Effect of Coffee Silverskin on Meat Quality of Growing Rabbits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diet
2.2. Feeds Chemical Analyses
2.3. Meat Quality Analysis
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. Revision of World Population Prospects 2022. Available online: https://population.un.org/wpp/ (accessed on 2 September 2024).
- Scerra, M.; Foti, F.; Caparra, P.; Cilione, C.; Violi, L.; Fiammingo, G.; D’Agui, G.; Chies, L. Effects of feeding fresh bergamot (citrus Bergamia Risso) pulp at up to 35% of dietary dry matter on growth performance and meat quality from lambs. Small Rumin. Res. 2018, 169, 160–166. [Google Scholar] [CrossRef]
- Siwal, S.S.; Zhang, Q.; Devi, N.; Saini, A.K.; Saini, V.; Pareek, B.; Gaidukovs, S.; Thakur, V.K. Recovery processes of sustainable energy using different biomass and wastes, Renew. Sustain. Energy Rev. 2021, 150, 111483. [Google Scholar] [CrossRef]
- Scerra, M.; Foti, F.; Caparra, P.; Cilione, C.; Rao, R.; Priolo, A.; Natalello, A.; Luciano, G.; Chies, L. Effect of feeding pigs with bergamot by-product on fatty acid composition and oxidative stability of meat and salami. Meat Sci. 2022, 183, 108662. [Google Scholar] [CrossRef] [PubMed]
- Menci, R.; Biondi, L.; Natalello, A.; Lanza, M.; Priolo, A.; Valenti, B.; Bertino, B.; Scerra, M.; Luciano, G. Feeding hazelnut skin to lambs delays lipid oxidation in meat. Meat Sci. 2023, 202, 109218. [Google Scholar] [CrossRef]
- ICO. Annual Review Coffee Year 2021/2022. 2022. Available online: https://icocoffee.org/documents/cy2022-23/annual-review-2021-2022-e.pdf (accessed on 2 September 2024).
- Dauber, C.; Romero, M.; Chaparro, C.; Ureta, C.; Ferrari, C.; Lans, R.; Frugoni, L.; Echeverry, M.V.; Calvo, B.S.; Trostchansky, A.; et al. Cookies enriched with coffee silverskin powder and coffee silverskin ultrasound extract to enhance fiber content and antioxidant properties. Appl. Food Res. 2024, 4, 100373. [Google Scholar] [CrossRef]
- Martuscelli, M.; Esposito, L.; Di Mattia, C.D.; Ricci, A.; Mastrocola, D. Characterization of coffee silver skin as potential food-safe ingredient. Foods 2021, 10, 1367. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Alves, R.C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P. Coffea canephora silverskin from different geographical origins: A comparative study. Sci. Total Environ. 2018, 645, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2022, 267, 28–35. [Google Scholar] [CrossRef]
- Nolasco, A.; Squillante, J.; Velotto, S.; D’Auria, G.; Ferranti, P.; Mamone, G.; Errico, M.E.; Avolio, R.; Castaldo, R.; Cirillo, T.; et al. Valorization of coffee industry wastes: Comprehensive physicochemical characterization of coffee silverskin and multipurpose recycling applications. J. Clean. Prod. 2022, 370, 133520. [Google Scholar] [CrossRef]
