Improving Meat Quality, Safety and Sustainability in Monogastric Livestock with Algae Feed Additives
Abstract
:1. Introduction
2. Brief Description of Nutritional and Bioactive Composition of Algae
2.1. Nutritional and Bioactive Composition of Microalgae
2.2. Nutritional and Bioactive Composition of Seaweeds
2.3. Bioactive Compounds and Their Benefits
2.4. Synergies and Practical Applications
3. Enhancing Meat Quality Through Algae
3.1. Nutritional Improvements
3.2. Sensory Attributes
3.3. Shelf-Life Improvements
3.4. Synergistic Effects for Comprehensive Meat Quality Enhancement
4. Improving Meat Safety with Algae
4.1. Antimicrobial Properties
4.2. Gut Health and Microbiota Modulation
4.3. Reduction of Contaminants
4.4. Synergistic Effects with Other Feed Additives
4.5. Mechanisms of Enhancing Meat Quality
4.6. Sustainability and Consumer Demand
5. Contribution of Dietary Algae to Sustainability
5.1. Environmental Benefits of Integrating Microalgae and Seaweeds in Animal Diets
5.2. Role in Circular Bioeconomy and Nutrient Recycling
5.3. Consumer and Market Perspectives on Sustainable Meat Production
5.4. Practical Implications for Sustainable Livestock Production
6. Challenges and Future Perspectives
6.1. Challenges and Limitations
6.2. Future Perspectives
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2024–2033; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- Costa, M.; Coelho, D.; Alfaia, C.; Pestana, J.; Lopes, P.A.; Prates, J.A.M. Microalgae application in feeds for monogastrics. In Handbook of Food and Feed from Microalgae; Chapter 32; Jacob-Lopes, E., Queiroz, M.I., Maroneze, M.M., Zepka, L.Q., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 411–420. [Google Scholar]
- Kumar, P.; Abubakar, A.A.; Verma, A.K.; Umaraw, P.; Adewale Ahmed, M.; Mehta, N.; Nizam Hayat, M.; Kaka, U.; Sazili, A.Q. New insights in improving sustainability in meat production: Opportunities and challenges. Crit. Rev. Food Sci. Nutr. 2023, 63, 11830–11858. [Google Scholar] [CrossRef] [PubMed]
- Amaral, A.; Silva, M.; Lannes, S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Ribeiro, J.; Santos, M.J.H.D.; Silva, L.K.R.; Pereira, L.C.L.; Santos, I.; Da Silva Lannes, S.; Da Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef]
- Ukrainets, A.; Pasichniy, V.; Zheludenko, Y. Antioxidant plant extracts in the meat processing industry. Biotechnol. Acta 2016, 9, 19–27. [Google Scholar] [CrossRef]
- Mozo, W.; Aguirre, E. Use of fruit seed oil as a natural antioxidant to extend shelf life in fresh meats. J. Agro-Ind. Sci. 2022, 4, 121–131. [Google Scholar] [CrossRef]
- Costa, M.; Cardoso, C.; Afonso, C.; Bandarra, N.; Prates, J. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: A systematic review. J. Anim. Physiol. Nutr. 2021, 105, 1075–1102. [Google Scholar] [CrossRef]
- Vidovic, N.; Vidovic, S. Antimicrobial Resistance and Food Animals: Influence of Livestock Environment on the Emergence and Dissemination of Antimicrobial Resistance. Antibiotics 2020, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Hosain, M.Z.; Kabir, S.; Kamal, M. Antimicrobial uses for livestock production in developing countries. Vet. World 2021, 14, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Mthembu, T.; Zishiri, O.; Zowalaty, M.E. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. Animals 2021, 11, 872. [Google Scholar] [CrossRef]
- Mendes, A.R.; Spínola, M.P.; Lordelo, M.; Prates, J.A.M. Chemical Compounds, Bioactivities, and Applications of Chlorella vulgaris in Food, Feed and Medicine. Appl. Sci. 2024, 14, 10810. [Google Scholar] [CrossRef]
