Improving the Bioactivities of Apricot Kernels Through Fermentation: Investigating the Relationship Between Bioactivities, Polyphenols, and Amino Acids Through the Random Forest Regression XAI Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation Process
2.2. Sample Extraction
2.2.1. Preparation of Sample Extract for Antioxidant Analysis
2.2.2. Preparation of Sample Extract for Polyphenol and Lactic Acid Analysis
2.2.3. Preparation of Sample Extract for Amino Acid Analysis
2.3. Antioxidant Activity
2.4. Polyphenols in Fermented Apricot Kernels
2.5. Free Amino Acid Analysis
2.6. Lactic Acid and Amygdalin Content
2.6.1. Lactic Acid
2.6.2. Amygdalin
2.7. Statistical Analysis
2.7.1. Microbial, Antioxidant and Total Phenolic Content
2.7.2. Amino Acids Analysis
2.8. Multiple Factor Analysis (MFA)
2.9. Machine Learning
3. Results and Discussion
3.1. Microbial Growth
3.2. Antioxidant Activities
Changes in Antioxidant Activity
3.3. Total Phenolic Content (TPC)
3.4. Polyphenol Analysis
3.5. Free Amino Acids Content Analysis
3.6. Lactic Acid and Amygdalin Content
3.7. The Relationship Between Polyphenols, Amino Acids and Antioxidant Activities
3.8. The Relationship Among Amino Acids in Terms of FRAP and CUPRAC Antioxidant Activities Using SHapley Additive exPlanations (SHAPs)
3.9. The Relationship Among Phenolic Compounds in Terms of FRAP and CUPRAC Antioxidant Activities Using SHAPs Values
3.10. Implications for Functional Food Development
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alajil, O.; Sagar, V.R.; Kaur, C.; Rudra, S.G.; Vasudev, S.; Chandran, D.; Sharma, K.; Kumar, M.; Lorenzo, J.M. Chemical Characterization of Apricot Kernel: Nutraceutical Composition, Amino Acid, and Fatty Acid Profile. Food Anal. Methods 2022, 15, 2594–2604. [Google Scholar] [CrossRef]
- Han, Z.-P.; Liu, R.-L.; Cui, H.-Y.; Zhang, Z.-Q. Microwave-assisted extraction and LC/MS analysis of phenolic antioxidants in sweet apricot (Prunus armeniaca L.) kernel skins. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 2182–2195. [Google Scholar] [CrossRef]
- Wani, S.; Jan, N.; Wani, T.A.; Ahmad, M.; Masoodi, F.; Gani, A. Optimization of antioxidant activity and total polyphenols of dried apricot fruit extracts (Prunus armeniaca L.) using response surface methodology. J. Saudi Soc. Agric. Sci. 2017, 16, 119–126. [Google Scholar] [CrossRef]
- Akhone, M.A.; Bains, A.; Tosif, M.M.; Chawla, P.; Fogarasi, M.; Fogarasi, S. Apricot kernel: Bioactivity, characterization, applications, and health attributes. Foods 2022, 11, 2184. [Google Scholar] [CrossRef]
- Lima, E.M.F.; Matsumura, C.H.S.; da Silva, G.L.; Patrocínio, I.C.S.; Santos, C.A.; Pereira, P.A.P.; Hassimotto, N.M.A.; Pinto, U.M.; da Cunha, L.R. Antimicrobial and antioxidant activity of apricot (Mimusopsis comersonii) phenolic-rich extract and its application as an edible coating for fresh-cut vegetable preservation. BioMed Res. Int. 2022, 2022, 8440304. [Google Scholar] [CrossRef]
- Kachouri, F.; Ksontini, H.; Kraiem, M.; Setti, K.; Mechmeche, M.; Hamdi, M. Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. J. Food Sci. Technol. 2015, 52, 7924–7933. [Google Scholar] [CrossRef]
- De Montijo-Prieto, S.; Razola-Díaz, M.D.C.; Barbieri, F.; Tabanelli, G.; Gardini, F.; Jiménez-Valera, M.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Impact of Lactic Acid Bacteria Fermentation on Phenolic Compounds and Antioxidant Activity of Avocado Leaf Extracts. Antioxidants 2023, 12, 298. [Google Scholar] [CrossRef]
- Mohapatra, D.; Patel, A.S.; Kar, A.; Deshpande, S.S.; Tripathi, M.K. Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chem. 2019, 271, 129–135. [Google Scholar] [CrossRef]
