Improving Temperature Adaptation for Food Safety: Colorimetric Nanoparticle-Based Time–Temperature Indicators (TTIs) to Detect Cumulative Temperature Disturbances
Abstract
:1. Introduction
2. Materials and Methods
2.1. NP Synthesis
2.2. Container Manufacturing
2.3. Characterization Techniques
3. Results and Discussion
3.1. Nanodispersions for TTIs
3.2. Operation Strategies of the Active Material for TTIs
3.3. Functional Time–Temperature Indicators (TTIs)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AgNPs | Silver Nanoparticles |
AgTNPs | Silver Triangular Nanoparticles |
AuNPs | Gold Nanoparticles |
DLS | Dynamic Light Scattering |
FAO | Food and Agriculture Organization of the United Nations |
LSPRs | Localized Surface Plasmon Resonances |
MNPs | Metal Nanoparticles |
NPs | Nanoparticles |
NTA | Nanoparticle Tracking Analysis |
SDGs | Sustainable Development Goals |
SEM | Scanning Electron Microscopy |
TTIs | Time–Temperature Indicators |
UV-Vis | UV-Visible Absorbance Spectroscopy |
References
- FAO. The State of Food and Agriculture 2023. Revealing the True Cost of Food to Transform Agrifood Systems; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023. [Google Scholar]
- Pasarín, V.; Viinikainen, T. Enabling a Legal Environment for the Prevention and Reduction of Food Loss and Waste; Legal Brief; FAO: Rome, Italy, 2022. [Google Scholar]
- Anaya, M.M.M.; Pechene, J.C.Q. Estado actual de los desperdicios de frutas y verduras en Colombia. Mem. Congr. UTP 2017, 23, 194–201. [Google Scholar]
- Alzate-Yepes, T.; Orozco-Soto, D. Pérdida y desperdicio de alimentos. Problema que urge solución. Perspect. Nutr. Humana 2021, 23, 133–139. [Google Scholar] [CrossRef]
- Katila, P.; Colfer, C.J.P.; De Jong, W.; Galloway, G.; Pacheco, P.; Winkel, G. Sustainable Development Goals; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Vrat, P.; Gupta, R.; Bhatnagar, A.; Kumar, P.; Fulzele, V. Literature review analytics (lra) on sustainable cold-chain for perishable food products: Research trends and future directions. Opsearch 2018, 55, 601–627. [Google Scholar] [CrossRef]
- Aung, M.; Chang, S. Temperature management for the quality assurance of a perishable food supply chain. Food Control 2014, 40, 198–207. [Google Scholar] [CrossRef]
- Holman, B.; Kerry, J.; Hopkins, D. A review of patents for the smart packaging of meat and muscle-based food products. Recent Patents Food Nutr. Agric. 2014, 9, 3–13. [Google Scholar] [CrossRef]
- Ghaani, M.; Cozzolino, C.; Castelli, G.; Farris, S. An overview of the intelligent packaging technologies in the food sector. Trends Food Sci. Technol. 2016, 51, 1–11. [Google Scholar] [CrossRef]
- Lee, S.; Choi, D.; Hur, S. Current topics in active and intelligent food packaging for preservation of fresh foods. J. Sci. Food Agric. 2015, 95, 2799–2810. [Google Scholar] [CrossRef]
- Badia-Melis, R.; Mc Carthy, U.; Ruiz-Garcia, L.; Garcia-Hierro, J.; Robla Villalba, J.I. New trends in cold chain monitoring applications—A review. Food Control 2018, 86, 170–182. [Google Scholar] [CrossRef]
- Lanza, G.A.; Perez-Taborda, J.A.; Avila, A. Utility of Nanomaterials in Food Processing and Packaging. In Nanomaterials in Bionanotechnology; CRC Press: Boca Raton, FL, USA, 2021; pp. 221–248. [Google Scholar]
- Mercier, S.; Villeneuve, S.; Mondor, M.; Uysal, I. Time-temperature management along the food cold chain: A review of recent developments. Compr. Rev. Food Sci. Food Saf. 2017, 16, 647–667. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Duncan, T. Challenges and potential solutions for nanosensors intended for use with foods. Nat. Nanotechnol. 2021, 16, 251–265. [Google Scholar] [CrossRef]
- Prosposito, P.; Burratti, L.; Venditti, I. Nanoparticles as colorimetric sensors for water pollutants. Chemosensorsy 2020, 8, 26. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, A.; Kaur, H.; Mehta, S.; Husen, A. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J. Nanobiotechnol. 2021, 19, 256. [Google Scholar] [CrossRef] [PubMed]
- Jouyban, A.; Rahimpour, E. Optical sensors based on silver nanoparticles for determination of pharmaceuticals: An overview of advances in the last decade. Talanta 2020, 217, 121071. [Google Scholar] [CrossRef] [PubMed]
- Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.; Iatì, M. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Yu, L.; Song, Z.; Peng, J.; Yang, M.; Zhi, H.; He, H. Progress of gold nanomaterials for colorimetric sensing based on different strategies. TrAC Trends Anal. Chem. 2020, 127, 115880. [Google Scholar] [CrossRef]
- Mayer, K.; Hafner, J. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Phan, H.; Haes, A. What does nanoparticle stability mean? J. Phys. Chem. C 2019, 123, 16495–16507. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Roberts, S.; Xia, Y. Nanocrystal-based time-temperature indicators. Chem. Eur. J. 2010, 16, 12559–12563. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Gunasekaran, S.; Imm, J. Gelatin-Templated Gold Nanoparticles as Novel Time-Temperature Indicator. J. Food Sci. 2012, 77, N45–N49. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, L.; Gunasekaran, S. Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage. Microchim. Acta 2015, 182, 1305–1311. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Yang, M.; Zhang, Y.; Xiang, K.; Tang, R. Review of time temperature indicators as quality monitors in food packaging. Packag. Technol. Sci. 2015, 28, 839–867. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, A.; Jiang, R.; Rong, J.; Dong, L.; Zhao, T.; Sun, L.; Wang, J.; Chen, X.; Yan, C. Time-Temperature indicator for perishable products based on kinetically programmable Ag overgrowth on Au nanorods. ACS Nano 2013, 7, 4561–45687. [Google Scholar] [CrossRef]
- Hardenburg, R.; Watada, A.; Wang, C. The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks; US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1986; Volume 66.
- Tafur, R.; Toro, J.C.; Navarrete, A.; Ramirez, C.A. Plan Frutıcola Nacional: Desarrollo de la Fruticultura en Cundinamarca; Ministerio de Agricultura y Desarrollo Rural–Asohofrucal–SAG: Santiago de Cali, Colombia, 2006; Volume 92.
- Mulfinger, L.; Solomon, S.; Bahadory, M.; Jeyarajasingam, A.; Rutkowsky, S.; Boritz, C. Synthesis and study of silver nanoparticles. J. Chem. Educ. 2007, 84, 322. [Google Scholar] [CrossRef]
- Aherne, D.; Ledwith, D.; Gara, M.; Kelly, J. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 2008, 18, 2005–2016. [Google Scholar] [CrossRef]
- Lanza, G.A.; Perez-Taborda, J.A.; Avila, A. Time temperature indicators (TTIs) based on silver nanoparticles for monitoring of perishables products. J. Phys. Conf. Ser. 2019, 1247, 012055. [Google Scholar] [CrossRef]
- Norsyuhada, W.; Mohd, W.; Bakhtiar, H.; Islam, S.; Bidin, N. Synthesis and characterization of gold-silver nanoparticles in deionized water by pulsed laser ablation (PLAL) technique at different laser parameter. Int. J. Nanosci. 2019, 18, 1850015. [Google Scholar] [CrossRef]
- Lanza, G.; Betancourh, D.; Avila, A.; Riascos, H.; Perez-Taborda, J. Control of the Size Distribution of AuNPs for Colorimetric Sensing by Pulsed Laser Ablation in Liquids. Kuwait J. Sci. KJS 2025, 52, 100294. [Google Scholar] [CrossRef]
- Selimis, A.; Farsari, M. Laser-based 3D printing and surface texturing. Compr. Mater. Finish. 2017, 3, 111–136. [Google Scholar]
- Pryshchepa, O.; Pomastowski, P.; Buszewski, B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv. Colloid Interface Sci. 2020, 284, 102246. [Google Scholar] [CrossRef]
- Philip, D. Synthesis and spectroscopic characterization of gold nanoparticles. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2008, 81, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Yapor, J.; Alharby, A.; Gentry-Weeks, C.; Reynolds, M.; Alam, A.; Li, Y. Polydiacetylene nanofiber composites as a colorimetric sensor responding to escherichia coli and pH. ACS Omega 2017, 2, 7334–7342. [Google Scholar] [CrossRef]
- Charych, D.; Nagy, J.; Spevak, W.; Bednarski, M. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly. Science 1993, 261, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Russ, J.; Matey, J.; Mallinckrodt, A.; McKay, S. The image processing handbook. Comput. Phys. 1994, 8, 177–178. [Google Scholar] [CrossRef]
- Russ, J. The Image Processing and Analysis Cookbook; Asheville, USA, 2010. Available online: https://www.amazon.com/Image-Processing-Cookbook-4th/dp/1545499446/ref=sr_1_1?s=books&ie=UTF8&qid=1499689988&sr=1-1&keywords=image+processing+cookbook (accessed on 29 December 2024).
