Research on the Quality Variation Patterns During the Fermentation Process of Coffee-Grounds Craft Beer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Process Flow
2.3. Physical and Chemical Determination
2.4. Determination of Chlorogenic Acid and Caffeine
2.5. Diacetyl Determination
2.6. Electronic Tongue and Electronic Nose Measurement
2.7. HS-SPME-GC/MS Detection Conditions
2.8. Data Processing and Annotation
3. Results
3.1. Changes in Physical and Chemical Indicators During the Fermentation Process of Coffee-Grounds Craft Beer
3.1.1. Intelligent Sensory Evaluation
3.1.2. Changes in Physical and Chemical Indicators During Fermentation Process
3.2. Analysis of Differential Metabolites During the Fermentation Process of Coffee-Grounds Craft Beer
3.2.1. Metabolite Differential Analysis Based on PCA and PLS-DA
3.2.2. Screening of Significant Differential Metabolites in the Fermentation Process of Coffee-Grounds Craft Beer
3.2.3. Metabolite Classification with Significant Differences in Fermentation Days
3.2.4. Cluster Analysis and Correlation Analysis of Differential Metabolites Among Multiple Groups
3.3. Analysis of Flavor Formation Mechanism in the Fermentation Process of Coffee-Grounds Craft Beer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Girotto, F.; Pivato, A.; Cossu, R.; Nkeng, G.E.; Lavagnolo, M.C. The Broad Spectrum of Possibilities for Spent Coffee Grounds Valorisation. J. Mater. Cycles Waste Manag. 2018, 20, 695–701. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Choi, B.; Koh, E. Spent Coffee as a Rich Source of Antioxidative Compounds. Food Sci. Biotechnol. 2017, 26, 921–927. [Google Scholar] [CrossRef] [PubMed]
- D’Almeida, A.P.; de Albuquerque, T.L. Coconut Husk Valorization: Innovations in Bioproducts and Environmental Sustainability. Biomass Convers. Biorefinery 2024, 1–21. [Google Scholar] [CrossRef]
- Kim, J.; Park, Y.; Shin, J.; Kim, S.; Kim, H.L.; Bae, S. Sustainable Protein Extraction from Spent Coffee Grounds Using Response Surface Methodology. Biomass Convers. Biorefinery 2025, 1–11. [Google Scholar] [CrossRef]
- Atabani, A.E.; Al-Muhtaseb, A.H.; Kumar, G.; Saratale, G.D.; Aslam, M.; Khan, H.A.; Said, Z.; Mahmoud, E. Valorization of Spent Coffee Grounds into Biofuels and Value-Added Products: Pathway towards Integrated Bio-Refinery. Fuel 2019, 254, 115640. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Vo, T.-D.-H.; Nguyen, T.-B.; Dat, N.D.; Huu, B.T.; Nguyen, X.-C.; Tran, T.; Le, T.-N.-C.; Duong, T.-G.-H.; Bui, M.-H.; et al. Adsorption of Norfloxacin from Aqueous Solution on Biochar Derived from Spent Coffee Ground: Master Variables and Response Surface Method Optimized Adsorption Process. Chemosphere 2021, 288, 132577. [Google Scholar] [CrossRef]