- Đorđević, T.M.; Šiler-Marinković, S.S.; Dimitrijević-Branković, S.I. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem. 2010, 119, 957–963. [Google Scholar] [CrossRef]
- Kuligowski, M.; Pawłowska, K.; Jasińska-Kuligowska, I.; Nowak, J. Isoflavone composition, polyphenols content and antioxidative activity of soybean seeds during tempeh fermentation. CyTA-J. Food 2017, 15, 27–33. [Google Scholar] [CrossRef]
- Wang, Y.; Compaoré-Sérémé, D.; Sawadogo-Lingani, H.; Coda, R.; Katina, K.; Maina, N.H. Influence of dextran synthesized in situ on the rheological, technological and nutritional properties of whole grain pearl millet bread. Food Chem. 2019, 285, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Hubert, J.; Berger, M.; Nepveu, F.; Paul, F.; Daydé, J. Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem. 2008, 109, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Orozco, R.; Frias, J.; Muñoz, R.; Zielinski, H.; Piskula, M.K.; Kozlowska, H.; Vidal-Valverde, C. Fermentation as a bio-process to obtain functional soybean flours. J. Agric. Food Chem. 2007, 55, 8972–8979. [Google Scholar] [CrossRef]
- Torino, M.I.; Limón, R.I.; Martínez-Villaluenga, C.; Mäkinen, S.; Pihlanto, A.; Vidal-Valverde, C.; Frias, J. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem. 2013, 136, 1030–1037. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Gobbetti, M. Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Curr. Opin. Biotechnol. 2018, 49, 64–72. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, L.; Hao, W.; Liu, Y.; Xiao, X.; Shan, X.; Zhang, C.; Wei, B. Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms. Food Res. Int. 2023, 171, 113059. [Google Scholar] [CrossRef]
- Gong, E.S.; Li, B.; Li, B.; Podio, N.S.; Chen, H.; Li, T.; Sun, X.; Gao, N.; Wu, W.; Yang, T.; et al. Identification of key phenolic compounds responsible for antioxidant activities of free and bound fractions of blackberry varieties’ extracts by boosted regression trees. J. Sci. Food Agric. 2022, 102, 984–994. [Google Scholar] [CrossRef]
- Zhao, Z.; Hamid, N.; Qian, L.; Gutierrez-Maddox, N.; Kam, R.; Kantono, K.; Wang, K.; Lu, J.; Le, T.T.; Aswani, S. The effects of roasting on antioxidant and anticancer activities of fermented Hass avocado seeds. Front. Food Sci. Technol. 2022, 2, 986868. [Google Scholar] [CrossRef]
- Chandel, C.; Sharma, V.; Rana, P.S.; Dabral, M.; Agrawal, S.; Saklani, P. Assessment of antimicrobial and antioxidant potential of cytoplasmic male sterile lines of pepper. SN Appl. Sci. 2020, 2, 1181. [Google Scholar] [CrossRef]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.-S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Chaisawat, T.; Wongprasopchai, P.; Kaopaiboon, S.; Leema, W.; Kantakapun, K.; Somsiripan, T. Ultrasound-assisted polyphenols extraction with deep eutectic solvent and ethanol-based from Baccaurea macrocarpa pericarp and kinetic model. Microchem. J. 2024, 207, 111644. [Google Scholar] [CrossRef]
- Naa Yarley, O.P.; Kojo, A.B.; Felix Adom, T.; Zhou, C.; Yu, X.; Henrietta, A.; Matthew Makafui, O.; Reuben Essel, A.; Richard, O. Subcritical Ethanol-Water and ionic liquid extraction systems coupled with multi-frequency ultrasound in the extraction and purification of polysaccharides. Sep. Sci. Technol. 2022, 57, 1427–1441. [Google Scholar] [CrossRef]
- Liu, Q.; Hamid, N.; Liu, Y.; Kam, R.; Kantono, K.; Wang, K.; Lu, J. Bioactive components and anticancer activities of spray-dried New Zealand tamarillo powder. Molecules 2022, 27, 2687. [Google Scholar] [CrossRef]
