The Bioaccessibility of Grape-Derived Phenolic Compounds: An Overview
Abstract
:1. Introduction
2. Methodology for Literature Review
3. Grape, Wine, and Grape Pomace as Sources of Phenolic Compounds
3.1. Phenolic Acids
3.2. Stilbenes
3.3. Flavan-3-Ols and Procyanidins
3.4. Flavonols
3.5. Anthocyanins
4. Extraction and Stabilization of Grape-Derived Phenolic Compounds
5. Factors Influencing the Bioaccessibility/Bioavailability of Phenolic Compounds
5.1. The Influence of Food Matrices
5.2. The Influence of Physicochemical Properties of Phenolic Molecules
5.3. The Influence of Physiological Conditions Encountered in Different Phases of Digestion
5.4. Biotransformation of Phenolic Compounds
6. Models for Investigation of Gastrointestinal Digestion of Grape-Derived Phenolic Compounds
Sources | Phenolic Compounds | Gastric Phase (GF) Conditions | Bioaccessibility GF (%) | Intestinal Phase (IF) Conditions | Bioaccessibility IF (%) (Compared with Initial Sample) | Bioaccessibility After Colon Phase (%) | Observations/Remarks | Ref. |
---|---|---|---|---|---|---|---|---|
“Red Globe” grape (whole grape) | 1 Total phenolics 1 Total flavonoids 1 Total anthocyanins | (a) Pepsin (300 U/mL) (b) T = 37 °C; pH 2.0; τ = 2 h | 60.63% 48.19% 35.71% | (a) Pancreatin (0.8 g/L); bile salt (25 mg/mL) (b) T = 37 °C; pH 7.5; τ = 2 h (c) Digest (centrifugation) | 62.38% 56.07% 7.63% | / | Antioxidant properties of digested samples (after IF): (a) ABTS•+ ↑ (b) FRAP ↑ | [115] |
Grape seed extract | 2 Catechin 2 Epicatechin 2 Procyanidin B2 2 Procyanidin B3 | (a) Pepsin (800–1000 U/mg proteins) (b) T = 37 °C; pH 2.0; τ = 1 h; 55 rpm/min | 98.3% 96.6% 109.3% 124.9% | (a) Pancreatin (2 g/L); bile salt extract (25 mg/mL) (b) Presence/absence of Caco-2 cells (c) T = 37 °C; pH 7.0; τ = 2 h | Presence/absence of Caco-2 cells 56.1/n.d% 14.7/n.d% n.d/n.d n.d/n.d | / | Recovery of catechin after intestinal digestion was increased from 59% to 98% (after extraction with acetonitrile, which “unmasks” catechin bound to digestive enzymes) | [113] |
Red wine | 2 Total phenolics 2 Total anthocyanins 2 Malvidin-3-O-glucoside | (a) Pepsin (315 U/mL) (b) T = 37 °C; pH 1.7; τ = 2 h; 100 rpm | 66.4% 99.1% / | (a) Pancreatin (4 mg/mL); bile salt (25 mg/mL) (b) T = 37 °C; pH 7.5; τ = 2 h (c) Digest (dialysis) | After dialysis 7.2% 3.7% 0.2% | 39.7% 34.1% 0.9% | / | [135] |
Grape pomace (flour and extract) | 1 Total phenolics | (a) “porcine” pepsin (b) T = 37 °C; pH 2.0; τ = 2 h (c) Digest (filtration; 5 kDa membrane) | Retentate/permeate (mg/g) 0.82/2.86% (flour) 58.22/35.23% (extract) | (a) “porcine” pancreatin (b) T = 37 °C; pH 7.0; τ = 2 h (c) Digest (filtration; 5 kDa membrane) | Retentate/permeate (mg/g) 24.16/5.76% (flour) 68.32/4.21% (extract) | / | Antioxidant properties of digest (compared to the initial sample) (a) TEAC (Retentate/permeate) ↑ (b) ORAC (Retentate/permeate) ↑ COST INFOGEST protocol of digestion | [136] |
Grape juices (Vitis vinifera L.) | 1 Total phenolics | (a) Pepsin (pepsin/juice; 1:10 w/w) (b) T = 37 °C; pH 2.0; τ = 1 h | / | (a) Trypsin (trypsin/juices; 1:10 w/w) (b) T = 37 °C; pH 6.0; τ = 2 h (c) Digest (centrifugation) | After intestinal digestion, the content of total phenolic compounds is twice as high | / | Antioxidant properties of digest (compared to the initial sample) (a) FRAP ↑ (b) α-glucosidase inhibitory activity ↑ (c) α-amylase inhibitory activity (no significant difference) | [137] |
Fruit mix (with a portion of Airen grape concentrate) | 1 Total phenolics | (a) Pepsin (0.02 g/g sample) (b) T = 37 °C; pH 2.0; τ = 2 h, 120 rpm/min | / | (a) Pancreatin (0.005 g/g sample); bile salt (0.03 g/g sample) (b) T = 37 °C; pH 6.5–7.2; τ = 2 h (c) Digest (centrifugation) | 90.26% (Fruit mix) 91.51% (Fruit mix + Fe) 76.52% (Fruit mix + Zn) 76.52%(Fruit mix + Fe + Zn) | / | Antioxidant properties of digest (compared to the initial sample) (a) ORAC ↑ (for all sample) (b) ABTS•+ ↑ (for all sample) | [138] |
Pomace (Merlot); Lyophilized extract | 2 Total phenolics 2 Total gallic acid derivatives 2 Total flavan-3-ols and procyanidins 2 Catechin/Epicatechin 2 Total flavonols 2 Total anthocyanins 2 Peonidin/malvidin-3-O-glucoside | (a) Pepsin (0.32 g/100 mL) (b) T = 37 °C; pH 1.2; τ = 2 h; 150 rpm | / | (a) Pancreatin (0.15 g/100 mL); bile salt (0.9/100 mL) (a) T = 37 °C; pH 6.0; τ = 1 h; 150 rpm | 12.85% 1.47% 12.1% 24.34/23.69% 15.46% 16.03% 14.59/9.98% | 12.88% 1.49% 12.35% 19.80/20.96% 14.80% 15.16% 13.89/9.1% | Functional properties after colon fermentation (compared to the initial sample) (a) DPPH• ↓ (b) Reduction properties ↑ (c) β-caroten “bleaching” inhibition ↓ (d) Cytotoxic properties (MCF-7; NCI-H460; HepG2) ↑ (e) Antimicrobial properties ↓ or no significant effect | [139] |
Grape Wine (Syrah) | 2 Total phenolics 2 Total phenolic acids 2 Total flavonols 2 Total flavan-3-ols and procyanidins 2 Catechin 2 Epicatechin 2 Total anthocyanins 2 Peonidin-3-glucoside 2 Malvidin-3-glucoside 2 Malvidin-3-acetil-glucoside | (a) Pepsin 450 U/g (mL) (40 mg/mL) (b) T = 37 °C; pH 2.0; τ = 2 h | Grape/Wine 68.55/127.47% 80.2/143.11% 73.11/129.65% 138.6/179.66% 325.5/160.42% 379.9/246.31% 45.07/100.82 31.6/125.67% 55.5/116.32% 56.36/61.72% | (a) Pancreatin (1.2 mg/g(mL)); bile salt (5.6 mg/g(mL)) (b) T = 37 °C; pH 7.5; τ = 2 h (c) Digest (dialysis) | Grape No-D(D)/Wine No-D(D) 4.71(7.94)/6.31(4.82)% 24.7(60.2)/13.5(4.4)% 1.69(4.15)/3.35(2.78)% 5.76(27.7)/15.4(16.3)% 18.7(87.6)/17.4(21.6)% 12.7(62.9)/18.9(14.1)% 9.84(10.2)/6.9(6.13)% 25.6(25.7)/15.1(15.5)% 9.2(9.4)/7.2(4.8)% 9.13(8.75)/8.4(6.9)% | / | Antioxidant properties of D/No-D fraction obtained after intestinal digestion of grape/wine (compared to the initial samples) (a) ABTS•+ ↓ (b) FRAP ↓ (c) DPPH• ↓ COST INFOGEST protocol of digestion | [140] |
Seed and skin extracts (raw and purified) | 2 Proanthocyanidins (proanthocyanidins of various od degree polymerization (mDP)) | (a) Pepsin (315 U/mL) (b) T = 37 °C; pH 1.7; τ = 2 h; 100 rpm | / | (a) Pancreatin (4 mg/mL); bile salt (25 mg/mL) (b) T = 37 °C; τ = 2 h (c) Digest (dialysis; membrane 12 kDa) | Proanthocyanidins in seed and skin extracts were mostly degraded (up to 80%) (seed extracts are more resistant on degradation during digestion) | / | ACE inhibitory activity after intestinal and colon digestion: (a) Raw extracts of seeds and skin were retained activity (b) Purified extracts of seeds and skins after the colon phase had no ACE-inhibitory ability | [141] |
Grape Seed Pulp Skin (Bordo (B) and Niagara (N)) | 1 Total phenolics | (a) Pepsin (2000 U/mL) (b) T = 37 °C; pH 3.0; τ = 2 h | / | (a) Pancreatin (800 U/mL) bile salt (25 mg/mL) (b) T = 37 °C; pH 7.0; τ = 2 h (c) Digest (centrifugation) | Bioaccessibility (compared to the initial samples) Grape N (n.s.); B ↑ Skin N (n.s.); B ↑ Pulp N ↑; B ↑ Seed N (n.s.); B ↑ | / | Antioxidant properties of digests (compared to the initial samples) (a) Grape ↑; skin ↓; pulp ↑; seed (n.s.) (Niagara) (b) Grape ↑; skin ↑; pulp ↑; seed ↑ (Bordo) COST INFOGEST protocol of digestion | [142] |