- Bouhzam, I.; Cantero, R.; Balcells, M.; Margallo, M.; Aldaco, R.; Bala, A.; Fullana-I-Palmer, P.; Puig, R. Environmental and Yield Comparison of Quick Extraction Methods for Caffeine and Chlorogenic Acid from Spent Coffee Grounds. Foods 2023, 12, 779. [Google Scholar] [CrossRef]
- Martinez-Saez, N.; García, A.T.; Pérez, I.D.; Rebollo-Hernanz, M.; Mesías, M.; Morales, F.J.; Martín-Cabrejas, M.A.; del Castillo, M.D. Use of Spent Coffee Grounds as Food Ingredient in Bakery Products. Food Chem. 2017, 216, 114–122. [Google Scholar] [CrossRef]
- Ahanchi, M.; Sugianto, E.C.; Chau, A.; Khoddami, A. Quality Properties of Bakery Products and Pasta Containing Spent Coffee Grounds (SCGs): A Review. Foods 2024, 13, 3576. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of Antioxidant Phenolic Compounds from Spent Coffee Grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Salević Jelić, A.S.; Lević, S.M.; Stanisavljević, N.S.; Milošević, T.; Pavlović, V.B.; Gašić, U.M.; Obradović, N.S.; Nedović, V.A.; Pešić, M.B. Craft Beer Produced by Immobilized Yeast Cells with the Addition of Grape Pomace Seed Powder: Physico-Chemical Characterization and Antioxidant Properties. Foods 2024, 13, 2801. [Google Scholar] [CrossRef] [PubMed]
- Nunes Filho, R.C.; Galvan, D.; Effting, L.; Terhaag, M.M.; Yamashita, F.; Benassi, M.d.T.; Spinosa, W.A. Effects of Adding Spices with Antioxidants Compounds in Red Ale Style Craft Beer: A Simplex-Centroid Mixture Design Approach. Food Chem. 2021, 365, 130478. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, W.; Liu, Y.; Jiang, W. Antifreeze Peptides Preparation from Tilapia Skin and Evaluation of Its Cryoprotective Effect on Lacticaseibacillus Rhamnosus. Foods 2022, 11, 857. [Google Scholar] [CrossRef]
- Zhang, Y.; Xin, N.; Ashaolu, T.J.; Chen, N.; Wang, Y.; Zhang, T.; Zhao, C. In Vitro and in Silico Studies of the Structure and Functional Properties of the Lactoferrin-Chlorogenic Acid Complex. Food Hydrocoll. 2023, 144, 109051. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative Analysis on Difference of Apple Fruits Flavour Using Electronic Nose and Electronic Tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Poeta, E.; Liboà, A.; Mistrali, S.; Núñez-Carmona, E.; Sberveglieri, V. Nanotechnology and E-Sensing for Food Chain Quality and Safety. Sensors 2023, 23, 8429. [Google Scholar] [CrossRef]
- Fella, P.; Kaikiti, K.; Stylianou, M.; Agapiou, A. HS-SPME-GC/MS Analysis for Revealing Carob’s Ripening. Metabolites 2022, 12, 656. [Google Scholar] [CrossRef]
- Chacón-Figueroa, I.H.; Medrano-Ruiz, L.G.; Moreno-Vásquez, M.D.; Ovando-Martínez, M.; Gámez-Meza, N.; Del-Toro-Sánchez, C.L.; Castro-Enríquez, D.D.; López-Ahumada, G.A.; Dórame-Miranda, R.F. Use of Coffee Bean Bagasse Extracts in the Brewing of Craft Beers: Optimization and Antioxidant Capacity. Molecules 2022, 27, 7755. [Google Scholar] [CrossRef]