- Salazar, C.; Armenta, J.M.; Shulaev, V. An UPLC-ESI-MS/MS assay using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization for targeted amino acid analysis: Application to screening of Arabidopsis thaliana mutants. Metabolites 2012, 2, 398–428. [Google Scholar] [CrossRef]
- Chessum, K.; Chen, T.; Kam, R.; Yan, M. A Comprehensive Chemical and Nutritional Analysis of New Zealand Yacon Concentrate. Foods 2023, 12, 74. [Google Scholar] [CrossRef]
- Bolarinwa, I.; Orfila, C.; Morgan, M. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chem. 2014, 152, 133–139. [Google Scholar] [CrossRef]
- Permal, R.; Chia, T.; Arena, G.; Fleming, C.; Chen, J.; Chen, T.; Chang, W.L.; Seale, B.; Hamid, N.; Kam, R. Converting avocado seeds into a ready to eat snack and analysing for persin and amygdalin. Food Chem. 2023, 399, 134011. [Google Scholar] [CrossRef]
- Panuwet, P.; Hunter, R.E., Jr.; D’Souza, P.E.; Chen, X.; Radford, S.A.; Cohen, J.R.; Marder, M.E.; Kartavenka, K.; Ryan, P.B.; Barr, D.B. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring. Crit. Rev. Anal. Chem. 2016, 46, 93–105. [Google Scholar] [CrossRef]
- Permal, R.; Chang, W.L.; Chen, T.; Seale, B.; Hamid, N.; Kam, R. Optimising the Spray Drying of Avocado Wastewater and Use of the Powder as a Food Preservative for Preventing Lipid Peroxidation. Foods 2020, 9, 1187. [Google Scholar] [CrossRef]
- Escofier, B.; Pages, J. Multiple factor analysis (AFMULT package). Comput. Stat. Data Anal. 1994, 18, 121–140. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Adetuyi, F.; Ibrahim, T. Effect of fermentation time on the phenolic, flavonoid and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. Niger. Food J. 2014, 32, 128–137. [Google Scholar] [CrossRef]
- Chinma, C.; Ilowefah, M.; Shammugasamy, B.; Ramakrishnan, Y.; Muhammad, K. Chemical, antioxidant, functional and thermal properties of rice bran proteins after yeast and natural fermentations. Int. J. Food Sci. Technol. 2014, 49, 2204–2213. [Google Scholar] [CrossRef]
- Othman, N.B.; Roblain, D.; Chammen, N.; Thonart, P.; Hamdi, M. Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem. 2009, 116, 662–669. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Wu, J.-Y.; Lin, J.-T.; Liu, W.-H. Enhancements of isoflavone aglycones, total phenolic content, and antioxidant activity of black soybean by solid-state fermentation with Rhizopus spp. Eur. Food Res. Technol. 2013, 236, 1107–1113. [Google Scholar] [CrossRef]
- Ayyash, M.; Johnson, S.K.; Liu, S.-Q.; Mesmari, N.; Dahmani, S.; Al Dhaheri, A.S.; Kizhakkayil, J. In vitro investigation of bioactivities of solid-state fermented lupin, quinoa and wheat using Lactobacillus spp. Food Chem. 2019, 275, 50–58. [Google Scholar] [CrossRef]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef]
- López de Felipe, F.; Curiel, J.A.; Muñoz, R. Improvement of the fermentation performance of Lactobacillus plantarum by the flavanol catechin is uncoupled from its degradation. J. Appl. Microbiol. 2010, 109, 687–697. [Google Scholar] [CrossRef]
- Johnson, J.B.; Kazak, A.; Gallini, N.; Rudenko, M.; Naiker, M. Prediction of antioxidant capacity in faba bean from individual phenolic constituents. Chem. Pap. 2024, 78, 4285–4294. [Google Scholar] [CrossRef]
- Starzyńska-Janiszewska, A.; Stodolak, B.; Gómez-Caravaca, A.M.; Mickowska, B.; Martin-Garcia, B.; Byczyński, Ł. Mould starter selection for extended solid-state fermentation of quinoa. LWT 2019, 99, 231–237. [Google Scholar] [CrossRef]