Grape and wine (mix of two variety Chardonay and Viognier) | 1 Total phenolics 2 Total phenolics 2 Catechin | (a) Pepsin (450 U/mL) (b) T = 37 °C; pH 2.0; τ = 2 h | Mix Grape/Wine 37/74% / / | (a) Pancreatin (1.2 mg/g(mL)); bile salt (5.6 mg/g(mL)) (b) T = 37 °C; pH 7.5; τ = 2 h (c) Digest (dialysis) | Grape No-D(D)/Wine No-D(D) 13(18)/34(33)% 1.60(3.85)/40.9(30.3)% 0(0)/10.25(0)% | / | Antioxidant properties of D/No-D fractions after intestinal digestion of grape/wine (compared to the initial samples) (a) ABTS•+ ↓ (b) FRAP ↓ (c) DPPH• ↓ | [143] |
Skin extract | 2 Total phenolics 2 Procyanidin B1 2 Catechin 2 Quercetin-3-glucoside 2 Quercetin-3-glucuronide 2 Caftaric acid 2 Coutaric acid | (a) Pepsin (40 mg/mL) (b) T = 37 °C; pH 2.5; τ = 1 h | / | (a) “Porcine” lipase (2 mg/mL); pancreatin (4 mg/mL); bile salt (24 mg/mL) (b) T = 37 °C; pH 5.3–6.5; τ = 2 h (c) Digest (centrifugation) | 65.59% 47.31% 53.82% 43.31% 51.79% 80.21% 66.77% | / | Skin extracts after in vitro digestion have shown reduced influence on HT-29 intestinal cells in ROS and GSH modulation assessed | [144] |
Wine | 2 Trans-resveratrol 2 Chlorogenic acid 2 Caffeic acid 2 p-coumaric acid 2 3-(4-hydroxyphenyl) propionic acid | (a) Pepsin (40 mg/mL) (b) T = 37 °C; pH 2.0; τ = 2 h | White/Red wine 80.5/120.2% 40/81.8% 122.3/79.1% 87.8/96.8% n.d/n.d | (a) Pancreatin (0.02 g); bile salt (0.12 g) (b) T = 37 °C; pH 6.0–7.4; τ = 2.5 h (c) “colon” phase (presence of microflora) | White/Red wine 74.4/117.9% 23.1/68.9% 133.9/65.6% 82.0/91.8% n.d./100% (13.23 µg/mL) | White/Red wine 67.2/56.86% 12.3/4.19% 11.6/128.1% 78.02/86.3% n.d./100% (9.80 µg/mL) | Antioxidant activity after intestinal digestion and colon fermentation (compared to initial samples) (a) ABTS•+ ↓ | [145] |
Freeze-dried sediment from grape juice (Isabel (I) and Bordo (B)) | 2 Total phenolics 2 Total phenolic acid 2 Total flavan-3-ols 2 Catechin 2 Epicatechin 2 Total anthocyanins 2 Malvidin-3,5-diglucoside | (a) Pepsin (2000 U/mL) (b) T = 37 °C; pH 3,0; τ = 2 h | Bordo/Isabel sediments 95.3/142.6% 132.2/149.9% 98.7/150% 97.2/135.8% 100/196.9% 84.6/131.7% 86.8/111.1% | (a) Pancreatin (800 U/mL); žučne soli (10 mol/L) (b) T = 37 °C; pH 7.0; τ = 2 h (c) Digest (centrifugation) | Bordo/Isabel 54.9/14.4% 71.9/65.5% 49/14.2% 49.8/2.0% 48.1/54.5% 57.5/8.0% 59.8/0.1% | / | Antioxidant properties of D/No-D fractions after intestinal digestion of grape juice sediments (compared to the initial samples) (a) ABTS•+ ↓ (b) DPPH• ↓ COST INFOGEST protocol of digestion | [146] |
Wine (Cabernet Sauvignon (CS); Chardonnay (C)) | 2 Total phenolics | (a) Pepsin (450 U/mL) (b) T = 37 °C; pH 1.2; τ = 2 h | CS/C wine 118.3/82.8% (low consumption) 124.1/83.9% (moderate consumption) 131.6/89.8% (Excessive consumption) | (a) Pancreatin (4 mg/mL); bile salt (25 mg/mL) (b) T = 37 °C; pH 7.5; τ = 2 h (c) Digest (dialysis; passive diffusion; membrane 12 kDa) (d) “colon” fermentation | CS/C wine 54.0/43.7% (low consumption) 56.2/43.7% (moderate consumption) 74.0/45.7% (Excessive consumption) | CS/C wine 27.2/20.6% (low consumption) 30.4/22.3% (moderate consumption) 41.6/25.0% (excessive consumption) | Functional properties after colon fermentation (compared to the initial samples) (a) α-glucosidase inhibitory activity ↓ (b) α-amylase inhibitory activity ↓ COST INFOGEST protocol of digestion | [147] |
Pomace (Po), skin (Sk), peduncle (Pe), and seed (Se) extracts | 1 Total phenolics 2 Total phenolics 2 Total phenolic acid 2 Total flavanols 2 Catechin 2 Epicatechin 2 Total flavonols 2 Quercetin-3-glucoside | (a) “porcine” pepsin (b) T = 37 °C; pH 3.0; τ = 2 h | Po/Sk/Pe/Se 31.3/79.3/93.8/34.6% 128/233/140/123% / 118/0/156/99% 125.8/197.8% (Se/Pe) 102.8% (Se) 30/47/27/0% 40.6% (Pe) | (a) Pancreatin (800 U/mL); bile salt extracts (20 mg) (b) T = 37 °C; pH 7.5; τ = 2 h | Po/Sk/Pe/Se 49.8/101/112.9/38.7% 156.4/58.44/153.5/91.4% 75/355/92/62% 228/0/201/97% 110.3/330.9% (Se/Pe) 101.2% (Se) 47/72/48/0% 70.1% (Pe) | / | Antioxidant properties of Po, Sk, Pe, and Se after intestinal digestion (compared to the initial samples) (a) ORAC↓ (b) DPPH• ↓ COST INFOGEST protocol of digestion | [148] |
Cane (Ca) and peduncle (bunch; Pe) (cv Malbec) | 1 Total phenolics 2 Total phenolic acid 2 Stilbenes 2 Ɛ-viniferin 2 Catechin 2 Total flavonols | (a) “porcine” pepsin (b) T = 37 °C; pH 2.0; τ = 1 h | Cane/Peduncle 58.9/80.4% 124.3/92.8% 44.3/0% 46.6/0% 73.2/88.1% 51.8/79.4% | (a) Pancreatin; bile salt extracts (20 g/L) (b) T = 37 °C; pH 6.8; τ = 2 h | Cane/Peduncle 73.9/20.3% 87.6/27.2 129.9/51.6% 136.6/51.6% 29.6/12.1% 52.2/61.9% | / | Antioxidant properties of cane and peduncle after intestinal digestion (compared to the initial samples) (a) ORAC: cane ↑ and peduncle (n.s) (b) DPPH•: cane ↓ and peduncle ↓ | [64] |
Pomace (Tempranillo) | 2 Total phenolics 2 Gallic acid 2 Ellagic acid 2 Total flavonols 2 Total anthocyanins | (a) “porcine” pepsin (b) T = 37 °C; pH 2.0; τ = 2 h | 96.8% 100.7% 99.3% 88.8% 65.8% | (a) Pancreatin; bile salt extracts (12 mg/mL) (b) T = 37 °C; pH 7.5; τ = 2 h (c)Digests (centrifugation) | 85.5% 96.4% 86.2% 66.1% 0% | / | Antioxidant properties after intestinal digestion of pomace (compared to the initial samples) (a) ABTS•+ ↓ (b) FRAP ↓ (c) ORAC ↓ | [106] |
Raisins (Sultana) | 1 Total phenolics | (a) Pepsin (b) T = 37 °C; pH 1.7; τ = 2 h; 100 rpm | 97.88% | (a) Pancreatin (4 mg/mL); bile salt (25 mg/mL) (b) T = 37 °C; pH 7.0; τ = 2 h (c) Digest (dialysis) | 7.86% (D fraction) 102.5% (No-D fraction) | / | Antioxidant properties of D/No-D fractions after intestinal digestion of raisins (compared to the initial samples) (a) ABTS• + : D ↓ and No-D↓ (b) DPPH•: D ↓ and No-D↑ (c) FRAP: D ↓ and No-D ↑ (d) CUPRAC: D ↓ and No-D↑ | [149] |
Grape seed | 1 Total phenolics 2 Total phenolics 2 Gallic acid 2 Catechin-hydrat 2 Epicatechin | (a) “porcine” pepsin (b) T = 37 °C; pH 2.0; τ = 1 h; 95 rpm | Red/White variety 140.9/107.4% 25.9/81.8% 65.2/137.4% 29.7/47.2% 31.4/55.8% | (a) Pancreatin (4 mg/mL); glycodeoxycholate (0.04 g/mL); taurodeoxycholate (0.025 g/mL) (b) T = 37 °C; pH 7.4; τ = 2 h | Red/White variety 55.5/107% 33.4/25.5% n.d. 24/0% 11.8/0% | / | Antioxidant properties of seed after intestinal digestion (compared to the initial samples) (a) ABTS•+ ↓ (b) FRAP ↓ (c) DPPH• ↓ | [150] |
Grape pomace extract (Croatina variety) | 1 Total phenolics 1 Total anthocyanins 2 Ellagic acid 2 Catechin 2 Resveratrol | (a) Pepsin solution (0.4 mL; 2000 U/mL) (b) T = 37 °C; pH 3.0; τ = 2 h | 99.5% 77.4% 162.6% / 80.2% | (a) Pancreatin solution (trypsin activity 100 U/mL); bile solution (10 mmol/L) (b) T = 37 °C; pH 7.0; τ = 2 h (c) Digest (filtration 0.22 µm) | 104.7% 17.1% 209.5% 0% 66.4% | / | Antioxidant properties of grape pomace extract after intestinal digestion (compared to the initial non-digested sample) (b) FRAP ↑ (c) DPPH• ↑ COST INFOGEST protocol of digestion | [151] |
Fresh black “Isabel” grape | 1 Total phenolics 1 Total anthocyanins 2 Gallic acid 2 Catechin 2 Malvidin-3-O-glucosdie | (a) Pepsin solution (2000 U/mL) (b) T = 37 °C; pH 3.0; τ = 2 h | 28.1% 21.2% 48.8% 57.3% 3.23% | (a) Pancreatin solution (100 U/mL); bile solution (10 mmol/L) (b) T = 37 °C; pH 7.0; τ = 2 h (c) Dialysis and centrifugation | D/No-D 15.1/17.9% 0.67/0.44% 0/35.4% 0.56/0.28% n.d./n.d. (0%) | / | Antioxidant properties of D/No-D fractions after intestinal digestion (compared to the initial samples) (a) ABTS• + : D ↓ and No-D ↓ (b) DPPH•: D ↓ and No-D ↓ (c) FRAP: D ↓ and No-D ↓ (d) CUPRAC: D ↓ and No-D ↓ COST INFOGEST protocol of digestion | [152] |