- Yoshimatsu, J.; Toko, K.; Tahara, Y.; Ishida, M.; Habara, M.; Ikezaki, H.; Kojima, H.; Ikegami, S.; Yoshida, M.; Uchida, T. Development of Taste Sensor to Detect Non-Charged Bitter Substances. Sensors 2020, 20, 3455. [Google Scholar] [CrossRef]
- Machado, E.; Mussatto, S.I.; Teixeira, J.; Vilanova, M.; Oliveira, J. Increasing the Sustainability of the Coffee Agro-Industry: Spent Coffee Grounds as a Source of New Beverages. Beverages 2018, 4, 105. [Google Scholar] [CrossRef]
- Nunes, C.S.O.; da Silva, M.L.C.; Camilloto, G.P.; Machado, B.A.S.; Hodel, K.V.S.; Koblitz, M.G.B.; Carvalho, G.B.M.; Uetanabaro, A.P.T. Potential Applicability of Cocoa Pulp (Theobroma cacao L.) as an Adjunct for Beer Production. Sci. World J. 2020, 2020, 3192585. [Google Scholar] [CrossRef]
- Martinez-Gomez, A.; Caballero, I.; Blanco, C.A. Phenols and Melanoidins as Natural Antioxidants in Beer. Structure, Reactivity and Antioxidant Activity. Biomolecules 2020, 10, 400. [Google Scholar] [CrossRef]
- Sriherfyna, F.; Khairanny, N.; Nurcholis, M.; Maligan, J. Microbial Succession During the Fermentation of Semeru Arabica Coffee. J. Pangan Dan Agroindustri 2024, 12, 43–49. [Google Scholar] [CrossRef]
- Boateng, I.D.; Zhang, W.; Li, Y.-Y.; Saalia, F.K.; Yang, X.-M. Non-Thermal Pretreatment Affects Ginkgo biloba L. Seed’s Product Qualities, Sensory, and Physicochemical Properties. J. Food Sci. 2022, 87, 94–111. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.; Li, Y.; Li, Z.; Liu, H.; Zhou, W. Metabolite Profiling of Sorghum Seeds of Different Colors from Different Sweet Sorghum Cultivars Using a Widely Targeted Metabolomics Approach. Int. J. Genom. 2020, 2020, 6247429. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J. Untargeted Metabolomic Analysis of Metabolites Related to Body Dysmorphic Disorder (BDD). Funct. Integr. Genom. 2023, 23, 70. [Google Scholar] [CrossRef]
- Hu, Q.; Shen, P.; Bai, S.; Dong, M.; Liang, Z.; Chen, Z.; Wang, W.; Wang, H.; Gui, S.; Li, P.; et al. Metabolite-Related Antidepressant Action of Diterpene Ginkgolides in the Prefrontal Cortex. Neuropsychiatr. Dis. Treat. 2018, 14, 999–1011. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, M.; Cheng, X.; Yue, X.; Hao, F.; Wang, H.; Duan, L.; Han, C.; Zhu, L. Metabolomic Analysis of Human Plasma Sample after Exposed to High Altitude and Return to Sea Level. PLoS ONE 2023, 18, e0282301. [Google Scholar] [CrossRef]
- Yan, H.; Pu, Z.-J.; Zhang, Z.-Y.; Zhou, G.-S.; Zou, D.-Q.; Guo, S.; Li, C.; Zhan, Z.-L.; Duan, J.-A. Research on Biomarkers of Different Growth Periods and Different Drying Processes of Citrus wilsonii Tanaka Based on Plant Metabolomics. Front. Plant Sci. 2021, 12, 700367. [Google Scholar] [CrossRef]