- Arya, S.S.; Venkatram, R.; More, P.R.; Vijayan, P. The wastes of coffee bean processing for utilization in food: A review. J. Food Sci. Technol. 2022, 59, 429–444. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- European Commission. 2017/2158 EU regulation of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. Eur. Union 2017, L304, 24–44. [Google Scholar]
- Bressani, R.; González, J.M. Evaluation of coffee pulp as a possible substitute for corn in poultry rations. Arch. Latinoam. Nutr. 1978, 28, 208–221. [Google Scholar]
- Gómez-Brenes, R.A.; Bendaña, G.; González, J.M.; Braham, J.E.; Bressani, R. Relationship between the included levels of coffee pulp and the protein content in rations for monogastric animals. Arch. Latinoam. Nutr. 1985, 35, 422–437. [Google Scholar] [PubMed]
- Tsigkou, K.; Demissie, B.A.; Hashim, S.; Ghofrani-Isfahani, P.; Thomas, R.; Mapinga, K.F.; Kassahun, S.K.; Angelidaki, I. Coffee processing waste: Unlocking opportunities for sustainable development. Renew. Sustain. Energy Rev. 2025, 210, 115263. [Google Scholar] [CrossRef]
- Pinto, R.R.; Guevara, H.F.; Medina, J.A.; Hernández, S.D.; Ley de Coss, A.; Guerra, M.E. Conductaingestiva y preferencia bovina por el ensilaje de Pennisetum y pulpa de café. Agron. Mesoam. 2017, 28, 59–67. [Google Scholar] [CrossRef]
- Pedraza, B.P.; Estrada, F.J.G.; Martínez, C.A.R.; Estrada, L.I.; Rayas, A.A.A.; Yong, A.G.; Figueroa, M.M.; Áviles, N.F.; Castelán, O.O.A. On-farm evaluation of the effect of coffee pulp supplementation on milk yield and dry matter intake of dairy cows grazing tropical grasses in central Mexico. Trop. Anim. Health Prod. 2012, 44, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Rego, A.F.C.; Belan, L.; Pertile, S.F.N.; Lima, L.D.; Ludovico, A.; Zundt, M.; Lopes, F.G.; Porto, P.P. Nutrient intake and apparent digestibility coefficient of lambs fed with coffee husk in replacement of oat hay. Ciênc. Rural. 2019, 49, 1–5. [Google Scholar] [CrossRef]
- Pires, A.J.V.; Carvalho, G.G.P.; García, R.; Carvalho, J.J.N.; Ribeiro, L.S.O.; Chagas, D.M.T. Comportamento ingestivo de ovinos alimentados com silagens de capim-elefante contendo casca de café, farelo de cacau ou farelo de mandioca. Rev. Bras. Zootecn. 2009, 38, 1620–1626. [Google Scholar] [CrossRef]
- Souza, A.L.D.; Garcia, R.; Bernardino, F.S.; Rocha, F.C.; de Valadares Filho, S.C.; Pereira, O.G.; Pires, A.J.V. Casca de café em dietas de carneiros: Consumo e digestibilidade. Rev. Bras. Zootec. 2004, 33 (Suppl. 2), 2170–2176. [Google Scholar] [CrossRef]
- Nurfeta, A. Feed intake, digestibility, nitrogen utilization, and body weight change of sheep consuming wheat straw supplemented with local agricultural and agro-industrial by-products. Trop. Anim. Health Prod. 2010, 42, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Hernández, B.J.; Rodríguez, M.H.M.; Villegas, S.J.A.; Salinas, R.T.; Ortiz, M.I.Y.; Aquino, C.M.; Lozano, T.S. Health status and productivity of sheep fed coffee pulp during fattening. Aust. J. Vet. Sci. 2018, 50, 95–99. [Google Scholar] [CrossRef]
