ± 452 | 4676 ± 165 | 4199 ± 19 | 0.3208 |
1048 | o-Cymene | 153 ± 6 a | 134 ± 23 ab | 127 ± 0 ab | 88 ± 6 b | 0.0249 |
1057 | Limonene | 3794 ± 151 a | 2647 ± 366 b | 2586 ± 166 b | 2388 ± 21 b | 0.0091 |
1065 | β-Phellandrene | 104 ± 10 a | 84 ± 1 ab | 72 ± 2 b | 67 ± 3 b | 0.0068 |
1084 | β-Terpinen | 30 ± 8 | 25 ± 1 | 24 ± 2 | 23 ± 0 | 0.4669 |
1478 | Caryophyllene | 1016 ± 43 | 1075 ± 170 | 1154 ± 106 | 996 ± 1 | 0.4903 |
Total | 38,667 ± 597 b | 39,046 ± 1241 b | 52,898 ± 1093 a | 53,356 ± 541 a | 0.0092 |
Mealworm Flour (%) | |||||
---|---|---|---|---|---|
Parameter | 0 | 5 | 10 | 15 | p-Value |
Color | |||||
L* | 42.24 ± 5.13 a | 36.49 ± 6.82 b | 36.12 ± 3.07 b | 34.48 ± 2.66 b | 0.0013 |
a* | 8.84 ± 2.88 | 8.99 ± 1.46 | 7.57 ± 1.48 | 6.90 ± 1.25 | 0.0581 |
b* | 5.48 ± 1.19 c | 7.52 ± 1.58 b | 9.28 ± 1.43 a | 9.56 ± 1.58 a | 0.0000 |
ΔE* | - | 8.82 ± 2.45 | 7.74 ± 2.56 | 9.26 ± 2.32 | 0.3737 |
TPA | |||||
Hardness (N) | 111.47 ± 2.15 | 95.88 ± 3.89 | 100.06 ± 11.62 | 99.04 ± 9.59 | 0.3422 |
Adhesiveness (N*s) | −1.62 ± 0.57 | −0.99 ± 0.06 | −1.91 ± 1.64 | −0.78 ± 0.31 | 0.5921 |
Springiness | 0.71 ± 0.00 | 0.72 ± 0.00 | 0.78 ± 0.12 | 0.74 ± 0.06 | 0.6989 |
Cohesiveness | 0.45 ± 0.02 | 0.49 ± 0.00 | 0.50 ± 0.03 | 0.50 ± 0.02 | 0.2064 |
Chewiness (N) | 36.09 ± 1.91 | 33.52 ± 1.67 | 37.66 ± 5.75 | 36.78 ± 4.94 | 0.8487 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hospital, X.F.; Hierro, E.; Fernández, M.; Martin, D.; Escudero, R.; Navarro del Hierro, J. Use of Mealworm (Tenebrio molitor) Flour as Meat Replacer in Dry Fermented Sausages. Foods 2025, 14, 1019. https://doi.org/10.3390/foods14061019
Hospital XF, Hierro E, Fernández M, Martin D, Escudero R, Navarro del Hierro J. Use of Mealworm (Tenebrio molitor) Flour as Meat Replacer in Dry Fermented Sausages. Foods. 2025; 14(6):1019. https://doi.org/10.3390/foods14061019
Chicago/Turabian StyleHospital, Xavier F., Eva Hierro, Manuela Fernández, Diana Martin, Rosa Escudero, and Joaquín Navarro del Hierro. 2025. "Use of Mealworm (Tenebrio molitor) Flour as Meat Replacer in Dry Fermented Sausages" Foods 14, no. 6: 1019. https://doi.org/10.3390/foods14061019
APA StyleHospital, X. F., Hierro, E., Fernández, M., Martin, D., Escudero, R., & Navarro del Hierro, J. (2025). Use of Mealworm (Tenebrio molitor) Flour as Meat Replacer in Dry Fermented Sausages. Foods, 14(6), 1019. https://doi.org/10.3390/foods14061019