- Tu, D.; Kang, J.; Li, Q.; Deng, M.; Liu, M.; Liu, W.; Ming, J.; Brennan, M.; Brennan, C.; You, L. Exploring the Core Functional Microbiota Related to Flavor Compounds in Douchi from the Sichuan–Chongqing Region. Foods 2025, 14, 810. [Google Scholar] [CrossRef]
- Shu, S.; Jing, R.; Li, L.; Wang, W.; Zhang, J.; Luo, Z.; Shan, Y.; Liu, Z. Effects of Different Heat Treatments on Yak Milk Proteins on Intestinal Microbiota and Metabolism. Foods 2024, 13, 192. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yin, Z.; Yu, W.; Luo, X.; Ke, C.; You, W. The Taste Characteristics and Metabolite Variations of Two Pacific Abalone Strains with Different Glycogen Contents. LWT 2024, 195, 115820. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Z.; Xie, L.; Li, L.; Zhou, W.; Zhao, L. The Correlation Mechanism between Dominant Bacteria and Primary Metabolites during Fermentation of Red Sour Soup. Foods 2022, 11, 341. [Google Scholar] [CrossRef]
- Ma, J.; Sun, L.; Liu, Y.; Ren, H.; Shen, Y.; Bi, F.; Zhang, T.; Wang, X. Alter between Gut Bacteria and Blood Metabolites and the Anti-Tumor Effects of Faecalibacterium prausnitzii in Breast Cancer. BMC Microbiol. 2020, 20, 82. [Google Scholar] [CrossRef]
- Sun, D.; Mu, B.; Liu, Y.; Zhao, C.; Li, H.; Wang, J.; Li, T.; Li, G.; Piao, C. Widely Targeted Metabolomic Analysis Reveals Dynamic Metabolic Changes in Yanbian Cattle during Dry-Aging Process. Foods 2024, 13, 2879. [Google Scholar] [CrossRef]
- Hu, M.; Wang, J.; Gao, Y.; Fan, B.; Wang, F.; Li, S. Proteomic Analysis of the Characteristic Flavor Components in Bacillus Subtilis BSNK-5-Fermented Soymilk. Foods 2024, 13, 2399. [Google Scholar] [CrossRef] [PubMed]
- Hiralal, L.; Olaniran, A.O.; Pillay, B. Aroma-Active Ester Profile of Ale Beer Produced under Different Fermentation and Nutritional Conditions. J. Biosci. Bioeng. 2014, 117, 57–64. [Google Scholar] [CrossRef]
- He, Y.; Dong, J.; Yin, H.; Zhao, Y.; Chen, R.; Wan, X.; Chen, P.; Hou, X.; Liu, J.; Chen, L. Wort Composition and Its Impact on the Flavour-Active Higher Alcohol and Ester Formation of Beer—A Review. J. Inst. Brew. 2014, 120, 157–163. [Google Scholar] [CrossRef]
- Piddocke, M.P.; Kreisz, S.; Heldt-Hansen, H.P.; Nielsen, K.F.; Olsson, L. Physiological Characterization of Brewer’s Yeast in High-Gravity Beer Fermentations with Glucose or Maltose Syrups as Adjuncts. Appl. Microbiol. Biotechnol. 2009, 84, 453–464. [Google Scholar] [CrossRef]