- Palani, S.; Kenison, J.; Sabuncu, S.; Huang, T.; Civitci, F.; Esener, S.; Nan, X. Multispectral Localized Surface Plasmon Resonance (msLSPR) Reveals and Overcomes Spectral and Sensing Heterogeneities of Single Gold Nanoparticles. ACS Nano 2023, 17, 2266–2278. [Google Scholar] [CrossRef]
- Mukherji, S.; Bharti, S.; Shukla, G.; Mukherji, S. Synthesis and characterization of size-and shape-controlled silver nanoparticles. Phys. Sci. Rev. 2018, 17, 20170082. [Google Scholar]
- Richardson, H.; Hickman, Z.; Govorov, A.; Thomas, A.; Zhang, W.; Kordesch, M. Thermooptical properties of gold nanoparticles embedded in ice: Characterization of heat generation and melting. Nano Lett. 2006, 6, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Shaikh, S.; Kumar, A. Progressive cryoaggregation of gold nanoparticles: Physiochemical characterization, effect on biological interactions and use in coldness indicators. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 636, 128158. [Google Scholar] [CrossRef]
- Arvizo, R.; Bhattacharya, R.; Mukherjee, P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv. 2010, 7, 753–763. [Google Scholar] [CrossRef]
- Borah, R.; Verbruggen, S. Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control. J. Phys. Chem. C 2019, 123, 30594–30603. [Google Scholar] [CrossRef]
- Khan, Z.; Al-Thabaiti, S.; Obaid, A.; Al-Youbi, A. Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surfaces B Biointerfaces 2011, 82, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Tritt, T.M. (Ed.) Thermal Conductivity: Theory, Properties, and Applications; Springer Science Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Moreira, L.; Carvalho, E.; Bell, M.; Anjos, V.; Sant’Ana, A.; Alves, A.; Fragneaud, B.; Sena, L.; Archanjo, B.; Achete, C. Thermo-optical properties of silver and gold nanofluids. J. Therm. Anal. Calorim. 2013, 114, 557–564. [Google Scholar] [CrossRef]
- Warrier, P.; Teja, A. Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles. Nanoscale Res. Lett. 2011, 6, 247. [Google Scholar] [CrossRef]
- Valavanis, K.; Zheng, J.; Paschos, G. A total color difference measure for segmentation in color images. J. Intell. Robot. Syst. 1996, 16, 269–313. [Google Scholar] [CrossRef]
- Lyashenko, A.; Weikl, R.; Rozsnyai, Z.; Regensburger, J. Dekron’s Direct Printing Technology. Inkjet Print. Ind. Mater. Technol. Syst. Appl. 2022, 3, 1521–1542. [Google Scholar]
- Mokrzycki, W.S.; Tatol, M. Colour difference E A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- ISO 12647; Graphic Technology—Process Control for the Production of Halftone Colour Separations, Proof and Production Prints. International Organization for Standardization: Geneva, Switzerland, 2015.
- Wang, C. Chilling injury of fruits and vegetables. Food Rev. Int. 1989, 5, 209–236. [Google Scholar] [CrossRef]
AgNPs | AgTNPs | AuNPs | |
---|---|---|---|
Indication Type | Visual, irreversible greenish–yellow tone change in activation window | Visual, irreversible color tone and hue change in activation window, from greenish–yellow, transitioning through blue–green to purplish–blue. | Visual, irreversible reddish–purple tone change in activation window |
Activation Temperature | >22 °C | >22 °C | <4 °C |
Recording Time | 4 h | 5 h | 4 h |
Mounting Method | Adhesive label on the packaging | ||
Storage Conditions | Store in a cool, dark environment below 4 °C | Store at room temperature in the dark | |
Dimensions | 2.1 cm × 1.1 cm × 0.5 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanza, G.; Perez-Taborda, J.A.; Avila, A. Improving Temperature Adaptation for Food Safety: Colorimetric Nanoparticle-Based Time–Temperature Indicators (TTIs) to Detect Cumulative Temperature Disturbances. Foods 2025, 14, 742. https://doi.org/10.3390/foods14050742
Lanza G, Perez-Taborda JA, Avila A. Improving Temperature Adaptation for Food Safety: Colorimetric Nanoparticle-Based Time–Temperature Indicators (TTIs) to Detect Cumulative Temperature Disturbances. Foods. 2025; 14(5):742. https://doi.org/10.3390/foods14050742
Chicago/Turabian StyleLanza, Gustavo, Jaime Andres Perez-Taborda, and Alba Avila. 2025. "Improving Temperature Adaptation for Food Safety: Colorimetric Nanoparticle-Based Time–Temperature Indicators (TTIs) to Detect Cumulative Temperature Disturbances" Foods 14, no. 5: 742. https://doi.org/10.3390/foods14050742
APA StyleLanza, G., Perez-Taborda, J. A., & Avila, A. (2025). Improving Temperature Adaptation for Food Safety: Colorimetric Nanoparticle-Based Time–Temperature Indicators (TTIs) to Detect Cumulative Temperature Disturbances. Foods, 14(5), 742. https://doi.org/10.3390/foods14050742