- Nunes, C.L.C.; Garcia, R.; Chizzotti, M.L.; Roseira, J.P.S.; Ribeiro, E.T.; Veloso, C.M. Performance, carcass traits and meat quality of lambs fed coffee hulls treated with calcium oxide. Anim. Feed Sci. Technol. 2020, 264, 114471. [Google Scholar] [CrossRef]
- Parra, Â.R.P.; Moreira, I.; Furlan, A.C.; Paiano, D.; Scherer, C.; Carvalho, P.L.D.O. Utilização da casca de café na alimentação de suínos nas fases de crescimento e terminação. Rev. Bras. Zootec. 2008, 37, 433–442. [Google Scholar] [CrossRef]
- Carvalho, P.L.D.O.; Moreira, I.; Furlan, A.C.; Paiano, D.; Piano, L.M.; Sierra, L.M.P. Sticky coffee hull silage on the feeding of growing and finishing pigs. Rev. Bras. Zootec. 2011, 40, 343–351. [Google Scholar] [CrossRef]
- Acosta, I.; Márquez, A.; Huérfano, T.; Chacón, I. Evaluación de la pulpa de café en aves: Digestibilidad y energía metabolizable. Arch. Latin. Prod. Anim. 1997, 5, 311–312. [Google Scholar]
- Huanhong, K.; Lumsangkul, C.; Arjin, C.; Sirilun, S.; Tangpao, T.; Wang, Y.L.; Mektrirat, R.; Lin, C.S.; Sommano, S.R.; Sringarm, S. Dietary supplementation of coffee pulp extract enhances growth performance and intestinal morphology in broiler chicken. Poultry Sci. 2025, 104, 104873. [Google Scholar] [CrossRef]
- Zelaya, J.R.; Rosales, D.A.; Riverra, O.B. Efecto de cuatro niveles de pulpa de café en alimentación de gallinas ponedoras (iniciación-desarrollo). Uniciencia 1994, 11, 27–35. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Gray, I.K.; Rumsby, M.G.; Hawke, J.C. The variations in linolenic acid and galactolipid levels in Graminaceae species with age of tissue and light environment. Phytochemistry 1967, 6, 107–113. [Google Scholar] [CrossRef]
- Luciano, G.; Roscini, V.; Mattioli, S.; Ruggeri, S.; Gravador, R.; Natalello, A.; Lanza, M.; De Angelis, A.; Priolo, A. Vitamin E is the major contributor to the antioxidant capacity in lambs fed whole dried citrus pulp. Animal 2017, 11, 411–417. [Google Scholar] [CrossRef]
- Rufino-Moya, P.J.; Joy, M.; Lobón, S.; Bertolín, J.R.; Blanco, M. Carotenoids and liposoluble vitamins in the plasma and tissues of light lambs given different maternal feedings and fattening concentrates. Animals 2020, 10, 1813. [Google Scholar] [CrossRef] [PubMed]
- CEN/TC 275. EN 16618:2015; Food Analysis—Determination of Acrylamide in Food by Liquid Chromatography Tandem Mass Spectrometry (LC-ESI-MS/MS). European Committee for Standardization (CEN): Brussels, Belgium, 2015.
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- IUPAC. International Union of Pure and Applied Chemistry. Standard Methods for the Analysis of Oils, Fats and Derivatives; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Natalello, A.; Khelil-Arfa, H.; Luciano, G.; Zoon, M.; Menci, R.; Scerra, M.; Blanchard, A.; Mangano, F.; Biondi, L.; Priolo, A. Effect of different levels of organic zinc supplementation on pork quality. Meat Sci. 2022, 186, 108731. [Google Scholar] [CrossRef] [PubMed]
- Siu, G.M.; Draper, H.H. A survey of the malonaldehyde content of retail meats and fish. J. Food Sci. 1978, 43, 1147–1149. [Google Scholar] [CrossRef]
