Integration of Hyperspectral Imaging and Deep Learning for Discrimination of Fumigated Lilies and Prediction of Quality Indicator Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Data Acquisition for Hyperspectral Imaging Systems
2.3. Hyperspectral Image Region Extraction and Calibration
2.4. Analysis of Nutrient Index Composition and Sulfur Dioxide Content
2.4.1. Polysaccharide Content Evaluation
2.4.2. Evaluation of Total Phenolic Content
2.4.3. Evaluation of Sulfur Dioxide Content
2.5. Chemometrics Analysis
2.5.1. Support Vector Machine (SVM)
2.5.2. Deep Learning Model of Convolutional Neural Networks (CNNs)
2.5.3. Long Short-Term Memory (LSTM)
2.5.4. Module Combination of CNN-LSTM (CLSTM)
2.6. Optimal Wavelength Selection Methods
3. Results
3.1. Identification of Sulfur-Fumigated Lilies by HSI Wavelength-Based Chemome-Tric Model
3.2. Results from Effective Wavelengths Group
3.3. Prediction of the Content of Three Chemical Components
3.3.1. Results from Full-Wavelengths Group
3.3.2. Results from Effective Wavelengths Group
4. Discussion
4.1. Comparison of Discriminatory Results Between Fumigated and Non-Fumigated Lilies
4.2. Comparison of Chemical Index Prediction Based on Full Wavelength and Characteristic Wavelength
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamura, L.S.-J.M.N. (Ed.) Flora of China; Missouri Botanical Garden Press: St. Louis, MO, USA; Science Press: Beijing, China, 2000; Volume 24, pp. 135–149. [Google Scholar]
- Wang, T.; Huang, H.; Zhang, Y.; Li, X.; Li, H.; Jiang, Q.; Gao, W. Role of effective composition on antioxidant, anti-inflammatory, sedative-hypnotic capacities of 6 common edible Lilium varieties. J. Food Sci. 2015, 80, H857–H868. [Google Scholar] [CrossRef] [PubMed]
- Marasek-Ciolakowska, A.; Sochacki, D.; Marciniak, P. Breeding Aspects of Selected Ornamental Bulbous Crops. Agronomy 2021, 11, 1709. [Google Scholar] [CrossRef]
- Yang, W.Z.; Wang, P.; Zhang, W.; Xu, M.D.; Yan, L.H.; Yan, Z.Y.; Du, W.H.; Ouyang, L.; Liu, B.; Wu, Z.J.; et al. Review on preservation techniques of edible lily bulbs in China. CyTA-J. Food 2022, 20, 172–182. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Wei, H.; Zhang, Y.; Guo, Z.; Qiu, Y.; Wen, L.; Xie, Z. Structural characterization of Lanzhou lily (Lilium davidii var. unicolor) polysaccharides and determination of their associated antioxidant activity. J. Sci. Food Agric. 2020, 100, 5603–5616. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Hui, Y.; Xie, W.; Chen, C.; Liu, Y.; Jin, C. Lily bulbs’ polyphenols extract ameliorates oxidative stress and lipid accumulation in vitro and in vivo. J. Sci. Food Agric. 2021, 101, 5038–5048. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, R.; Wang, X.; Yang, L.; Zhang, Q.; Shan, Y.; Ding, S. Effect of blanching and drying temperatures on the browning-related enzymes and physicochemical properties of lily bulb flours. J. Food Process. Preserv. 2019, 43, e14248. [Google Scholar] [CrossRef]
- Guo, A.L.; Chen, L.M.; Wang, Y.M.; Liu, X.Q.; Zhang, Q.W.; Gao, H.M.; Wang, Z.M.; Xiao, W.; Wang, Z.Z. Influence of sulfur fumigation on the chemical constituents and antioxidant activity of buds of Lonicera japonica. Molecules 2014, 19, 16640–16655. [Google Scholar] [CrossRef]