- Spínola, M.P.; Mendes, A.R.; Prates, J.A.M. Chemical Composition, Bioactivities, and Applications of Spirulina (Limnospira platensis) in Food, Feed, and Medicine. Foods 2024, 13, 3656. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.M.; Spínola, M.P.; Prates, J.A.M. Microalgae as an Alternative Mineral Source in Poultry Nutrition. Vet. Sci. 2024, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef]
- Martins, C.; Ribeiro, D.; Costa, M.; Coelho, D.; Alfaia, C.; Lordelo, M.; Almeida, A.; Freire, J.; Prates, J. Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat. Foods 2021, 10, 2933. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Chen, G.; Zhang, J.; Chuanbin, W.; Liu, B. Extraction and purification of eicosapentaenoic acid and docosahexaenoic acid from microalgae: A critical review. Algal Res. 2019, 43, 101619. [Google Scholar] [CrossRef]
- Pratiwi, D.Y.; Zidni, I. The Effect of Schizochytrium sp. on the Growth and Health of Fish. Asian J. Res. Zool. 2023, 6, AJRIZ.95790. [Google Scholar] [CrossRef]
- Mahendran, M.S.; Dhanapal, A.C.T.A.; Wong, L.; Kasivelu, G.; Djearamane, S. Microalgae as a Potential Source of Bioactive Food Compounds. Curr. Res. Nutr. Food Sci. J. 2021, 9, 917–927. [Google Scholar] [CrossRef]
- Ribeiro, D.M.; Martins, C.F.; Costa, M.; Coelho, D.F.; Pestana, J.M.; Alfaia, C.M.; Lordelo, M.M.; de Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Quality Traits and Nutritional Value of Pork and Poultry Meat from Animals Fed with Seaweeds. Foods 2021, 10, 2961. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Z.; Wu, X.; Cheong, K.; Li, X.; Yu, W.; Yao, Y.; Wu, J.; Cao, Z. Bioactive Polysaccharides from Gracilaria lemaneiformis: Preparation, Structures, and Therapeutic Insights. Foods 2024, 13, 2782. [Google Scholar] [CrossRef]
- Kidgell, J.; Magnusson, M.; De Nys, R.; Glasson, C. Ulvan: A systematic review of extraction, composition and function. Algal Res. 2019, 39, 101422. [Google Scholar] [CrossRef]
- Innes, J.; Calder, P. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int. J. Mol. Sci. 2020, 21, 1362. [Google Scholar] [CrossRef] [PubMed]
- Nabi, F.; Arain, M.; Rajput, N.; Alagawany, M.; Soomro, J.; Umer, M.; Soomro, F.; Wang, Z.; Ye, R.; Liu, J. Health benefits of carotenoids and potential application in poultry industry: A review. J. Anim. Physiol. Nutr. 2020, 104, 1809–1818. [Google Scholar] [CrossRef]
- Baldrick, F.; McFadden, K.; Ibars, M.; Sung, C.; Moffatt, T.; Megarry, K.; Thomas, K.; Mitchell, P.; Wallace, J.; Pourshahidi, L.; et al. Impact of a (poly)phenol-rich extract from the brown algae Ascophyllum nodosum on DNA damage and antioxidant activity in an overweight or obese population: A randomized controlled trial. Am. J. Clin. Nutr. 2018, 108, 688–700. [Google Scholar] [CrossRef]
- Cirulis, J.; Scott, A.; Ross, G. Management of oxidative stress by microalgae. Can. J. Physiol. Pharmacol. 2013, 91, 15–21. [Google Scholar] [CrossRef]
- Shannon, E.; Conlon, M.; Hayes, M. Seaweed Components as Potential Modulators of the Gut Microbiota. Mar. Drugs 2021, 19, 358. [Google Scholar] [CrossRef]
- Ferreira, M.; Teixeira, C.; Abreu, H.; Silva, J.; Costas, B.; Kiron, V.; Valente, L.M.P. Nutritional value, antimicrobial and antioxidant activities of micro-and macroalgae, single or blended, unravel their potential use for aquafeeds. J. Appl. Phycol. 2021, 33, 3507–3518. [Google Scholar] [CrossRef]
- Lee, S.; Whenham, N.; Bedford, M. Review on docosahexaenoic acid in poultry and swine nutrition: Consequence of enriched animal products on performance and health characteristics. Anim. Nutr. 2018, 5, 11–21. [Google Scholar] [CrossRef]