- Park, J.-B.; Lim, S.-H.; Sim, H.-S.; Park, J.-H.; Kwon, H.-J.; Nam, H.S.; Kim, M.-D.; Baek, H.-H.; Ha, S.-J. Changes in antioxidant activities and volatile compounds of mixed berry juice through fermentation by lactic acid bacteria. Food Sci. Biotechnol. 2017, 26, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Yu, S.; Zhu, L.; Zhang, T.; Jiang, B. Recent research on 3-phenyllactic acid, a broad-spectrum antimicrobial compound. Appl. Microbiol. Biotechnol. 2012, 95, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, J.; Shi, G.; Zeng, M.; Liu, Z. Improving 3-phenyllactic acid production of Lactobacillus plantarum AB-1 by enhancing its quorum-sensing capacity. J. Food Sci. Technol. 2019, 56, 2605–2610. [Google Scholar] [CrossRef]
- Bento-Silva, A.; Koistinen, V.M.; Mena, P.; Bronze, M.R.; Hanhineva, K.; Sahlstrøm, S.; Kitrytė, V.; Moco, S.; Aura, A.-M. Factors affecting intake, metabolism and health benefits of phenolic acids: Do we understand individual variability? Eur. J. Nutr. 2020, 59, 1275–1293. [Google Scholar] [CrossRef]
- Tang, S.; Luo, N.; Zeng, Q.; Dong, L.; Zhang, R.; He, S.; Nag, A.; Huang, F.; Su, D. Lychee pulp phenolics fermented by mixed lactic acid bacteria strains promote the metabolism of human gut microbiota fermentation in vitro. Food Funct. 2023, 14, 7672–7681. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Galván-D’Alessandro, L.; Vandendriessche, P.; Chollet, S. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds. Plant Foods Hum. Nutr. 2016, 71, 361–367. [Google Scholar] [CrossRef]
- Olagunju, A.I.; Ifesan, B.O. Changes in nutrient and antinutritional contents of sesame seeds during fermentation. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2407–2410. [Google Scholar]
- Arbab Sakandar, H.; Chen, Y.; Peng, C.; Chen, X.; Imran, M.; Zhang, H. Impact of fermentation on antinutritional factors and protein degradation of legume seeds: A review. Food Rev. Int. 2023, 39, 1227–1249. [Google Scholar] [CrossRef]
- Song, Y.-S.; Frías, J.; Martinez-Villaluenga, C.; Vidal-Valdeverde, C.; de Mejia, E.G. Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chem. 2008, 108, 571–581. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Brosnan, J.T.; Brosnan, M.E. The Sulfur-Containing Amino Acids: An Overview12. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef]
- Wu, H.-C.; Shiau, C.-Y.; Chen, H.-M.; Chiou, T.-K. Antioxidant activities of carnosine, anserine, some free amino acids and their combination. J. Food Drug Anal. 2003, 11, 13. [Google Scholar] [CrossRef]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.-B.; Shim, J.-H.; Abd El-Aty, A.M. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front. Nutr. 2022, 8, 815640. [Google Scholar] [CrossRef] [PubMed]
- Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020, 52, 329–360. [Google Scholar] [CrossRef]
- Alkhatib, A.; Feng, W.H.; Huang, Y.J.; Kuo, C.H.; Hou, C.W. Anserine Reverses Exercise-Induced Oxidative Stress and Preserves Cellular Homeostasis in Healthy Men. Nutrients 2020, 12, 1146. [Google Scholar] [CrossRef]
- Ajibola, C.F.; Fashakin, J.B.; Fagbemi, T.N.; Aluko, R.E. Effect of Peptide Size on Antioxidant Properties of African Yam Bean Seed (Sphenostylis stenocarpa) Protein Hydrolysate Fractions. Int. J. Mol. Sci. 2011, 12, 6685–6702. [Google Scholar] [CrossRef]
- Chen, H.-M.; Muramoto, K.; Yamauchi, F.; Nokihara, K. Antioxidant Activity of Designed Peptides Based on the Antioxidative Peptide Isolated from Digests of a Soybean Protein. J. Agric. Food Chem. 1996, 44, 2619–2623. [Google Scholar] [CrossRef]
- Salman, S.; Öz, G.; Felek, R.; Haznedar, A.; Turna, T.; Özdemir, F. Effects of fermentation time on phenolic composition, antioxidant and antimicrobial activities of green, oolong, and black teas. Food Biosci. 2022, 49, 101884. [Google Scholar] [CrossRef]