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.D.; Padilha, F.F. Beer Molecules and Its Sensory and Biological Properties: A Review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.; Gonçalves, J.; Figueira, J.A.; Ornelas, L.P.; Branco, R.N.; Câmara, J.S.; Pereira, J.A.M. Beer Volatile Fingerprinting at Different Brewing Steps. Food Chem. 2020, 326, 126856. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.G. The Production of Secondary Metabolites with Flavour Potential during Brewing and Distilling Wort Fermentations. Fermentation 2017, 3, 63. [Google Scholar] [CrossRef]
Chroma | T0 | T7 | T14 | T21 | T28 |
---|---|---|---|---|---|
L* | 21.13 ± 0.65 a | 17.61 ± 0.46 c | 17.27 ± 0.29 c | 19.08 ± 0.15 b | 19.41 ± 0.20 b |
a* | −1.14 ± 0.12 bc | −1.27 ± 0.07 c | −1.08 ± 0.04 b | −0.90 ± 0.21 a | −0.92 ± 0.09 a |
b* | 0.51 ± 0.15 ab | 0.31 ± 0.38 bc | 0.08 ± 0.05 c | 0.64 ± 0.12 ab | 0.88 ± 0.11 a |
ΔE | 3.51 ± 0.16 ab | 3.31 ± 0.38 ab | 3.22 ± 0.15 b | 3.57 ± 0.16 ab | 3.68 ± 0.10 a |
Metabolite | CAS ID | Formula | Retention Time | RI | T7_Mean | T14_Mean | T21_Mean | T28_Mean |
---|---|---|---|---|---|---|---|---|
Ethyl 3-hydroxyoctanoate | 7367-90-0 | C10H20O3 | 13.082 | 1884.134 | 5.626 | 5.678 | 5.829 | 5.896 |
2-Furancarboxylic acid, ethyl ester | 614-99-3 | C7H8O3 | 10.835 | 1618.217 | 5.032 | 5.132 | 5.264 | 5.318 |
Dodecanoic acid, ethyl ester | 106-33-2 | C14H28O2 | 12.782 | 1840.466 | 6.708 | 6.95 | 7.114 | 7.024 |
Ethyl 9-hexadecenoate | 54546-22-4 | C18H34O2 | 15.215 | 2279.449 | 6.137 | 6.703 | 7.497 | 7.076 |
Tetradecanoic acid, ethyl ester | 124-06-1 | C16H32O2 | 14.049 | 2047.243 | 5.877 | 5.966 | 6.088 | 5.895 |
Hexadecane | 544-76-3 | C16H34 | 10.617 | 1598.039 | 6.289 | 6.451 | 6.566 | 6.535 |
Tridecane | 629-50-5 | C13H28 | 6.167 | 1302.205 | 5.695 | 5.595 | 5.892 | 5.828 |
3-Phenyl-1-propanol, acetate | 122-72-5 | C11H14O2 | 13.432 | 1940.1 | 4.644 | 4.712 | 4.565 | 4.531 |
2-Butanol | 78-92-2 | C4H10O | 2.846 | 1042.887 | 8.72 | 9.002 | 8.697 | 9.038 |
4-(Furan-2-yl)butan-2-one | 699-17-2 | C8H10O2 | 11.071 | 1640.844 | 6.002 | 5.929 | 5.894 | 5.862 |
cis-Verbenyl angelate | 00000-00-0 | C15H22O2 | 11.157 | 1649.089 | 4.719 | 4.669 | 4.642 | 4.594 |
1-Decanol | 112-30-1 | C10H22O | 12.162 | 1758.088 | 5.908 | 5.683 | 6.696 | 6.75 |
2-Tridecanone | 593-08-8 | C13H26O | 12.531 | 1803.93 | 4.697 | 4.022 | 4.303 | 4.289 |
2-methyl-Propanoic acid | 79-31-2 | C4H8O2 | 10.291 | 1575.21 | 6.934 | 6.977 | 6.761 | 6.771 |
Diethyl succinate | 123-25-1 | C8H14O4 | 11.399 | 1672.291 | 5.908 | 6.2 | 6.482 | 6.618 |
1,5-dichloro-Pentane | 628-76-2 | C5H10Cl2 | 8.443 | 1449.805 | 5.457 | 5.621 | 5.737 | 5.711 |
3-Pyridinemethanamine | 3731-52-0 | C6H8N2 | 12.795 | 1842.358 | 4.648 | 4.348 | 4.616 | 4.664 |
Ethyl 2-methylbutyrate | 7452-79-1 | C7H14O2 | 2.863 | 1044.665 | 5.089 | 5.196 | 5.472 | 5.582 |
3-methyl-Butanoic acid | 503-74-2 | C5H10O2 | 11.412 | 1673.538 | 6.496 | 6.509 | 6.365 | 6.379 |