- Jiang, J.; Xiao, S.; Yan, S.; Zhang, J.; Xu, X. The effects of sulfur fumigation processing on Panacis Quinquefolii Radix in chemical profile, immunoregulation and liver and kidney injury. J. Ethnopharmacol. 2020, 249, 112377. [Google Scholar] [CrossRef]
- Sun, X.; Cui, X.B.; Wen, H.M.; Shan, C.X.; Wang, X.Z.; Kang, A.; Chai, C.; Li, W. Influence of sulfur fumigation on the chemical profiles of Atractylodes macrocephala Koidz. evaluated by UFLC-QTOF-MS combined with multivariate statistical analysis. J. Pharm. Biomed. Anal. 2017, 141, 19–31. [Google Scholar] [CrossRef]
- Li, H.; Gong, X.Q.; Wang, Z.C.; Pan, C.; Zhao, Y.; Gao, X.D.; Liu, W. Multiple fingerprint profiles and chemometrics analysis of polysaccharides from Sarcandra glabra. Int. J. Biol. Macromol. 2019, 123, 957–967. [Google Scholar] [CrossRef]
- He, G.Y.; Hou, X.; Han, M.; Qiu, S.T.; Li, Y.; Qin, S.D.; Chen, X. Discrimination and polyphenol compositions of green teas with seasonal variations based on UPLC-QTOF/MS combined with chemometrics. J. Food Compos. Anal. 2022, 105, 104267. [Google Scholar] [CrossRef]
- Sun, X.F.; Li, H.L.; Yi, Y.; Hua, H.M.; Guan, Y.; Chen, C. Rapid detection and quantification of adulteration in Chinese hawthorn fruits powder by near-infrared spectroscopy combined with chemometrics. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2021, 250, 119346. [Google Scholar] [CrossRef]
- He, L.L.; Zhang, Z.F.; Liu, Y.; Chen, D.Q.; Yuan, M.H.; Dong, G.T.; Luo, P.; Yan, Z.G. Rapid discrimination of raw and sulfur-fumigated Smilax glabra based on chemical profiles by UHPLC-QTOF-MS/MS coupled with multivariate statistical analysis. Food Res. Int. 2018, 108, 226–236. [Google Scholar] [CrossRef]
- Sendin, K.; Williams, P.J.; Manley, M. Near infrared hyperspectral imaging in quality and safety evaluation of cereals. Crit. Rev. Food Sci. Nutr. 2018, 58, 575–590. [Google Scholar] [CrossRef]
- Feng, Y.-Z.; Sun, D.-W. Application of Hyperspectral Imaging in Food Safety Inspection and Control: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 1039–1058. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, W.; Zhou, L.; Cheng, H.; Ye, X.; He, Y. Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging. Food Chem. 2020, 319, 126536. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gao, H.Q.; Meng, L.W.; Fu, X.P.; Du, X.Q.; Wu, D.; Huang, L.X. Nondestructive measurement of pectin polysaccharides using hyperspectral imaging in mulberry fruit. Food Chem. 2021, 334, 127614. [Google Scholar] [CrossRef] [PubMed]
- Barreto, A.; Cruz-Tiradoa, J.P.; Siche, R.; Quevedo, R. Determination of starch content in adulterated fresh cheese using hyperspectral imaging. Food Biosci. 2018, 21, 14–19. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Xu, Q.; Feng, J.; Yu, H.; Yin, Y. Non-destructive detection of Flos Lonicerae treated by sulfur fumigation based on hyperspectral imaging. J. Food Meas. Charact. 2018, 12, 2809–2818. [Google Scholar] [CrossRef]
- He, J.; Zhang, C.; He, Y. Application of Near-Infrared Hyperspectral Imaging to Detect Sulfur Dioxide Residual in the Fritillaria thunbergii Bulbus Treated by Sulfur Fumigation. Appl. Sci. 2017, 7, 77. [Google Scholar] [CrossRef]