Grape juice and wine (Cabernet Sauvignon) | 1 Total phenolics 1 Total anthocyanins 2 Catechin 2 Epicatechin 2 Resveratrol 2 Malvidin-3-O-glucosdie | (a) Pepsin (0.025 g of pepsin) (b) T = 37 °C; pH 3.0; τ = 1 h | Grape/Wine 100.9/92.6% 82.1%/90.8% 87.4/95.3% 58.4/89.9% 0/109.3% 94.9/95.4% | (a) Pancreatin (0.025 g of pancreatin); bile solution (10 mmol/L) (b) T = 37 °C; pH 7.0; τ = 2 h; moderate shaking | Grape/Wine 90.8/87.9% 34.1/60.0% 74.7/83.2% 44.9/64.6% 0/78.1% 4.73/13.0% | Antioxidant, acetylcholinesterase (AChE) and angiotensin-I converting enzyme (ACE) inhibition potential of grape juice and wine after intestinal digestion (compared to the initial non-digested samples) a) DPPH•: grape juice ↓ and wine ↓ (b) Inhibition of LP (lipoprotein): grape juice (n.s.) and wine ↑ (c) HO•: grape juice ↑ and wine ↑ (d) AChE: grape juice ↓ and wine ↓ (e) ACE: grape juice ↑ and wine ↑ COST INFOGEST protocol of digestion | [153] | |
Skin extract (Alicante Bouschet variety) | 1 Total phenolics 1 Total anthocyanins 2 Catechin 2 Epicatechin 2 Malvidin-3-O-glucosdie | (a) Pepsin solution (40 mg/mL) (b) T = 37 °C; pH 2.5; τ = 1 h, 60 rpm | 49.8% 125.3% 86.3% 90.4% 48.04% | (a) Pancreatin–lipase solution (10 mg/mL of pancreatin and 5 mg/mL of lipase); bile solution (40 mg/mL) (b) T = 37 °C; pH 6.5; τ = 2 h; 60 rpm (b) Colonic fermentation. | 48.03% 28.8% 26.3% 23.1% 30.3% | 0.33% n.d. n.d. n.d. n.d. | Antioxidant properties of skin extract after intestinal digestion and colonic fermentation (compared to the initial non-digested sample) (a) ABTS•+ ↑ (b) ORAC ↑ | [154] |
Skin (Sk) and seed (Se) extracts (Prokupac variety) | 2 Ellagic acid 2 Total monomeric flavan-3-ols 2 Total procyanidin A type 2 Total procyanidin B type 2 Total procyanidin gallate 2 Total flavan-3ols and procyanidins 2 Malvidin-3-O-glucoside 2 Peonidin-3-O-glucoside | (a) Pepsin solution (1.6 mL, 25,000 U/mL) (b) T = 37 °C; pH 3.0; τ = 2 h, 300 rpm | / | (a) Pancreatin solution (5 Ml, 800 U/mL trypsin activity); 160 mM bile solution (2.5 mL) (b) T = 37 °C; pH 7.0; τ = 2 h; 300 rpm (b) Digestion of supernatans digests (centrifugation; filtration) | Skin/Seed 83.0/41.6% –/0.3% –/3.0% –/0.1% –/0.5% –/0.2% 22.3/– % 0/– % | / | Antioxidant properties of skin and seed extract after intestinal digestion (compared to the initial non-digested sample) (a) ABTS•+ ↑ (b) FRP ↓ (a) FCC ↑ (due to presence of enzymes) COST INFOGEST protocol of digestion | [33] |
7. Bioaccessibility of Grape-Derived Phenolic Compounds
Flour/Extract | Food Matrices | Phenolic Compounds (Effect of Food Matrices on Bioaccessibility of Phenolic Compounds After Intestinal Digestion) | Antioxidant Properties After Intestinal Digestion | Ref. |
---|---|---|---|---|
Grape extract (Eminol®) | Control (extract + water) (a) Milkshake (MS) (b) Custard dessert (CD) (c) Pancake (PA) (d) Omelette (OM) | Total bioaccessibility (bioaccessible phenolic compounds in digestible and non-digestible fractions) 2 Total anthocyanins (MS ↑; CD n.u.; PA ↑; OM ↑) 2 Total proanthocyanidins (MS ↑; CD ↑; PA ↓; OM ↑) 1 Total phenolics (MS ↓; CD ↓; PA ↓; OM n.b.) | (Observed in comparison to the same sample after the oral phase) (a) FRAP—Ferric reducing antioxidant power Digestible fraction (MS ↓; CD ↓; PA ↑; OM ↑) Non-digestible fraction (MS ↑; CD ↑; PA ↓; OM ↑) Sum of fractions (MS n.s.; CD n.s.; PA ↑; OM ↑) (b) ORAC—Oxygen radical absorbance capacity Digestible fraction (MS ↑; CD ↑; PA ↑; OM ↑) Non-digestible fraction (MS ↑; CD ↑; PA ↑; OM ↑) Sum of fractions (MŠ ↑; KD ↑; P ↑; O ↑) | [35] |
Grape extract (Eminol®) | Control (extract + water) (a) Milkshake (MS) (b) Custard dessert (CD) (c) Pancake (PA) (d) Omelette (OM) | Total bioaccessibility (bioaccessible phenolic compounds in digestible and non-digestible fractions) 2 Delphinidin-3-O-glucoside (MS ↑; CD n.b.; PA ↑; OM ↑) 2 Cyanidin-3-O-glucoside (MS ↑; CD n.b.; PA ↑; OM ↑) 2 Petunidin-3-O-glucoside (MS ↑; CD ↑; PA ↑; OM ↑) 2 Peonidin-3-O-glucoside (MS ↑; CD ↑; PA ↑; OM ↑) 2 Malvidin-3-O-glucoside (MS ↑; CD ↑; PA ↑; OM ↑) 2 Metylpiranomalvidin-3-O-glucoside (MS ↑; CD ↑; PA ↑; OM ↑) 2 Peonidin-3-O-acetylglucoside (MS ↑; CD ↑; PA ↑; OM ↑) 2 Delphinidin-3-O-coumaroylglucoside (n.d.) 2 Malvidin-3-O-acetylglucoside (MS ↑; CD ↑; PA ↑; OM ↑) 2 Petunidin-3-O-coumaroylglucoside (MS n.b.; CD n.b.; PA ↑; OM ↑) 2 Peonidin-3-O-coumaroylglucoside (MS n.b.; CD n.b.; PA ↑; OM ↑) 2 Malvidin-3-O-coumaroylglucoside (MS n.b.; CD n.b.; PA ↑; OM ↑) | / | [34] |
Grape extract (Eminol®) | (a) Biscuits (b) Buns, breadsticks | Bioaccessibility (calculated in comparison to the same sample before digestion) (a) Biscuits + anthocyanins ↓ (57.26%) (b) Biscuits + anthocyanins + docosahexaenoic acid ↓ (8.83%) (c) Buns + anthocyanins ↓ (57.30%) (d) Buns + anthocyanins + docosahexaenoic acid ↓ (n.d.) | / | [36] |
Grape pomace powder | Bread with 5.0% (GP5) and 10.0% (GP10) grape pomace powder | Bioaccessibility (calculated in comparison to the same sample before digestion) 2 Anthocyanins ↓ (GP5, 5.88%; GP10, 7.25%) 2 Flavones ↓ (GP5, 9.33%; GP10, 6.74%) 2 Phenolic acid ↓ (GP5, 0.94%; GP10, 1.25%) | Antioxidant properties of bread with grape pomace powder after intestinal digestion (compared to the initial non-digested the same bread with grape pomace powder) (a) ABTS•+ radical scavenging activity ↓ (for both GP5 and GP10) (b) FRAP—Ferric ion reducing power ↓ (for both GP5 and GP10) | [155] |
Skin (Sk) and seed (Se) extracts (Prokupac variety) | Infant puree (Juvitana, Swisslion Product d.o.o. Indjija, Serbia) (boiled turkey meat (20%); boiled potato paste (10%; boiled corn paste (25%); rice flour (5%); 0.1% NaCl and water (39.9%)) | Bioaccessibility (digested skin/seed extract with food matrix-total recovery) (calculated in comparison to the non-digested initial skin and seed extract) 2 Ellagic acid ↓ (Skin, 75.4% and Seed, 57.1%) 2 Total monomeric flavan-3-ols ↓ (Seed, 5.7%) 2 Total procyanidin A type ↓ (Seed, 4.5%) 2 Total procyanidin B type ↓ (Seed, 2.7%) 2 Total procyanidin gallate ↓ (Seed, 8.1%) 2 Total flavan-3ols and procyanidins ↓ (Seed, 4.7%) 2 Malvidin-3-O-glucoside ↓ (Skin, 0%) 2 Peonidin-3-O-glucoside ↓ (Skin, 0%) | Antioxidant properties of digested skin/seed extract with food matrix (compared to the initial non-digested skin/seed extracts) (a) ABTS•+ radical scavenging activity ↑ (for both seed and skin) (b) FRP—Ferric ion reducing power ↓ (for both seed and skin) (c) FCC—Ferrous ion chelating properties ↑ (for both seed and skin) (contributed by enzymes and food matrices) | [33] |
Seed extract (Prokupac variety) | Thermally treated goat′s milk powder (goat milk fortified with 0.6 mg TPC per mL milk) | Bioaccessibility (digested seed/milk powder-total recovery) (calculated in comparison to the non-digested initial seed extract) 2 Gallic acid ↓ (0%) 2 Catechin ↓ (26.19%) 2 Catechin gallate ↓ (4.66%) | Antioxidant properties of digested seed/milk powder (compared to the initial non-digested seed/milk powder) (a) ABTS•+ radical scavenging activity ↑ (b) FRP—Ferric ion reducing power ↓ (c) FCC—Ferrous ion chelating properties ↑ (d) TAC—Total antioxidant capacity (in vitro phosphomolybdenum reducing capacity) ↓ | [37] |