- Mendes, A.R.; Spínola, M.P.; Lordelo, M.; Prates, J.A.M. Assessing the Influence of Cumulative Chlorella vulgaris Intake on Broiler Carcass Traits, Meat Quality and Oxidative Stability. Foods 2024, 13, 2753. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.; Allen, S.; Buskandar, F.; Shortall, K.; Hayes, H.; Williams, D.; Moran, N.; Stanton, A. [PP.30.12] Bioavailability and Beneficial Effects Of Omega-3-Pufa-Enriched Chicken-Meat: A Pilot Study. J. Hypertens. 2016, 34, e310. [Google Scholar] [CrossRef]
- Torres, P.; Santos, J.P.; Chow, F.; Santos, D.D. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). Algal Res. 2019, 37, 288–306. [Google Scholar] [CrossRef]
- Michalak, I.; Tiwari, R.; Dhawan, M.; Alagawany, M.; Farag, M.; Sharun, K.; Emran, T.; Dhama, K. Antioxidant effects of seaweeds and their active compounds on animal health and production—A review. Vet. Q. 2022, 42, 48–67. [Google Scholar] [CrossRef]
- Pereira, A.; Otero, P.; Echave, J.; Carreira-Casais, A.; Chamorro, F.; Collazo, N.; Jaboui, A.; Lourenço-Lopes, C.; Simal-Gándara, J.; Prieto, M. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar. Drugs 2021, 19, 188. [Google Scholar] [CrossRef]
- Makkar, H.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- De Medeiros, V.; Pimentel, T.; Sant’Ana, A.; Magnani, M. Microalgae in the meat processing chain: Feed for animal production or source of techno-functional ingredients. Curr. Opin. Food Sci. 2021, 37, 125–134. [Google Scholar] [CrossRef]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Effect of Cumulative Spirulina Intake on Broiler Meat Quality, Nutritional and Health-Related Attributes. Foods 2024, 13, 799. [Google Scholar] [CrossRef]
- Matos, J.; Cardoso, C.; Bandarra, N.M.; Afonso, C. Microalgae as healthy ingredients for functional food: A review. Food Funct. 2017, 8, 2672–2685. [Google Scholar] [CrossRef] [PubMed]
- Siladji, C.; Djordjevic, V.; Milijasevic, J.B.; Heinz, V.; Terjung, N.; Sun, W.; Tomasevic, I. Micro-and Macroalgae in Meat Products. Foods 2024, 13, 826. [Google Scholar] [CrossRef] [PubMed]
- Besednova, N.; Andryukov, B.; Zaporozhets, T.; Kryzhanovsky, S.; Kuznetsova, T.; Fedyanina, L.; Makarenkova, I.; Zvyagintseva, T. Algae Polyphenolic Compounds and Modern Antibacterial Strategies: Current Achievements and Immediate Prospects. Biomedicines 2020, 8, 342. [Google Scholar] [CrossRef]
- Corino, C.; Di Giancamillo, A.; Modina, S.C.; Rossi, R. Prebiotic Effects of Seaweed Polysaccharides in Pigs. Animals 2021, 11, 1573. [Google Scholar] [CrossRef]
- Løvdal, T.; Lunestad, B.T.; Myrmel, M.; Rosnes, J.T.; Skipnes, D. Microbiological Food Safety of Seaweeds. Foods 2021, 10, 2719. [Google Scholar] [CrossRef]
- Gaggìa, F.; Mattarelli, P.; Biavati, B. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 2010, 141 (Suppl. S1), S15–S28. [Google Scholar] [CrossRef]
- Śmiałek, M.; Kowalczyk, J.; Koncicki, A. The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry. Animals 2021, 11, 1355. [Google Scholar] [CrossRef] [PubMed]
- Mendivil, C. Dietary Fish, Fish Nutrients, and Immune Function: A Review. Front. Nutr. 2021, 7, 617652. [Google Scholar] [CrossRef] [PubMed]
- Vijay, A.; Astbury, S.; Roy, C.L.; Spector, T.; Valdes, A. The prebiotic effects of omega-3 fatty acid supplementation: A six-week randomised intervention trial. Gut Microbes 2020, 13, 1863133. [Google Scholar] [CrossRef]
- Tokuşoglu, Ö.; üUnal, M.K. Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J. Food Sci. 2003, 68, 1144–1148. [Google Scholar] [CrossRef]
- Islam, M.N.; Alsenani, F.; Schenk, P.M. Microalgae as a Sustainable Source of Nutraceuticals. In Microbial Functional Foods and Nutraceuticals; Wiley: Hoboken, NJ, USA, 2017; pp. 1–19. [Google Scholar]