- Zhang, H.M.; Wu, T.X.; Zhang, L.F.; Zhang, P. Development of a Portable Field Imaging Spectrometer: Application for the Identification of Sun-Dried and Sulfur-Fumigated Chinese Herbals. Appl. Spectrosc. 2016, 70, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.R.; Wang, P.X.; Tansey, K.; Zhang, J.Q.; Zhang, S.Y.; Li, H.M. An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agric. For. Meteorol. 2021, 310, 108629. [Google Scholar] [CrossRef]
- Nejad, S.M.M.; Abbasi-Moghadam, D.; Sharifi, A.; Farmonov, N.; Amankulova, K.; Laszlz, M. Multispectral Crop Yield Prediction Using 3D-Convolutional Neural Networks and Attention Convolutional LSTM Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 254–266. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.B.; Sun, D.W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices. Trends Food Sci. Technol. 2021, 113, 193–204. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, Q.; Zhou, D.; Shi, Y.; Shou, H.; Li, M.; Zhang, W.; Jiang, C. Application of flash GC e-nose and FT-NIR combined with deep learning algorithm in preventing age fraud and quality evaluation of pericarpium citri reticulatae. Food Chem. X 2024, 21, 101220. [Google Scholar] [CrossRef]
- Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sensors 2019, 19, 4363. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Lu, J.J.; Zou, J.; Chen, N.X.; Yang, L. Accurate prediction of salmon freshness under temperature fluctuations using the convolutional neural network long short-term memory model. J. Food Eng. 2022, 334, 111171. [Google Scholar] [CrossRef]
- Zhan, J.Y.; Yao, P.; Bi, C.W.; Zheng, K.Y.; Zhang, W.L.; Chen, J.P.; Dong, T.T.; Su, Z.R.; Tsim, K.W. The sulfur-fumigation reduces chemical composition and biological properties of Angelicae Sinensis Radix. Phytomedicine 2014, 21, 1318–1324. [Google Scholar] [CrossRef]
- Liu, Y.; Long, Y.B.; Liu, H.C.; Lan, Y.B.; Long, T.; Kuang, R.; Wang, Y.F.; Zhao, J. Polysaccharide prediction in Ganoderma lucidum fruiting body by hyperspectral imaging. Food Chem.-X 2022, 13, 100199. [Google Scholar] [CrossRef]
- Rover, M.R.; Brown, R.C. Quantification of total phenols in bio-oil using the Folin-Ciocalteu method. J. Anal. Appl. Pyrolysis 2013, 104, 366–371. [Google Scholar] [CrossRef]
- Li, H.D.; Liang, Y.Z.; Xu, Q.S. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst. 2009, 95, 188–198. [Google Scholar] [CrossRef]
- Gu, J.X.; Wang, Z.H.; Kuen, J.; Ma, L.Y.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.X.; Wang, G.; Cai, J.F.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Choi, E.; Cho, S.; Kim, D.K. Power Demand Forecasting using Long Short-Term Memory (LSTM) Deep-Learning Model for Monitoring Energy Sustainability. Sustainability 2020, 12, 1109. [Google Scholar] [CrossRef]
- Moradzadeh, A.; Zakeri, S.; Shoaran, M.; Mohammadi-Ivatloo, B.; Mohammadi, F. Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms. Sustainability 2020, 12, 7076. [Google Scholar] [CrossRef]