Red wine (RW) and white wine (WW) | Juvitana infant formula (20% turkey meat; 25% corn paste; 10% potato paste; 5% rice flour; 0.1% NaCl; water) | 1 Total phenolics LC (RW n.b.; WW n.b.); MC (RW n.b.; WW n.b.); HC (RW ↓; WW n.b.) 1 Total anthocyanins LC (RW n.b.); MC (RW n.b.); HC (RW ↑) 2 Total flavan-3-ols LC (RW ↑; WW n.b.); MC (RW n.b.; WW n.b.); HC (RW n.b.; WW n.b.) 2 Total phenolic acid LC (RW n.b.; WW n.b.); MC (RW ↓; WW n.b.); HC (RW ↑; WW n.b.) | (observed in comparison to the wine sample without matrix after intestinal digestion) (a) DPPH• radical scavenging activity LC (RW n.s.; WW ↑); MC (RW n.s.; WW n.s.); HC (RW ↑; WW n.s.) (b) ABTS•+ radical scavenging activity LC (RW ↓; WW n.s.); MC (RW n.s.; WW ↑); HC (RW ↑; WW n.s.) (c) ORAC—Oxygen radical absorbance capacity LC (RW ↑; WW ↑); MC (RW ↑; WW ↑); HC (RW ↑; WW n.s.) (d) FRAP—Ferric reducing antioxidant power LC (RW n.s.; WW n.s.); MC (RW ↑; WW n.s.); HC (RW ↑; WW n.s.) | [147] |
(a) Isabel grape (IG) (b) Isabel grape + pomace flour (IGF) | Goat′s milk (probiotic yoghurt) | / | (observed in comparison to the same sample before digestion) Model digestions with enzymes (a) ABTS•+ radical scavenging activity Yoghurt + IG ↑; yoghurt + IGF ↑ (b) ORAC—Oxygen radical absorbance capacity Yoghurt + IG ↑; yoghurt + IGF ↑ | [156] |
Grape juice (GJ) | Cow′s milk (a) Whole milk (WM) (b) Skimmed milk (SM) | 1 Total phenolics (WMGJ ↑; SMGJ ↑) 2 Caffeoyltartaric acid (WMGJ ↓; SMGJ ↓) 2 Epicatechin (WMGJ ↓; SMGJ ↓) 2 Proantocyanidins (WMGJ ↑; SMGJ ↓) 2 Protocatechuic acid glucoside (WMGJ ↑; SMGJ ↑) | (observed in comparison to the same sample before digestion) (a) ABTS•+ radical scavenging activity Whole milk + grape juice ↑ (WMGJ) Skimmed milk + grape juice ↑ (SMGJ) | [157] |
Grape juice (Concord variety) | (a) Ultrafiltrated permeate (b) Acid whey (c) Whole milk (d) Skimmed milk | / | (observed in comparison to the same sample before digestion) (a) FRAP—Ferric reducing antioxidant power Ultrafiltrated permeate + grape juice (n.s.) Acid whey + grape juice (n.s.) Whole milk + grape juice ↑ Skimmed milk + grape juice (n.s.) | [158] |
Fruit mix (with a portion of Airen grape concentrate) (FM) | Skimmed milk | 1 Total phenolics Fruit mix + milk ↑ Fruit mix + Fe + milk ↑ Fruit milk + Zn + milk (n.b.) Fruit mix + Fe + Zn + milk (n.b.) | (observed in comparison to the same sample before digestion) Fruit mix + milk (ORAC↑; ABTS•+ ↑) Fruit mix + Fe + milk (ORAC↑; ABTS•+ ↑) Fruit mix + Zn + milk (ORAC↑; ABTS•+ ↑) Fruit mix + Fe + Zn + milk (ORAC↑; ABTS•+ ↑) | [138] |
Fruit beverages (with a portion of grape concentrate) (FB) | Skimmed milk | Fruit beverages + Fe + milk 2 Total phenolics ↓ 2 Hydroxycinnamic acid derivatives ↓ 2 Total flavons ↓ 2 Total flavan-3-ols ↓ 2 Total flavanons ↓ | / | [159] |
Effect of Food Matrices on Bioaccessibility of Grape-Derived Phenolic Compounds
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.C.; Pereira, R.N.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. The use of emergent technologies to extract added value compounds from grape by-products. Trends Food Sci. Technol. 2020, 106, 182–197. [Google Scholar] [CrossRef]
- Venkitasamy, C.; Zhao, L.; Pan, Z. Grapes; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 133–163. [Google Scholar] [CrossRef]
- Karastergiou, A.; Gancel, A.-L.; Jourdes, M.; Teissedre, P.-L. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants 2024, 13, 1131. [Google Scholar] [CrossRef] [PubMed]
- Unusan, N. Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. J. Funct. Foods 2020, 67, 103861. [Google Scholar] [CrossRef]
- Almanza-Oliveros, A.; Bautista-Hernández, I.; Castro-López, C.; Aguilar-Zárate, P.; Meza-Carranco, Z.; Rojas, R.; Michel, M.R.; Martínez-Ávila, G.C.G. Grape Pomace—Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods 2024, 13, 580. [Google Scholar] [CrossRef]
- Muñoz-Bernal, Ó.A.; Coria-Oliveros, A.J.; de la Rosa, L.A.; Rodrigo-García, J.; del Rocío Martínez-Ruiz, N.; Sayago-Ayerdi, S.G.; Alvarez-Parrilla, E. Cardioprotective effect of red wine and grape pomace. Food Res. Int. 2021, 140, 110069. [Google Scholar] [CrossRef]
- Rodrigues Machado, A.; Atatoprak, T.; Santos, J.; Alexandre, E.M.C.; Pintado, M.E.; Paiva, J.A.P.; Nunes, J. Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective. Appl. Sci. 2023, 13, 7754. [Google Scholar] [CrossRef]
- Xia, E.; He, X.; Li, H.; Wu, S.; Li, S.; Deng, G. Biological Activities of Polyphenols from Grapes. Academic Press: London, UK, 2013; pp. 47–58. [Google Scholar]
- Milinčić, D.; Kostić, A.; Špirović-Trifunović, B.; Tesic, Z.; Tosti, T.; Dramićanin, A.; Barac, M.; Pešić, M. Grape seed flour of different grape pomaces: Fatty acid profile, soluble sugar profile and nutritional value. J. Serbian Chem. Soc. 2020, 85, 305–319. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Soković Bajić, S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Lj Tešić, Ž.; Pešić, M.B. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-SanJosé, M.L. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Abreu, T.; Sousa, P.; Gonçalves, J.; Hontman, N.; Teixeira, J.; Câmara, J.S.; Perestrelo, R. Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications. Beverages 2024, 10, 45. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Kostić, A.Ž.; Gašić, U.M.; Lević, S.; Stanojević, S.P.; Barać, M.B.; Tešić, Ž.L.; Nedović, V.; Pešić, M.B. Skimmed Goat’s Milk Powder Enriched with Grape Pomace Seed Extract: Phenolics and Protein Characterization and Antioxidant Properties. Biomolecules 2021, 11, 965. [Google Scholar] [CrossRef] [PubMed]
- Milinčić, D.D.; Kostić, A.Ž.; Kolašinac, S.; Rac, V.; Banjac, N.; Lađarević, J.; Lević, S.; Pavlović, V.B.; Stanojević, S.P.; Nedović, V.A.; et al. Goat milk powders enriched with grape pomace seed extract: Physical and techno-functional properties. Food Hydrocoll. 2024, 146, 109293. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Salević Jelić, A.S.; Lević, S.M.; Stanisavljević, N.S.; Milošević, T.; Pavlović, V.B.; Gašić, U.M.; Obradović, N.S.; Nedović, V.A.; Pešić, M.B. Craft Beer Produced by Immobilized Yeast Cells with the Addition of Grape Pomace Seed Powder: Physico-Chemical Characterization and Antioxidant Properties. Foods 2024, 13, 2801. [Google Scholar] [CrossRef]
- Antoniolli, A.; Becerra, L.; Piccoli, P.; Fontana, A. Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace. Plants 2024, 13, 590. [Google Scholar] [CrossRef]