Acetic acid | 64-19-7 | C2H4O2 | 8.554 | 1457.004 | 6.749 | 6.768 | 6.632 | 6.443 |
1-(2-thienyl)-Ethanone | 88-15-3 | C6H6OS | 12.268 | 1771.078 | 5.265 | 4.866 | 4.722 | 4.856 |
2-phenoxy-Ethanol | 122-99-6 | C8H10O2 | 14.567 | 2145.833 | 5.741 | 5.798 | 5.448 | 5.514 |
Ethyl isobutyrate | 97-62-1 | C6H12O2 | 2.184 | 973.6402 | 5.716 | 5.874 | 6.047 | 6.156 |
2-Butenoic acid, butyl ester | 7299-91-4 | C8H14O2 | 6.475 | 1322.179 | 4.911 | 4.755 | 4.426 | 4.507 |
Indole | 120-72-9 | C8H7N | 16.057 | 2458.149 | 5.742 | 5.599 | 5.479 | 5.454 |
Ethyl phenylacetate | 101-97-3 | C10H12O2 | 12.35 | 1781.127 | 5.299 | 5.337 | 5.656 | 5.751 |
Ethyl benzoate | 93-89-0 | C9H10O2 | 11.29 | 1661.841 | 5.441 | 5.771 | 5.995 | 6.13 |
2-Pentanone | 107-87-9 | C5H10O | 2.26 | 981.59 | 5.338 | 5.693 | 5.952 | 6.121 |
Piperonal | 120-57-0 | C8H6O3 | 15.035 | 2241.314 | 4.634 | 4.617 | 4.486 | 4.401 |
Linoleic acid ethyl ester | 544-35-4 | C20H36O2 | 16.421 | 2536.195 | 6.725 | 6.554 | 6.235 | 6.048 |
Camphene | 79-92-5 | C10H16 | 2.962 | 1055.021 | 4.874 | 4.736 | 4.637 | 4.609 |
1-methyl-3-(1-methylethyl)-Benzene | 535-77-3 | C10H14 | 5.433 | 1252.413 | 4.485 | 4.457 | 4.569 | 4.585 |
Benzothiazole | 95-16-9 | C7H5NS | 13.526 | 1955.74 | 5.93 | 5.708 | 5.603 | 5.631 |
2-Propylphenol | 644-35-9 | C9H12O | 14.56 | 2144.444 | 5.729 | 6.032 | 6.426 | 6.21 |
1,5-Dimethyl-2-pyrrolecarbonitrile | 56341-36-7 | C7H8N2 | 10.476 | 1588.165 | 6.392 | 6.322 | 6.345 | 6.338 |
2-Butanol, 2-methyl-, acetate | 625-16-1 | C7H14O2 | 2.288 | 984.5188 | 5.218 | 6.031 | 6.32 | 6.417 |
1-Dodecene | 112-41-4 | C12H24 | 5.675 | 1268.865 | 4.657 | 5.141 | 5.454 | 5.419 |
Pentanoic acid, 2-hydroxy-4-methyl-, methyl ester | 40348-72-9 | C7H14O3 | 9.776 | 1539.146 | 4.685 | 4.91 | 5.088 | 5.159 |
2-methyl-Quinoxaline | 7251-61-8 | C9H8N2 | 13.591 | 1966.556 | 6.141 | 6.151 | 6.086 | 6.081 |
4-butoxy-1-Butanol | 4161-24-4 | C8H18O2 | 11.409 | 1673.25 | 5.955 | 6.021 | 6.145 | 6.185 |
2-Propanoylpyrrole | 1073-26-3 | C7H9NO | 13.964 | 2031.618 | 5.784 | 5.79 | 5.68 | 5.687 |
(S)-1-methyl-4-(1-methylethenyl)-Cyclohexene | 5989-54-8 | C10H16 | 4.248 | 1167.402 | 4.935 | 4.847 | 4.799 | 4.83 |
3-methyl-4-Hexen-2-one | 72189-24-3 | C7H12O | 5.07 | 1227.736 | 4.507 | 5.077 | 5.576 | 5.496 |
Ethyl nicotinate | 614-18-6 | C8H9NO2 | 12.572 | 1809.898 | 5.233 | 5.263 | 5.346 | 5.39 |
2,4,5-trimethyl-1,3-Dioxolane | 3299-32-9 | C6H12O2 | 2.044 | 958.9958 | 6.313 | 7.069 | 7.429 | 7.635 |
2-(methoxymethyl)-Furan | 13679-46-4 | C6H8O2 | 5.881 | 1282.869 | 5.027 | 5.231 | 5.265 | 5.309 |
4-Ethyl-2-isobutyl-5-methyloxazole | 4294682-24-0 | C10H17NO | 13.215 | 1903.993 | 4.622 | 4.618 | 4.511 | 4.458 |