- Tu, Y.; Xia, H.; Watanabe, N. Changes in catechins during the fermentation of green tea. Appl. Biochem. Microbiol. 2005, 41, 574–577. [Google Scholar] [CrossRef]
- Amarowicz, R.; Shahidi, F. Antioxidant activity of broad bean seed extract and its phenolic composition. J. Funct. Foods 2017, 38, 656–662. [Google Scholar] [CrossRef]
Sample (Fermentation Method/Fermentation Time) | Microbial Colony Count (log cfu) | CUPRAC (mg Ascorbic Acid/g Sample) | FRAP (mg Ascorbic Acid/g Sample) | Total Phenolic Content (mg Gallic Acid/g Sample) | Lactic Acid Concentration (mg/mL) |
---|---|---|---|---|---|
L0 | 6.97 ± 0.08 FG | 1.03 ± 0.11 G | 4.90 ± 0.16 J | 1.67 ± 0.26 K | 0.11 ± 0.03 F |
L1 | 9.13 ± 0.10 C | 1.28 ± 0.00 F | 9.75 ± 0.10 D | 4.06 ± 0.23 GH | 8.01 ± 1.93 E |
L2 | 10.42 ± 0.10 B | 1.41 ± 0.11 EF | 10.75 ± 0.25 C | 4.84 ± 0.38 F | 16.25 ± 1.54 D |
L3 | 11.49 ± 0.23 A | 1.61 ± 0.11 CD | 12.20 ± 0.19 A | 7.15 ± 0.55 AB | 27.78 ± 0.64 B |
L4 | 8.77 ± 0.07 CD | 1.47 ± 0.06 DE | 11.43 ± 0.41 B | 6.65 ± 0.49 BC | 17.98 ± 1.45 D |
L5 | 8.29 ± 0.02 DE | 1.66 ± 0.08 BC | 11.27 ± 0.18 BC | 6.69 ± 0.54 BC | 36.70 ± 3.00 A |
L6 | 7.59 ± 0.130 EF | 1.57 ± 0.11 CD | 9.26 ± 0.37 DE | 5.63 ± 0.38 E | 25.72 ± 0.06 BC |
L7 | 6.34 ± 0.02 G | 1.82 ± 0.06 A | 8.88 ± 0.31 E | 6.58 ± 0.30 CD | 19.16 ± 2.70 D |
L8 | 5.33 ± 0.51 H | 1.79 ± 0.20 AB | 8.85 ± 0.38 E | 6.05 ± 0.35 DE | 21.10 ± 2.35 CD |
L9 | 4.39 ± 0.05 I | 1.79 ± 0.18 AB | 8.30 ± 0.44 F | 7.58 ± 0.38 A | 30.55 ± 0.53 AB |
N0 | 2.46 ± 0.15 J | 0.83 ± 0.03 H | 4.91 ± 0.34 J | 1.46 ± 0.32 K | 0.01 ± 0.00 F |
N1 | 2.76 ± 0.15 J | 0.67 ± 0.07 I | 4.51 ± 0.05 J | 2.34 ± 0.16 J | 0.00 ± 0.00 F |
N3 | 3.99 ± 0.03 I | 0.69 ± 0.04 HI | 5.80 ± 0.16 I | 3.14 ± 0.22 I | 0.00 ± 0.00 F |
N5 | 6.38 ± 0.26 G | 0.79 ± 0.04 HI | 7.06 ± 0.24 H | 3.84 ± 0.21 GH | 0.00 ± 0.00 F |
N7 | 7.74 ± 0.48 EF | 0.69 ± 0.01 HI | 7.12 ± 0.31 H | 3.74 ± 0.09 H | 0.00 ± 0.00 F |
N9 | 6.52 ± 0.86 G | 0.81 ± 0.05 HI | 7.71 ± 0.70 G | 4.34 ± 0.06 FG | 0.03 ± 0.01 F |
F value | 36.923 *** | 66.57 *** | 169.87 *** | 101.45 *** | 35.495 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Kantono, K.; Kam, R.; Le, T.T.; Kitundu, E.; Chen, T.; Hamid, N. Improving the Bioactivities of Apricot Kernels Through Fermentation: Investigating the Relationship Between Bioactivities, Polyphenols, and Amino Acids Through the Random Forest Regression XAI Approach. Foods 2025, 14, 845. https://doi.org/10.3390/foods14050845
Zhao Z, Kantono K, Kam R, Le TT, Kitundu E, Chen T, Hamid N. Improving the Bioactivities of Apricot Kernels Through Fermentation: Investigating the Relationship Between Bioactivities, Polyphenols, and Amino Acids Through the Random Forest Regression XAI Approach. Foods. 2025; 14(5):845. https://doi.org/10.3390/foods14050845
Chicago/Turabian StyleZhao, Zhiyu, Kevin Kantono, Rothman Kam, Thao T. Le, Eileen Kitundu, Tony Chen, and Nazimah Hamid. 2025. "Improving the Bioactivities of Apricot Kernels Through Fermentation: Investigating the Relationship Between Bioactivities, Polyphenols, and Amino Acids Through the Random Forest Regression XAI Approach" Foods 14, no. 5: 845. https://doi.org/10.3390/foods14050845
APA StyleZhao, Z., Kantono, K., Kam, R., Le, T. T., Kitundu, E., Chen, T., & Hamid, N. (2025). Improving the Bioactivities of Apricot Kernels Through Fermentation: Investigating the Relationship Between Bioactivities, Polyphenols, and Amino Acids Through the Random Forest Regression XAI Approach. Foods, 14(5), 845. https://doi.org/10.3390/foods14050845