- Giosuè, A.; Siano, F.; Di Stasio, L.; Picariello, G.; Medoro, C.; Cianciabella, M.; Giacco, R.; Predieri, S.; Vasca, E.; Vaccaro, O.; et al. Turning Wastes into Resources: Red Grape Pomace-Enriched Biscuits with Potential Health-Promoting Properties. Foods 2024, 13, 2195. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Rajković, M.; Popović Minić, D.; Milinčić, D.; Zdravković, M. Circular economy in food industry. Zast. Mater. 2020, 61, 229–250. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- Jakobek, L.; Matić, P. Non-covalent dietary fiber—Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol. 2019, 83, 235–247. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Z.; Wang, Y.; Fu, L. Dietary protein-phenolic interactions: Characterization, biochemical-physiological consequences, and potential food applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 3589–3615. [Google Scholar] [CrossRef] [PubMed]
- Ozdal, T.; Yalcinkaya, İ.; Toydemir, G.; Capanoglu, E. Polyphenol-Protein Interactions and Changes in Functional Properties and Digestibility. Encycl. Food Chem. 2018, 2019, 566–577. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein–phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Yang, Z.; Bk, A.; Zhao, W.; Shi, L.; Wu, H.; Barrow, C.; Dunshea, F.; Suleria, H.A.R. Bioaccessibility and bioavailability changes of phenolic compounds in pumpkins (Cucurbita moschata): A review. Food Biosci. 2022, 47, 101753. [Google Scholar] [CrossRef]
- Zhao, W.; Subbiah, V.; Xie, C.; Yang, Z.; Shi, L.; Barrow, C.; Dunshea, F.; Suleria, H.A.R. Bioaccessibility and Bioavailability of Phenolic Compounds in Seaweed. Food Rev. Int. 2023, 39, 5729–5760. [Google Scholar] [CrossRef]
- Angelino, D.; Cossu, M.; Marti, A.; Zanoletti, M.; Chiavaroli, L.; Brighenti, F.; Del Rio, D.; Martini, D. Bioaccessibility and bioavailability of phenolic compounds in bread: A review. Food Funct. 2017, 8, 2368–2393. [Google Scholar] [CrossRef]
- Wang, T.; He, F.; Chen, G. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J. Funct. Foods 2014, 7, 101–111. [Google Scholar] [CrossRef]
- Ed Nignpense, B.; Francis, N.; Blanchard, C.; Santhakumar, A.B. Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods 2021, 10, 1595. [Google Scholar] [CrossRef]
- Gonçalves Santana, M.; Freitas-Silva, O.; Mariutti, L.R.B.; Teodoro, A.J. A review of in vitro methods to evaluate the bioaccessibility of phenolic compounds in tropical fruits. Crit. Rev. Food Sci. Nutr. 2024, 64, 1780–1790. [Google Scholar] [CrossRef]
- Pešić, M.B.; Milinčić, D.D.; Kostić, A.Ž.; Stanisavljević, N.S.; Vukotić, G.N.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Popović, D.A.; et al. In vitro digestion of meat- and cereal-based food matrix enriched with grape extracts: How are polyphenol composition, bioaccessibility and antioxidant activity affected? Food Chem. 2019, 284, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Vadillo, C.; Nau, F.; Guerin-Dubiard, C.; Jardin, J.; Lechevalier, V.; Sanz-Buenhombre, M.; Guadarrama, A.; Tóth, T.; Csavajda, É.; Hingyi, H.; et al. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion. Food Chem. 2017, 214, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Vadillo, C.; Nau, F.; Dubiard, C.G.; Cheynier, V.; Meudec, E.; Sanz-Buenhombre, M.; Guadarrama, A.; Tóth, T.; Csavajda, É.; Hingyi, H.; et al. In vitro digestion of dairy and egg products enriched with grape extracts: Effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Res. Int. 2016, 88, 284–292. [Google Scholar] [CrossRef]
- Karakaya, S.; Simsek, S.; Eker, A.T.; Pineda-Vadillo, C.; Dupont, D.; Perez, B.; Viadel, B.; Sanz-Buenhombre, M.; Rodriguez, A.G.; Kertész, Z.; et al. Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins. Food Funct. 2016, 7, 3488–3496. [Google Scholar] [CrossRef] [PubMed]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Gašić, U.M.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Bioaccessibility of Phenolic Compounds and Antioxidant Properties of Goat-Milk Powder Fortified with Grape-Pomace-Seed Extract after In Vitro Gastrointestinal Digestion. Antioxidants 2022, 11, 2164. [Google Scholar] [CrossRef]
- Wee, B.V.; Banister, D. How to Write a Literature Review Paper? Transp. Rev. 2016, 36, 278–288. [Google Scholar] [CrossRef]
- Gođevac, D.; Tešević, V.; Velickovic, M.; Vujisica, L.; Vajs, V.; Milosavljevic, S. Polyphenolic compounds in seeds from some grape cultivars grown in Serbia. J. Serbian Chem. Soc. 2010, 75, 1641–1652. [Google Scholar] [CrossRef]
- Pantelić, M.M.; Dabić Zagorac, D.Č.; Davidović, S.M.; Todić, S.R.; Bešlić, Z.S.; Gašić, U.M.; Tešić, Ž.L.; Natić, M.M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 2016, 211, 243–252. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367. [Google Scholar] [CrossRef]
- Di Lecce, G.; Arranz, S.; Jáuregui, O.; Tresserra-Rimbau, A.; Quifer-Rada, P.; Lamuela-Raventós, R.M. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem. 2014, 145, 874–882. [Google Scholar] [CrossRef]
- Zdunić, G.; Gođevac, D.; Šavikin, K.; Krivokuća, D.; Mihailović, M.; Pržić, Z.; Marković, N. Grape Seed Polyphenols and Fatty Acids of Autochthonous Prokupac Vine Variety from Serbia. Chem. Biodivers. 2019, 16, e1900053. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Navarro, J.; Izquierdo-Cañas, P.M.; Mena-Morales, A.; Martínez-Gascueña, J.; Chacón-Vozmediano, J.L.; García-Romero, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S. Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chem. 2019, 295, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic Profiles of Leaves, Grapes and Wine of Grapevine Variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.-L.; Haroutounian, S.A. Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. LWT-Food Sci. Technol. 2012, 48, 316–322. [Google Scholar] [CrossRef]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinification byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Ji, M.; Li, C.; Li, Q. Rapid separation and identification of phenolics in crude red grape skin extracts by high performance liquid chromatography coupled to diode array detection and tandem mass spectrometry. J. Chromatogr. A 2015, 1414, 138–146. [Google Scholar] [CrossRef]
- Perestrelo, R.; Lu, Y.; Santos, S.; Silvestre, A.; Neto, C.; Câmara, J.; Rocha, S. Phenolic profile of Sercial and Tinta Negra Vitis vinifera L. grape skins by HPLC-DAD-ESI-MSn Novel phenolic compounds in Vitis vinifera L. grape. Food Chem. 2012, 135. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Jungfer, E.; Ritter, C.; Santiago-Schübel, B.; Thiele, B.; Fett, R.; Galensa, R. Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MSn and LC-ESI-FTICR-MS. Food Res. Int. 2012, 48, 848–855. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Gašić, U.; Kostić, A.Ž.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Grape Seed Powders as a Source of Phenolic Compounds: UHPLC Orbitrap MS4 Characterization. Proceedings 2023, 91, 376. [Google Scholar]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Dabetić, N.; Todorović, V.; Panić, M.; Radojčić Redovniković, I.; Šobajić, S. Impact of Deep Eutectic Solvents on Extraction of Polyphenols from Grape Seeds and Skin. Appl. Sci. 2020, 10, 4830. [Google Scholar] [CrossRef]
- Mandić, A.; Đilas, S.; Ćetković, G.; Čanadanović-Brunet, J.; Tumbas Šaponjac, V. Polyphenolic Composition and Antioxidant Activities of Grape Seed Extract. Int. J. Food Prop. 2008, 11, 713–726. [Google Scholar] [CrossRef]