3-methyl-Cyclopentene | 1120-62-3 | C6H10 | 10.617 | 1598.039 | 5.497 | 5.779 | 5.583 | 5.536 |
3-methyl-Butanal | 590-86-3 | C5H10O | 1.902 | 944.1423 | 6.109 | 6.542 | 6.515 | 6.623 |
1,3-Dioxan-4-one, 2-heptyl-6-methyl | 99902-24-6 | C12H22O3 | 2.891 | 1047.594 | 3.536 | 4.304 | 4.512 | 4.666 |
Methoxyacetaldehyde diethyl acetal | 4819-75-4 | C7H16O3 | 3.083 | 1067.678 | 4.257 | 4.456 | 4.569 | 4.653 |
(Z)-3-methyl-4-Nonene | 63830-69-3 | C10H20 | 3.286 | 1088.912 | 5.407 | 5.633 | 5.101 | 5.393 |
2,4,4-trimethyl-Hexane | 16747-30-1 | C9H20 | 6.83 | 1345.201 | 2.756 | 4.336 | 4.648 | 4.672 |
hexahydro-1,1-dimethyl-4-methylene-4H-Cyclopenta[c]furan | 344294-72-0 | C10H16O | 6.922 | 1351.167 | 4.607 | 4.923 | 4.944 | 4.869 |
3-(1-methylbutoxy)-2-Butanol | 74810-43-8 | C9H20O2 | 7.141 | 1365.37 | 3.251 | 4.914 | 4.667 | 4.866 |
2,3-Dimethyl-1-hexene | 16746-86-4 | C8H16 | 8.445 | 1449.935 | 6.026 | 6.235 | 6.456 | 6.433 |
3,3-dimethyl-Pentane | 562-49-2 | C7H16 | 8.495 | 1453.178 | 4.096 | 4.271 | 4.451 | 4.491 |
3,5-dimethyl-N-phenyl-Pyrazole-1-carboxamide | 00000-00-0 | C12H13N3O | 8.921 | 1480.804 | 4.723 | 4.594 | 4.616 | 4.536 |
Benzaldehyde | 100-52-7 | C7H6O | 9.451 | 1516.387 | 7.451 | 7.156 | 6.934 | 7.05 |
p-Amino-L-phenylalanine | 943-80-6 | C9H12N2O2 | 11.538 | 1685.618 | 4.502 | 4.414 | 4.396 | 4.415 |
Valeric acid, 4-cyanophenyl ester | 00000-00-0 | C12H13NO2 | 12.131 | 1754.289 | 4.817 | 4.767 | 4.818 | 4.861 |
cis-1,3-Bis(aminomethyl)cyclohexane | 10340-00-8 | C8H18N2 | 12.336 | 1779.412 | 4.452 | 4.275 | 4.269 | 4.311 |
3-(Hydroxyimino)-6-methylindolin-2-one | 107976-73-8 | C9H8N2O2 | 12.427 | 1790.564 | 4.989 | 4.84 | 4.797 | 4.76 |
3,4-di[1-butenyl]-Tetrahydrofuran-2-ol | 00000-00-0 | C12H20O2 | 12.513 | 1801.31 | 5.505 | 5.486 | 5.606 | 5.725 |
Methyl butyrylprolinate | 00000-00-0 | C10H17NO3 | 12.829 | 1847.307 | 4.513 | 4.293 | 4.366 | 4.373 |
1,3,3-Trimethyl-2-hydroxymethyl-3,3-dimethyl-4-(3-methylbut-2-enyl)-cyclohexene | 00000-00-0 | C15H26O | 13.265 | 1912.313 | 5.573 | 5.031 | 5.918 | 5.926 |
1H-Indene-1-methanol, alpha-methyl-, acetate | 63839-85-0 | C13H14O2 | 13.285 | 1915.641 | 5.546 | 5.807 | 5.301 | 5.51 |
Triallylhydrazine | 1571-11-5 | C9H16N2 | 13.574 | 1963.727 | 4.99 | 4.939 | 4.821 | 4.875 |
Methylenecyclopropane | 6142-73-0 | C4H6 | 13.613 | 1970.216 | 5.254 | 5.276 | 5.132 | 5.157 |
2-Hydroxy-1,7-naphthyridine | 54920-82-0 | C8H6N2O | 13.754 | 1993.677 | 5.709 | 5.716 | 5.637 | 5.637 |
Mefruside | 7195-27-9 | C13H19ClN2O5S2 | 13.789 | 1999.501 | 4.918 | 4.965 | 4.807 | 4.8 |
Bicyclo[2.2.2]oct-5-ene-2,3-dicarbonitrile | 62249-52-9 | C10H10N2 | 13.908 | 2021.324 | 4.399 | 4.376 | 4.26 | 4.281 |
Tetraethylene glycol, diacetate | 22790-12-1 | C12H22O7 | 13.998 | 2037.868 | 4.612 | 4.618 | 4.424 | 4.422 |