- Akacha, B.B.; Michalak, M.; Najar, B.; Venturi, F.; Taglieri, I.; Kačániová, M.; Saad, R.B.; Mnif, W.; Garzoli, S.; Hsouna, A.B. Recent Advances in the Incorporation of Polysaccharides with Antioxidant and Antibacterial Functions to Preserve the Quality and Shelf Life of Meat Products. Foods 2023, 12, 1647. [Google Scholar] [CrossRef]
- Ford, L.; Stratakos, A.C.; Theodoridou, K.; Dick, J.T.A.; Sheldrake, G.N.; Linton, M.; Corcionivoschi, N.; Walsh, P.J. Polyphenols from Brown Seaweeds as a Potential Antimicrobial Agent in Animal Feeds. ACS Omega 2020, 5, 9093–9103. [Google Scholar] [CrossRef]
- Stirk, W.A.; van Staden, J. Removal of Heavy Metals from Solution Using Dried Brown Seaweed Material. Bot. Mar. 2000, 43, 467–473. [Google Scholar] [CrossRef]
- Li, Y.-X.; Kim, S.-K. Utilization of seaweed derived ingredients as potential antioxidants and functional ingredients in the food industry: An overview. Food Sci. Biotechnol. 2011, 20, 1461–1466. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.-X.; Tang, Y.; Mao, J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. Carbohyd. Polym. 2020, 228, 115381. [Google Scholar] [CrossRef]
- Wasson, D.; Yarish, C.; Hristov, A. Enteric methane mitigation through Asparagopsis taxiformis supplementation and potential algal alternatives. Front. Anim. Sci. 2022, 3, 999338. [Google Scholar] [CrossRef]
- Kumari, S.; Sehrawat, K.; Phogat, D.; Sehrawat, A.; Chaudhary, R.; Sushkova, S.; Voloshina, M.; Rajput, V.; Shmaraeva, A.; Marc, R.; et al. Ascophyllum nodosum (L.) Le Jolis, a Pivotal Biostimulant toward Sustainable Agriculture: A Comprehensive Review. Agriculture 2023, 13, 1179. [Google Scholar] [CrossRef]
- Geremia, E.; Ripa, M.; Catone, C.; Ulgiati, S. A Review about Microalgae Wastewater Treatment for Bioremediation and Biomass Production—A New Challenge for Europe. Environments 2021, 8, 136. [Google Scholar] [CrossRef]
- Femeena, P.; House, G.; Brennan, R. Creating a Circular Nitrogen Bioeconomy in Agricultural Systems through Nutrient Recovery and Upcycling by Microalgae and Duckweed: Past Efforts and Future Trends. J. ASABE 2022, 65, 327–346. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.-J.; Chen, C.Y.; Chang, J.S. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresour. Technol. 2020, 302, 122817. [Google Scholar] [CrossRef]
- Nova, P.; Martins, A.; Teixeira, C.; Abreu, H.; Silva, J.G.; Silva, A.; Freitas, A.; Gomes, A. Foods with microalgae and seaweeds fostering consumers health: A review on scientific and market innovations. J. Appl. Phycol. 2020, 32, 1789–1802. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Bahmid, N.; Mahmud, C.; Boukid, F.; Lamri, M.; Gagaoua, M. Consumer acceptability of plant-, seaweed-, and insect-based foods as alternatives to meat: A critical compilation of a decade of research. Crit. Rev. Food Sci. 2022, 63, 6630–6651. [Google Scholar] [CrossRef]
- Merlo, S.; Gabarrell Durany, X.; Pedroso Tonon, A.; Rossi, S. Marine Microalgae Contribution to Sustainable Development. Water 2021, 13, 1373. [Google Scholar] [CrossRef]
- Kusmayadi, A.; Leong, Y.; Yen, H.-W.; Huang, C.-Y.; Chang, J.S. Microalgae as sustainable food and feed sources for animals and humans—Biotechnological and environmental aspects. Chemosphere 2021, 271, 129800. [Google Scholar] [CrossRef]
- Singla, R.; Parmar, P.; Anand, S.; Vidyashankar, S. Application of Microalgae for Food Supplements and Animal Feed: Scientific, Sustainability and Socioeconomic Challenges. In Microalgal Biotechnology; Chapter 12; Royal Society of Chemistry: London, UK, 2021; pp. 325–359. [Google Scholar]