- Natić, M.; Dabić, D.; Gašić, U.; Dojcinovic, B.; Ćirić, I.; Relic, D.; Todić, S.; Sredojević, M. Autochthonous and international grape varieties grown in Serbia—Phenolic and elemental composition. Food Biosci. 2021, 40, 100889. [Google Scholar] [CrossRef]
- Lingua, M.; Fabani, M.; Wunderlin, D.; Baroni, V. In vivo antioxidant activity of grape, pomace and wine from three red varieties grown in Argentina: Its relationship to phenolic profile. J. Funct. Foods 2016, 20, 332–345. [Google Scholar] [CrossRef]
- Pasini Deolindo, C.T.; Monteiro, P.I.; Santos, J.S.; Cruz, A.G.; Cristina da Silva, M.; Granato, D. Phenolic-rich Petit Suisse cheese manufactured with organic Bordeaux grape juice, skin, and seed extract: Technological, sensory, and functional properties. LWT 2019, 115, 108493. [Google Scholar] [CrossRef]
- Pintać, D.; Majkić, T.; Torović, L.; Orčić, D.; Beara, I.; Simin, N.; Mimica–Dukić, N.; Lesjak, M. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Ind. Crops Prod. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Chira, K.; Gonzalez-Centeno, M.R.; Jourdes, M.; Teissedre, P.-L. Phenolic composition of bordeaux cabernet sauvignon and merlot grapes and wines. In Fermented and Distilled Alcoholic Beverages: A Technological, Chemical and Sensory Overview: Red Wines; Nova Science Pub Inc.: New York, NY, USA, 2021; pp. 21–52. [Google Scholar]
- José Jara-Palacios, M.; Hernanz, D.; Luisa Escudero-Gilete, M.; Heredia, F.J. Antioxidant potential of white grape pomaces: Phenolic composition and antioxidant capacity measured by spectrophotometric and cyclic voltammetry methods. Food Res. Int. 2014, 66, 150–157. [Google Scholar] [CrossRef]
- Visioli, F.; Panaite, S.-A.; Tomé-Carneiro, J. Wine’s Phenolic Compounds and Health: A Pythagorean View. Molecules 2020, 25, 4105. [Google Scholar] [CrossRef]
- Căpruciu, R. Resveratrol in Grapevine Components, Products and By-Products—A Review. Horticulturae 2025, 11, 111. [Google Scholar] [CrossRef]
- Katalinić, V.; Možina, S.S.; Skroza, D.; Generalić, I.; Abramovič, H.; Miloš, M.; Ljubenkov, I.; Piskernik, S.; Pezo, I.; Terpinc, P.; et al. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Ferreyra, S.; Torres-Palazzolo, C.; Bottini, R.; Camargo, A.; Fontana, A. Assessment of in-vitro bioaccessibility and antioxidant capacity of phenolic compounds extracts recovered from grapevine bunch stem and cane by-products. Food Chem. 2021, 348, 129063. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.; Santos, R.A.; Pinto, R.; Queiroz, M.; Rodrigues, M.; José Saavedra, M.; Barros, A.; Gouvinhas, I. Recovery of bioactive compounds from white grape (Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi J. Biol. Sci. 2020, 27, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Quero, J.; Jiménez-Moreno, N.; Esparza, I.; Osada, J.; Cerrada, E.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Grape Stem Extracts with Potential Anticancer and Antioxidant Properties. Antioxidants 2021, 10, 243. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Cui, Y.; Zhang, S.; Li, L.; Suo, H.; Sun, B. Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2017, 1068–1069, 201–209. [Google Scholar] [CrossRef]
- Ćurko, N.; Kovačević Ganić, K.; Gracin, L.; Đapić, M.; Jourdes, M.; Teissedre, P.L. Characterization of seed and skin polyphenolic extracts of two red grape cultivars grown in Croatia and their sensory perception in a wine model medium. Food Chem. 2014, 145, 15–22. [Google Scholar] [CrossRef]
- Ivanova, V.; Stefova, M.; Vojnoski, B.; Dörnyei, Á.; Márk, L.; Dimovska, V.; Stafilov, T.; Kilár, F. Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int. 2011, 44, 2851–2860. [Google Scholar] [CrossRef]
- Rodríguez Montealegre, R.; Romero Peces, R.; Chacón Vozmediano, J.L.; Martínez Gascueña, J.; García Romero, E. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Compos. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Di Stefano, V.; Buzzanca, C.; Melilli, M.G.; Indelicato, S.; Mauro, M.; Vazzana, M.; Arizza, V.; Lucarini, M.; Durazzo, A.; Bongiorno, D. Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability 2022, 14, 6702. [Google Scholar] [CrossRef]
- Delić, K.; Milinčić, D.D.; Pešić, M.B.; Lević, S.; Nedović, V.A.; Gancel, A.-L.; Jourdes, M.; Teissedre, P.-L. Grape, wine and pomace anthocyanins: Winemaking biochemical transformations, application and potential benefits. OENO One 2024, 58. [Google Scholar] [CrossRef]
- Lorrain, B.; Chira, K.; Teissedre, P.L. Phenolic composition of Merlot and Cabernet-Sauvignon grapes from Bordeaux vineyard for the 2009-vintage: Comparison to 2006, 2007 and 2008 vintages. Food Chem 2011, 126, 1991–1999. [Google Scholar] [CrossRef]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.L. Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules 2014, 19, 482–506. [Google Scholar] [CrossRef] [PubMed]
- Mitic, M.N.; Souquet, J.M.; Obradovic, M.V.; Mitic, S.S. Phytochemical profiles and antioxidant activities of Serbian table and wine grapes. Food Sci. Biotechnol. 2012, 21, 1619–1626. [Google Scholar] [CrossRef]
- Pintać Šarac, D.; Torović, L.; Orčić, D.; Mimica-Dukić, N.; Živanović, N.; Đorđević, T.; Lesjak, M. Where have all the polyphenols gone? Check your filter! J. Food Compos. Anal. 2024, 130, 106104. [Google Scholar] [CrossRef]
- Fraige, K.; Pereira-Filho, E.R.; Carrilho, E. Fingerprinting of anthocyanins from grapes produced in Brazil using HPLC–DAD–MS and exploratory analysis by principal component analysis. Food Chem. 2014, 145, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Sustainable green processing of grape pomace for the production of value-added products: An overview. Environ. Technol. Innov. 2021, 23, 101592. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Hogervorst, J.C.; Miljić, U.; Puškaš, V. Extraction of bioactive compounds from grape processing by-products. In Handbook of Grape Processing By-Products; Elsevier: Amsterdam, The Netherlands, 2017; pp. 105–135. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape Pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Kallithraka, S.; García-Viguera, C.; Bridle, P.; Bakker, J.G.M. Survey of solvents for the extraction of grape seed phenolics. Phytochem. Anal. 1995, 6, 265–267. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Vatai, T.; Škerget, M.; Knez, Ž. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J. Food Eng. 2009, 90, 246–254. [Google Scholar] [CrossRef]
- Morelli, L.L.L.; Prado, M.A. Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology. Ultrason. Sonochem. 2012, 19, 1144–1149. [Google Scholar] [CrossRef] [PubMed]
- Kunjiappan, S.; Ramasamy, L.K.; Kannan, S.; Pavadai, P.; Theivendren, P.; Palanisamy, P. Optimization of ultrasound-aided extraction of bioactive ingredients from Vitis vinifera seeds using RSM and ANFIS modeling with machine learning algorithm. Sci. Rep. 2024, 14, 1219. [Google Scholar] [CrossRef]
- Castro, L.E.N.; Sganzerla, W.G.; Silva, A.P.G.; John, O.D.; Barroso, T.L.C.T.; Rostagno, M.A.; Forster-Carneiro, T. Sustainable extraction methods for the recovery of polyphenolic compounds from grape pomace and its biological properties: A comprehensive review. Phytochem. Rev. 2024. [Google Scholar] [CrossRef]