- Li, H.D.; Xu, Q.S.; Liang, Y.Z. Random frog: An efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification. Anal. Chim. Acta 2012, 740, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.H.; Li, H.D.; Wood, L.R.; Fan, W.; Wang, J.J.; Cao, D.S.; Xu, Q.S.; Liang, Y.Z. An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 111, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.H.; Wang, W.T.; Deng, B.C.; Lai, G.B.; Liu, X.B.; Ren, D.B.; Liang, Y.Z.; Fan, W.; Xu, Q.S. Using variable combination population analysis for variable selection in multivariate calibration. Anal. Chim. Acta 2015, 862, 14–23. [Google Scholar] [CrossRef]
Groups | SVM | CNN | LSTM | CLSTM | ||||
---|---|---|---|---|---|---|---|---|
Train (%) | Test (%) | Train (%) | Test (%) | Train (%) | Test (%) | Train (%) | Test (%) | |
Full | 79.4 | 74.6 | 87.4 | 79.3 | 89.4 | 84.0 | 92.9 | 90.7 |
iRF | 82.9 | 84.7 | 92.9 | 88.7 | 92.6 | 86.7 | 94.0 | 92.7 |
VCPA | 87.4 | 86.7 | 94.0 | 88.0 | 93.4 | 82.7 | 97.1 | 97.3 |
Modules | Groups | Total Polysaccharide | Total Phenol | SO2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | R2 | MAE | RMSE | R2 | MAE | RMSE | ||
SVM | Full | 0.477 | 35.38 | 44.90 | 0.531 | 9.33 | 12.52 | 0.643 | 0.084 | 0.095 |
iRF | 0.591 | 28.44 | 35.41 | 0.640 | 8.27 | 10.55 | 0.440 | 0.0886 | 0.107 | |
VCPA | 0.702 | 24.78 | 30.30 | 0.691 | 7.85 | 9.01 | 0.533 | 0.075 | 0.097 | |
CNN | Full | 0.581 | 27.39 | 33.67 | 0.599 | 10.14 | 12.23 | 0.643 | 0.079 | 0.096 |
iRF | 0.624 | 27.18 | 34.64 | 0.623 | 9.84 | 12.34 | 0.682 | 0.043 | 0.082 | |
VCPA | 0.524 | 31.11 | 39.00 | 0.561 | 10.26 | 12.67 | 0.712 | 0.068 | 0.089 | |
LSTM | Full | 0.692 | 24.33 | 29.03 | 0.591 | 8.53 | 11.19 | 0.694 | 0.063 | 0.080 |
iRF | 0.616 | 25.32 | 34.1 | 0.618 | 7.74 | 10.38 | 0.709 | 0.054 | 0.077 | |
VCPA | 0.465 | 32.92 | 41.21 | 0.640 | 8.12 | 11.18 | 0.582 | 0.067 | 0.093 | |
CLSTM | Full | 0.769 | 19.63 | 25.23 | 0.699 | 6.30 | 9.34 | 0.753 | 0.057 | 0.072 |
iRF | 0.659 | 25.36 | 32.61 | 0.671 | 8.97 | 10.74 | 0.755 | 0.052 | 0.072 | |
VCPA | 0.558 | 32.44 | 39.37 | 0.677 | 6.78 | 9.72 | 0.717 | 0.040 | 0.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Wang, Y.; Yan, B.; Wang, X.; Zhang, Z.; Wang, S.; Yang, J. Integration of Hyperspectral Imaging and Deep Learning for Discrimination of Fumigated Lilies and Prediction of Quality Indicator Contents. Foods 2025, 14, 825. https://doi.org/10.3390/foods14050825
Zhang P, Wang Y, Yan B, Wang X, Zhang Z, Wang S, Yang J. Integration of Hyperspectral Imaging and Deep Learning for Discrimination of Fumigated Lilies and Prediction of Quality Indicator Contents. Foods. 2025; 14(5):825. https://doi.org/10.3390/foods14050825
Chicago/Turabian StyleZhang, Pengfei, Youyou Wang, Binbin Yan, Xiufu Wang, Zihua Zhang, Sheng Wang, and Jian Yang. 2025. "Integration of Hyperspectral Imaging and Deep Learning for Discrimination of Fumigated Lilies and Prediction of Quality Indicator Contents" Foods 14, no. 5: 825. https://doi.org/10.3390/foods14050825
APA StyleZhang, P., Wang, Y., Yan, B., Wang, X., Zhang, Z., Wang, S., & Yang, J. (2025). Integration of Hyperspectral Imaging and Deep Learning for Discrimination of Fumigated Lilies and Prediction of Quality Indicator Contents. Foods, 14(5), 825. https://doi.org/10.3390/foods14050825