- Rahman, K. Food and High Value Products from Microalgae: Market Opportunities and Challenges. In Microalgae Biotechnology for Food, Health and High Value Products; Springer: Singapore, 2020; pp. 3–27. [Google Scholar]
- Ma, M.; Hu, Q. Microalgae as feed sources and feed additives for sustainable aquaculture: Prospects and challenges. Rev. Aquac. 2023, 16, 818–835. [Google Scholar]
- Fabris, M.; Abbriano, R.; Pernice, M.; Sutherland, D.; Commault, A.; Hall, C.; Labeeuw, L.; McCauley, J.; Kuzhiuparambil, U.; Ray, P.; et al. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Front. Plant Sci. 2020, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, M.; Kumar, B.; Mathimani, T.; Arunkumar, K. A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J. Clean. Prod. 2019, 228, 1320–1333. [Google Scholar] [CrossRef]
- Nethravathy, M.U.; Mehar, J.; Mudliar, S.; Shekh, A. Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1882–1897. [Google Scholar]
- Diaz, C.; Douglas, K.; Kang, K.; Kolarik, A.; Malinovski, R.; Torres-Tiji, Y.; Molino, J.; Badary, A.; Mayfield, S. Developing algae as a sustainable food source. Front. Nutr. 2023, 9, 1029841. [Google Scholar] [CrossRef]
- Leong, Y.; Chew, K.; Chen, W.-H.; Chang, J.S.; Show, P. Reuniting the Biogeochemistry of Algae for a Low-Carbon Circular Bioeconomy. Trends Plant Sci. 2021, 26, 729–740. [Google Scholar] [CrossRef]
Feed Additive | Bioactive Compounds | Meat Quality Trait | Beneficial Effect | Main Reference |
---|---|---|---|---|
Microalgae | ||||
Chlorella vulgaris | Omega-3 (ALA), carotenoids, proteins | Nutritional profile | Improves omega-3 content and antioxidant capacity | [38] |
Chlorella vulgaris | Carotenoids, chlorophylls | Color stability | Enhances color uniformity and brightness | [39] |
Limnospira platensis | Proteins, phycobiliproteins, β-carotene | Nutritional profile | Increases omega-3 fatty acid deposition in muscle tissue | [13] |
Limnospira platensis | Phycobiliproteins, β-carotene | Color stability | Enhances redness and delays myoglobin oxidation | [13] |
Nannochloropsis | Omega-3 (EPA, DHA) | Nutritional profile | Increases EPA and DHA levels in meat | [16] |
Nannochloropsis | Lipids, antioxidants | Shelf Life | Reduces lipid oxidation, extending shelf life | [38] |
Seaweeds | ||||
Ascophyllum nodosum | Fucoidan, polyphenols, minerals | Eating quality | Enhances tenderness and flavor profile | [8] |
Ascophyllum nodosum | Polyphenols, antioxidants | Shelf life | Inhibits lipid oxidation, improving shelf life | [8] |
Gracilaria | Proteins, agar, fucoidan | Nutritional profile | Increases protein content and antioxidant capacity | [20] |
Gracilaria | Polyphenols, dietary fiber | Shelf life | Reduces lipid and protein oxidation during storage | [20] |
Ulva | Ulvan, phenolic compounds | Color stability | Maintains meat color by reducing oxidative damage | [8] |
Ulva | Polysaccharides, antioxidants | Shelf life | Extends shelf life by reducing lipid oxidation | [20] |
Feed Additive | Bioactive Compounds | Meat Safety Trait | Beneficial Effect | Mechanism of Action | Main Reference |
---|---|---|---|---|---|
Microalgae | |||||
Chlorella vulgaris | Carotenoids, chlorophylls | Pathogen reduction | Reduces Salmonella and E. coli in meat | Disrupts bacterial membranes and reduces colonization | [38] |
Limnospira platensis | Phycocyanin, phycobiliproteins | Antimicrobial activity | Inhibits Listeria monocytogenes and Staphylococcus aureus | Binds to bacterial membranes and disrupts cell function | [47] |
Nannochloropsis | EPA, DHA, polyphenols | Pathogen inhibition | Decreases Campylobacter jejuni and Salmonella enteritidis | Inhibits bacterial growth and biofilm formation | [48] |