- Dias, R.; Oliveira, H.; Fernandes, I.; Simal-Gandara, J.; Perez-Gregorio, R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit. Rev. Food Sci. Nutr. 2021, 61, 1130–1151. [Google Scholar] [CrossRef]
- Grgić, J.; Šelo, G.; Planinić, M.; Tišma, M.; Bucić-Kojić, A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants 2020, 9, 923. [Google Scholar] [CrossRef]
- Thakur, N.; Raigond, P.; Singh, Y.; Mishra, T.; Singh, B.; Lal, M.K.; Dutt, S. Recent updates on bioaccessibility of phytonutrients. Trends Food Sci. Technol. 2020, 97, 366–380. [Google Scholar] [CrossRef]
- Yang, C.; Han, Y.; Tian, X.; Sajid, M.; Mehmood, S.; Wang, H.; Li, H. Phenolic composition of grape pomace and its metabolism. Crit. Rev. Food Sci. Nutr. 2024, 64, 4865–4881. [Google Scholar] [CrossRef]
- Rodrigues, D.B.; Marques, M.C.; Hacke, A.; Loubet Filho, P.S.; Cazarin, C.B.B.; Mariutti, L.R.B. Trust your gut: Bioavailability and bioaccessibility of dietary compounds. Curr. Res. Food Sci. 2022, 5, 228–233. [Google Scholar] [CrossRef]
- Fernández-García, E.; Carvajal-Lérida, I.; Pérez-Gálvez, A. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr. Res. 2009, 29, 751–760. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Salević-Jelić, A.S.; Kostić, A.; Stanojević, S.P.; Nedović, V.; Pešić, M.B. Food nanoemulsions: How simulated gastrointestinal digestion models, nanoemulsion, and food matrix properties affect bioaccessibility of encapsulated bioactive compounds. Crit. Rev. Food Sci. Nutr. 2024, 64, 8091–8113. [Google Scholar] [CrossRef] [PubMed]
- González-Aguilar, G.A.; Blancas-Benítez, F.J.; Sáyago-Ayerdi, S.G. Polyphenols associated with dietary fibers in plant foods: Molecular interactions and bioaccessibility. Curr. Opin. Food Sci. 2017, 13, 84–88. [Google Scholar] [CrossRef]
- Lucas-González, R.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Res. Int. 2018, 107, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Cirkovic Velickovic, T.D.; Stanic-Vucinic, D.J. The Role of Dietary Phenolic Compounds in Protein Digestion and Processing Technologies to Improve Their Antinutritive Properties. Compr. Rev. Food Sci. Food Saf. 2018, 17, 82–103. [Google Scholar] [CrossRef] [PubMed]
- Hiolle, M.; Lechevalier, V.; Floury, J.; Boulier-Monthéan, N.; Prioul, C.; Dupont, D.; Nau, F. In vitro digestion of complex foods: How microstructure influences food disintegration and micronutrient bioaccessibility. Food Res. Int. 2020, 128, 108817. [Google Scholar] [CrossRef] [PubMed]
- Podsędek, A.; Majewska, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M. In Vitro Inhibitory Effect on Digestive Enzymes and Antioxidant Potential of Commonly Consumed Fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Sugier, D.; Świeca, M.; Gawlik-Dziki, U. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds. Food Chem. 2021, 344, 128581. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Stanisavljević, N.S.; Gašić, U.M.; Lević, S.; Kojić, M.O.Lj.; Tešić, Ž.; Nedović, V.; Barać, M.B.; Pešić, M.B. Polyphenol bioaccessibility and antioxidant properties of in vitro digested spray-dried thermally-treated skimmed goat milk enriched with pollen. Food Chem. 2021, 351, 129310. [Google Scholar] [CrossRef]
- Quan, T.H.; Benjakul, S.; Sae-leaw, T.; Balange, A.K.; Maqsood, S. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends Food Sci. Technol. 2019, 91, 507–517. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Ghosh, A.K.; Ghosh, C. Recent developments on polyphenol–protein interactions: Effects on tea and coffee taste, antioxidant properties and the digestive system. Food Funct. 2012, 3, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Amigo-Benavent, M.; Mateos, R.; Bravo, L.; Sarriá, B. Effects of in vitro digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace. Int. J. Food Sci. Nutr. 2017, 68, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Marie, A.; Aura, A.-M.; Bohn, T.; Dufour, C.; El, S.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.; Requena, T.; et al. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Li, C.; Yu, W.; Wu, P.; Chen, X.D. Current in vitro digestion systems for understanding food digestion in human upper gastrointestinal tract. Trends Food Sci. Technol. 2020, 96, 114–126. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Estévez, M.; Barba, F.J.; Thirumdas, R.; Franco, D.; Munekata, P.E.S. 11—Polyphenols: Bioaccessibility and bioavailability of bioactive components. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Barba, F.J., Saraiva, J.M.A., Cravotto, G., Lorenzo, J.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 309–332. [Google Scholar] [CrossRef]
- Han, F.; Yang, P.; Wang, H.; Fernandes, I.; Mateus, N.; Liu, Y. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends Food Sci. Technol. 2019, 83, 211–224. [Google Scholar] [CrossRef]
- Bermúdez-Soto, M.J.; Tomás-Barberán, F.A.; García-Conesa, M.T. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 2007, 102, 865–874. [Google Scholar] [CrossRef]
- Laurent, C.; Besançon, P.; Caporiccio, B. Flavonoids from a grape seed extract interact with digestive secretions and intestinal cells as assessed in an in vitro digestion/Caco-2 cell culture model. Food Chem. 2007, 100, 1704–1712. [Google Scholar] [CrossRef]
- Braga, A.R.C.; Murador, D.C.; de Souza Mesquita, L.M.; de Rosso, V.V. Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. J. Food Compos. Anal. 2018, 68, 31–40. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bioaccessibility and antioxidant activity of grape. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Henning, S.M.; Choo, J.J.; Heber, D. Nongallated compared with gallated flavan-3-ols in green and black tea are more bioavailable. J. Nutr. 2008, 138, 1529s–1534s. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Di Majo, D.; La Neve, L.; La Guardia, M.; Casuccio, A.; Giammanco, M. The influence of two different pH levels on the antioxidant properties of flavonols, flavan-3-ols, phenolic acids and aldehyde compounds analysed in synthetic wine and in a phosphate buffer. J. Food Compos. Anal. 2011, 24, 265–269. [Google Scholar] [CrossRef]
- da Rocha, C.B.; Noreña, C.P.Z. Microencapsulation and controlled release of bioactive compounds from grape pomace. Dry. Technol. 2021, 39, 1018–1032. [Google Scholar] [CrossRef]
- Martinović, J.; Lukinac, J.; Jukić, M.; Ambrus, R.; Planinić, M.; Šelo, G.; Klarić, A.-M.; Perković, G.; Bucić-Kojić, A. In Vitro Bioaccessibility Assessment of Phenolic Compounds from Encapsulated Grape Pomace Extract by Ionic Gelation. Molecules 2023, 28, 5285. [Google Scholar] [CrossRef]
- Martinović, J.; Lukinac, J.; Jukić, M.; Ambrus, R.; Planinić, M.; Šelo, G.; Perković, G.; Bucić-Kojić, A. The Release of Grape Pomace Phenolics from Alginate-Based Microbeads during Simulated Digestion In Vitro: The Influence of Coatings and Drying Method. Gels 2023, 9, 870. [Google Scholar] [CrossRef]
- Milinčić, D.D.; Popović, D.A.; Lević, S.M.; Kostić, A.Ž.; Tešić, Ž.L.; Nedović, V.A.; Pešić, M.B. Application of Polyphenol-Loaded Nanoparticles in Food Industry. Nanomaterials 2019, 9, 1629. [Google Scholar] [CrossRef]