- IARC. Furfuryl Alcohol—Some Chemicals That Cause Tumours of the Urinary Tract in Rodents. In Proceedings of the IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Lyon, France, 6–13 June 2017; IARC: Lyon, France, 2019; Volume 119, pp. 83–113. [Google Scholar]
- Gottstein, V.; Bernhardt, M.; Dilger, E.; Keller, J.; Breitling-Utzmann, C.M.; Schwarz, S.; Kuballa, T.; Lachenmeier, D.W.; Bunzel, M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods 2021, 10, 1705. [Google Scholar] [CrossRef]
- Dominguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Moloney, A.P.; Kennedy, C.; Noci, F.; Monahan, F.J.; Kerry, J.P. Lipid and colour stability of M. Longissimus muscle from lambs fed camelina or linseed as oils or seeds. Meat Sci. 2012, 92, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.B.; Lauridsen, C.; Dunshe, F.R. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality—Invited Review. Animals 2022, 12, 3279. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chem. 2012, 135, 943–949. [Google Scholar] [CrossRef]
- Jiménez-Zamora, A.; Pastoriza, S.; Rufián-Henares, J.A. Revalorization of coffee byproducts. Prebiotic, antimicrobial and antioxidant properties. LWT Food Sci. Technol. 2015, 61, 12–18. [Google Scholar] [CrossRef]
- Chemat, A.; Schweiger, M.; Touraud, D.; Müller, R.; Lajoie, L.; Mazzitelli, J.B.; Cravotto, C.; Kunz, W.; Tixier, A.S.F. Cascade extractions of coffee silverskin: Towards zero solid waste valorization of a byproduct. Sustain. Chem. Pharm. 2024, 42, 101779. [Google Scholar] [CrossRef]
- Iglesias, J.; Pazos, M.; Torres, J.L.; Medina, I. Antioxidant mechanism of grape procyanidins in muscle tissues: Redox interactions with endogenous ascorbic acid and α-tocopherol. Food Chem. 2012, 134, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Gessner, D.K.; Fiesel, A.; Most, E.; Dinges, J.; Wen, G.; Ringseis, R.; Eder, K. Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs. Acta Vet. Scand. 2013, 55, 18. [Google Scholar] [CrossRef]
C Diet | CSS10 Diet | CSS | |
---|---|---|---|
Barley | 10 | 5 | |
Maize | 10 | 5 | |
Wheat bran | 28 | 28 | |
Soybean meal | 10 | 10 | |
Alfalfa meal | 40 | 40 | |
Coffee silverskin | - | 10 | |
Vitamin mineral premix 1 | 2 | 2 | |
Chemical composition | |||
Dry matter (DM) g/kg wet weight | 901 | 908 | 931 |
Crude protein g/kg DM | 157 | 164 | 190.1 |
Ether extract g/kg DM | 23.8 | 28.2 | 15.2 |
Ash g/Kg DM | 35.9 | 33.3 | 80.1 |
NDF g/Kg DM | 330 | 345 | 600 |
Total extractable phenols (g TAe 2/kg DM) | 4.30 | 5.94 | 10.2 |
α-Tocopherol (μg/g DM) | 52.4 | 50.2 | 30.1 |
Fatty acids (g/100 g of total fatty acid) | |||
C10:0 | 0.01 | 0.04 | 0.01 |
C12:0 | 0.04 | 0.06 | 0.01 |
C14:0 | 0.13 | 0.21 | 0.90 |
C16:0 | 15.8 | 15.9 | 18.7 |
C18:0 | 4.15 | 4.2 | 5.30 |
C18:1 n-9 | 36.8 | 31.2 | 8.40 |
C18:2 n-6 | 25.8 | 25.2 | 22.4 |
C18:3 n-3 | 1.89 | 1.61 | 0.49 |
Dietary Treatment 1 | SEM 6 | p Value | ||
---|---|---|---|---|
C | CSS10 | |||
Final BW 2, g | 2828 | 3080 | 91,0 | 0.096 |