Tetraselmis | Polysaccharides, antioxidants | Toxin reduction | Lowers mycotoxin levels in meat | Binds to mycotoxins and reduces bioavailability | [49] |
Seaweeds | |||||
Ascophyllum nodosum | Fucoidan, polyphenols | Pathogen reduction | Reduces E. coli, Salmonella and Listeria spp. | Disrupts bacterial membranes and inhibits growth | [50] |
Fucus vesiculosus | Polysaccharides, antioxidants | Heavy metal detoxification | Reduces accumulation of lead, arsenic, and mercury | Binds to heavy metals and reduces their bioavailability | [51] |
Palmaria palmata | Laminarin, fucoidan | Improved gut health | Reduces pathogen shedding and improves microbial balance | Prebiotic effect promoting beneficial bacteria | [41] |
Gracilaria | Agar, polyphenols | Pathogen inhibition | Inhibits Staphylococcus aureus and E. coli | Reduces bacterial growth and biofilm formation | [52] |
Ulva lactuca | Ulvan, phenolic compounds | Toxin reduction | Reduces bacterial toxins and contamination risk | Inhibits toxin production and bacterial growth | [22] |
Sargassum | Fucoidan, polyphenols | Pathogen reduction | Reduces Clostridium perfringens and E. coli | Inhibits spore germination and bacterial proliferation | [53] |
Feed Additive | Sustainability Benefit | Mechanism of Action | Type of Impact | Main Reference |
---|---|---|---|---|
Microalgae | ||||
Chlorella vulgaris | Reduction in greenhouse gas emissions | Decreases methane production during digestion | Lowers the environmental footprint of livestock | [61] |
Limnospira platensis | Minimal land and water use | Cultivated on non-arable land with low water requirements | Reduces pressure on agricultural resources | [2] |
Nannochloropsis | Carbon sequestration | Captures CO2 during cultivation | Supports climate change mitigation | [16] |
Tetraselmis | Bioremediation of wastewater | Removes excess nutrients from agricultural runoff | Reduces nutrient pollution and eutrophication | [57] |
Seaweeds | ||||
Ascophyllum nodosum | Nutrient recycling | Uses wastewater for cultivation | Improves resource efficiency and reduces pollution | [8] |
Fucus vesiculosus | Heavy metal sequestration | Binds and removes heavy metals from water | Reduces contamination in marine environments | [51] |
Gracilaria | Supports circular bioeconomy | Converts waste nutrients into biomass | Promotes sustainable nutrient recycling | [20] |
Palmaria palmata | Reduction in nitrogen runoff | Enhances feed efficiency, reducing nitrogen excretion | Lowers nutrient pollution in soil and water | [8] |
Sargassum | Climate change mitigation | Reduces methane emissions in animal digestion | Decreases overall greenhouse gas emissions | [20] |
Ulva lactuca | Integrated Multitrophic Aquaculture | Recycles nutrients from fish farming | Enhances resource efficiency and reduces waste | [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prates, J.A.M. Improving Meat Quality, Safety and Sustainability in Monogastric Livestock with Algae Feed Additives. Foods 2025, 14, 1007. https://doi.org/10.3390/foods14061007
Prates JAM. Improving Meat Quality, Safety and Sustainability in Monogastric Livestock with Algae Feed Additives. Foods. 2025; 14(6):1007. https://doi.org/10.3390/foods14061007
Chicago/Turabian StylePrates, José A. M. 2025. "Improving Meat Quality, Safety and Sustainability in Monogastric Livestock with Algae Feed Additives" Foods 14, no. 6: 1007. https://doi.org/10.3390/foods14061007
APA StylePrates, J. A. M. (2025). Improving Meat Quality, Safety and Sustainability in Monogastric Livestock with Algae Feed Additives. Foods, 14(6), 1007. https://doi.org/10.3390/foods14061007