2-Methyl-1-(2-methyl-[1,3]dioxolan-2-yl)but-3-yn-2-ol | 00000-00-0 | C9H14O3 | 14.005 | 2039.154 | 4.892 | 4.95 | 4.869 | 4.893 |
N-(3-Acetylphenyl)-N-methylacetamide | 325715-13-7 | C11H13NO2 | 14.363 | 2105.357 | 6.197 | 6.198 | 6.124 | 6.12 |
5-(4-nitrophenoxymethyl)-Furane-2-carboxaldehyde | 00000-00-0 | C12H9NO5 | 14.378 | 2108.333 | 5.157 | 5.152 | 5.057 | 5.072 |
N-benzoyl-2-cyano-Histamine | 74419-68-4 | C13H12N4O | 14.541 | 2140.675 | 5.133 | 5.132 | 5.038 | 5.052 |
(E)-2-Butenoic acid, 2-(methylenecyclopropyl)prop-2-yl ester | 00000-00-0 | C11H16O2 | 14.56 | 2144.444 | 5.976 | 6.061 | 5.598 | 5.694 |
alpha-(2,2-dimethylpropyl)-Benzenemethanol | 62338-03-8 | C12H18O | 14.754 | 2182.937 | 4.923 | 4.923 | 4.86 | 4.865 |
Ehtyl 2-piperonyl carbazate | 31203-56-2 | C11H14N2O4 | 14.9 | 2212.712 | 4.26 | 4.388 | 4.312 | 4.336 |
2-(4-methyl-5-cis-phenyl-1,3-oxazolidin-2-yl)-Pyrrole | 00000-00-0 | C14H16N2O | 14.954 | 2224.153 | 4.64 | 4.72 | 4.529 | 4.507 |
2-Amino-4-isopropyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile | 302785-66-6 | C13H16N2O2 | 15.19 | 2274.153 | 5.09 | 5.083 | 5.036 | 5.007 |
4-Piperidinecarboxylic acid, 1-[(4-methylphenyl)sulfonyl]-, ethyl ester | 297180-07-5 | C15H21NO4S | 15.435 | 2326.974 | 4.772 | 4.613 | 4.577 | 4.535 |
6-(2-Hydroxypropan-2-yl)-4,8a-dimethyl-2,3,4,6,7,8-hexahydro-1H-naphthalen-1-ol, 1-acetate | 00000-00-0 | C17H28O3 | 15.58 | 2358.772 | 4.998 | 4.958 | 4.893 | 4.89 |
4-Methyl-1-(2-thienyl)-1,3-pentanedione | 30984-27-1 | C10H12O2S | 15.988 | 2444.266 | 5.579 | 5.498 | 5.425 | 5.343 |
2-Acetyl-4-(1,2-dihydroxypropyl)phenyl 1,3-benzodioxole-5-carboxylate, 2TFA | 00000-00-0 | C23H16F6O9 | 15.886 | 2423.742 | 4.702 | 4.692 | 4.475 | 4.453 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Yang, J.; Zhu, T.; Hu, Y.; Li, H.; Liu, L. Research on the Quality Variation Patterns During the Fermentation Process of Coffee-Grounds Craft Beer. Foods 2025, 14, 1014. https://doi.org/10.3390/foods14061014
Jiang J, Yang J, Zhu T, Hu Y, Li H, Liu L. Research on the Quality Variation Patterns During the Fermentation Process of Coffee-Grounds Craft Beer. Foods. 2025; 14(6):1014. https://doi.org/10.3390/foods14061014
Chicago/Turabian StyleJiang, Jiashun, Jingan Yang, Tong Zhu, Yongjin Hu, Hong Li, and Lijing Liu. 2025. "Research on the Quality Variation Patterns During the Fermentation Process of Coffee-Grounds Craft Beer" Foods 14, no. 6: 1014. https://doi.org/10.3390/foods14061014
APA StyleJiang, J., Yang, J., Zhu, T., Hu, Y., Li, H., & Liu, L. (2025). Research on the Quality Variation Patterns During the Fermentation Process of Coffee-Grounds Craft Beer. Foods, 14(6), 1014. https://doi.org/10.3390/foods14061014