Carcass weight, g | 1751 | 1830 | 61,9 | 0.156 |
Total DMI 3, g/d | 154 | 175 | 4,85 | 0.045 |
ADG 4, g/d | 35 | 39 | 1,88 | 0.103 |
FCR 5, g DMI 3/g ADG 4 | 4.4 | 4.5 | 0.230 | 0.283 |
Tocopherols and Colesterol, µg/g muscle | ||||
α-Tocopherol | 2,19 | 1.92 | 0.111 | 0.127 |
Colesterol | 1.24 | 0.97 | 0.098 | 0.101 |
Chemical composition | ||||
Moisture | 75.2 | 74.5 | 0.191 | 0.771 |
Crude protein | 22.1 | 21.9 | 0.159 | 0.512 |
Ether extract | 2.32 | 2.08 | 0.417 | 0.781 |
Ash | 2.26 | 2.28 | 0.132 | 0.519 |
Item | Dietary Treatment | SEM | p-Value | |
---|---|---|---|---|
Control | CSS10 | |||
intramuscular fat. mg/100 g of muscle | 1623 | 1618 | 269 | 0.141 |
C10:0 | 3.40 | 2.71 | 0.775 | 0.956 |
C12:0 | 3.16 | 2.65 | 0.803 | 0.590 |
C14:0 | 31.6 | 36.7 | 6.580 | 0.315 |
C14:1 cis-9 | 1.20 | 2.76 | 0.437 | 0.085 |
C16:0 | 475 | 499 | 68.80 | 0.785 |
C16:1 cis-9 | 51.3 | 49.2 | 5.560 | 0.937 |
C17:0 | 11.4 | 14.6 | 2.480 | 0.568 |
C18:0 | 152 | 158 | 22.00 | 0.943 |
C18:1 cis-9 | 380 | 369 | 48.40 | 0.873 |
C18:2 cis-9. cis-12 LA 1 | 428 | 418 | 59.10 | 0.890 |
C18:3 n-3 ALA 1 | 27.1 | 18.7 | 3.020 | 0.089 |
C20:2 n-6 | 5.27 | 4.42 | 0.689 | 0.267 |
C20:3 n-6 | 9.33 | 5.26 | 1.750 | 0.097 |
C20:4 n-6 | 20.8 | 19,1 | 3.310 | 0.159 |
C20:5 n-3 | 1.86 | 0.84 | 0.318 | 0.064 |
C22:4 n-6 | 0.16 | 0.28 | 0.067 | 0.613 |
C22:5 n-3 DPA 1 | 10.19 | 4.25 | 1.640 | 0.069 |
C22:5 n-6 | 7.59 | 7.89 | 1.220 | 0.202 |
C22:6 n-3 DHA 1 | 2.39 | 2.16 | 0.453 | 0.157 |
C24:0 | 0.33 | 0.88 | 0.249 | 0.455 |
∑ SFA 1 | 677 | 716 | 101.0 | 0.797 |
∑ MUFA 1 | 433 | 421 | 55.90 | 0.864 |
∑ PUFA 1 | 512 | 481 | 66.80 | 0.709 |
∑ n-3 | 58.5 | 39.1 | 6.910 | 0.091 |
∑ n-6 | 463 | 447 | 59.80 | 0.775 |
n-6/n-3 | 7.91 | 11.4 | 0.752 | 0.035 |
Thrombogenic index 2 | 1.05 | 1.26 | 0.039 | 0.001 |
Atherogenic index 3 | 0.63 | 0.72 | 0.023 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foti, F.; Scerra, M.; Caparra, P.; Bognanno, M.; Cilione, C.; Fortugno, P.; De Caria, P.; Chinè, V.; Mangione, G.; Gagliano, S.; et al. Effect of Coffee Silverskin on Meat Quality of Growing Rabbits. Foods 2025, 14, 812. https://doi.org/10.3390/foods14050812
Foti F, Scerra M, Caparra P, Bognanno M, Cilione C, Fortugno P, De Caria P, Chinè V, Mangione G, Gagliano S, et al. Effect of Coffee Silverskin on Meat Quality of Growing Rabbits. Foods. 2025; 14(5):812. https://doi.org/10.3390/foods14050812
Chicago/Turabian StyleFoti, Francesco, Manuel Scerra, Pasquale Caparra, Matteo Bognanno, Caterina Cilione, Paolo Fortugno, Paolo De Caria, Valerio Chinè, Guido Mangione, Salvatore Gagliano, and et al. 2025. "Effect of Coffee Silverskin on Meat Quality of Growing Rabbits" Foods 14, no. 5: 812. https://doi.org/10.3390/foods14050812
APA StyleFoti, F., Scerra, M., Caparra, P., Bognanno, M., Cilione, C., Fortugno, P., De Caria, P., Chinè, V., Mangione, G., Gagliano, S., & Chies, L. (2025). Effect of Coffee Silverskin on Meat Quality of Growing Rabbits. Foods, 14(5), 812. https://doi.org/10.3390/foods14050812