- Popović, D.A.; Milinčić, D.D.; Pešić, M.B.; Kalušević, A.M.; Tešić, Ž.L.; Nedović, V.A. 12—Encapsulation technologies for polyphenol-loaded microparticles in food industry. In Green Food Processing Techniques; Chemat, F., Vorobiev, E., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 335–367. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.D.A.; Zajac, N. Digestion and absorption of phenolic compounds assessed by in vitro simulation methods. A review. Rocz. Państwowego Zakładu Hig. 2013, 64, 79–84. [Google Scholar]
- McClements, D.J. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog. Lipid Res. 2021, 81, 101081. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Egger, L.; Ménard, O.; Baumann, C.; Duerr, D.; Schlegel, P.; Stoll, P.; Vergères, G.; Dupont, D.; Portmann, R. Digestion of milk proteins: Comparing static and dynamic in vitro digestion systems with in vivo data. Food Res. Int. 2019, 118, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Sanchón, J.; Fernández-Tomé, S.; Miralles, B.; Hernández-Ledesma, B.; Tomé, D.; Gaudichon, C.; Recio, I. Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem. 2018, 239, 486–494. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Methodologies for simulation of gastrointestinal digestion of different controlled delivery systems and further uptake of encapsulated bioactive compounds. Trends Food Sci. Technol. 2021, 114, 510–520. [Google Scholar] [CrossRef]
- Ramos-Pineda, A.M.; Carpenter, G.H.; García-Estévez, I.; Escribano-Bailón, M.T. Influence of Chemical Species on Polyphenol–Protein Interactions Related to Wine Astringency. J. Agric. Food Chem. 2020, 68, 2948–2954. [Google Scholar] [CrossRef]
- Ma, W.; Waffo-Teguo, P.; Jourdes, M.; Li, H.; Teissedre, P.L. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency. PLoS ONE 2016, 11, e0161095. [Google Scholar] [CrossRef]
- Paissoni, M.A.; Waffo-Teguo, P.; Ma, W.; Jourdes, M.; Rolle, L.; Teissedre, P. Chemical and sensorial investigation of in-mouth sensory properties of grape anthocyanins. Sci. Rep. 2018, 8, 17098. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Soares, S.; Mateus, N.; Rivas-Gonzalo, J.; Escribano-Bailón, M.T.; Freitas, V.d. New Anthocyanin–Human Salivary Protein Complexes. Langmuir 2015, 31, 8392–8401. [Google Scholar] [CrossRef]
- McDougall, G.; Fyffe, S.; Dobson, P.; Stewart, D. Anthocyanins from red wine—Their stability under simulated gastrointestinal digestion. Phytochemistry 2005, 66, 2540–2548. [Google Scholar] [CrossRef]
- Beres, C.; Freitas, S.P.; Godoy, R.L.d.O.; de Oliveira, D.C.R.; Deliza, R.; Iacomini, M.; Mellinger-Silva, C.; Cabral, L.M.C. Antioxidant dietary fibre from grape pomace flour or extract: Does it make any difference on the nutritional and functional value? J. Funct. Foods 2019, 56, 276–285. [Google Scholar] [CrossRef]
- He, M.; Zeng, J.; Zhai, L.; Liu, Y.; Wu, H.; Zhang, R.; Li, Z.; Xia, E. Effect of in vitro simulated gastrointestinal digestion on polyphenol and polysaccharide content and their biological activities among 22 fruit juices. Food Res. Int. 2017, 102, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Cilla, A.; Perales, S.; Lagarda, M.J.; Barberá, R.; Clemente, G.; Farré, R. Influence of storage and in vitro gastrointestinal digestion on total antioxidant capacity of fruit beverages. J. Food Compos. Anal. 2011, 24, 87–94. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Haminiuk, C.W.I.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Kato, C.G.; Côrrea, V.G.; Peralta, R.M.; Ferreira, I.C.F.R. Stability and biological activity of Merlot (Vitis vinifera) grape pomace phytochemicals after simulated in vitro gastrointestinal digestion and colonic fermentation. J. Funct. Foods 2017, 36, 410–417. [Google Scholar] [CrossRef]
- Lingua, M.S.; Wunderlin, D.A.; Baroni, M.V. Effect of simulated digestion on the phenolic components of red grapes and their corresponding wines. J. Funct. Foods 2018, 44, 86–94. [Google Scholar] [CrossRef]
- Fernández, K.; Labra, J. Simulated digestion of proanthocyanidins in grape skin and seed extracts and the effects of digestion on the angiotensin I-converting enzyme (ACE) inhibitory activity. Food Chem. 2013, 139, 196–202. [Google Scholar] [CrossRef]
- Gomes, T.M.; Toaldo, I.M.; Haas, I.C.d.S.; Burin, V.M.; Caliari, V.; Luna, A.S.; de Gois, J.S.; Bordignon-Luiz, M.T. Differential contribution of grape peel, pulp, and seed to bioaccessibility of micronutrients and major polyphenolic compounds of red and white grapes through simulated human digestion. J. Funct. Foods 2019, 52, 699–708. [Google Scholar] [CrossRef]
- Lingua, M.S.; Theumer, M.G.; Kruzynski, P.; Wunderlin, D.A.; Baroni, M.V. Bioaccessibility of polyphenols and antioxidant properties of the white grape by simulated digestion and Caco-2 cell assays: Comparative study with its winemaking product. Food Res. Int. 2019, 122, 496–505. [Google Scholar] [CrossRef]
- Garbetta, A.; Nicassio, L.; D’Antuono, I.; Cardinali, A.; Linsalata, V.; Attolico, G.; Minervini, F. Influence of in vitro digestion process on polyphenolic profile of skin grape (cv. Italia) and on antioxidant activity in basal or stressed conditions of human intestinal cell line (HT-29). Food Res. Int. 2018, 106, 878–884. [Google Scholar] [CrossRef]
- Gumienna, M.; Lasik, M.; Czarnecki, Z. Bioconversion of grape and chokeberry wine polyphenols during simulated gastrointestinal in vitro digestion. Int. J. Food Sci. Nutr. 2011, 62, 226–233. [Google Scholar] [CrossRef]
- da Silva Haas, I.C.; Toaldo, I.M.; Gomes, T.M.; Luna, A.S.; de Gois, J.S.; Bordignon-Luiz, M.T. Polyphenolic profile, macro- and microelements in bioaccessible fractions of grape juice sediment using in vitro gastrointestinal simulation. Food Biosci. 2019, 27, 66–74. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, X.; Zhang, J.; Ju, Y.; Que, Z.; Liao, X.; Lao, F.; Fang, Y.; Ma, T. Letting wine polyphenols functional: Estimation of wine polyphenols bioaccessibility under different drinking amount and drinking patterns. Food Res. Int. 2020, 127, 108704. [Google Scholar] [CrossRef] [PubMed]
- José Jara-Palacios, M.; Gonçalves, S.; Hernanz, D.; Heredia, F.J.; Romano, A. Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking byproducts extracts. Food Res. Int. 2018, 109, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Kamiloglu, S.; Pasli, A.A.; Ozcelik, B.; Capanoglu, E. Evaluating the in vitro bioaccessibility of phenolics and antioxidant activity during consumption of dried fruits with nuts. LWT-Food Sci. Technol. 2014, 56, 284–289. [Google Scholar] [CrossRef]
- Chen, G.-L.; Chen, S.-G.; Chen, F.; Xie, Y.-Q.; Han, M.-D.; Luo, C.-X.; Zhao, Y.-Y.; Gao, Y.-Q. Nutraceutical potential and antioxidant benefits of selected fruit seeds subjected to an in vitro digestion. J. Funct. Foods 2016, 20, 317–331. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Nobre, C.; Rodrigues, R.M.; Genisheva, Z.; Botelho, C.; Teixeira, J.A. Extraction of phenolic compounds from grape pomace using ohmic heating: Chemical composition, bioactivity and bioaccessibility. Food Chem. 2024, 436, 137780. [Google Scholar] [CrossRef]
- Ozkan, K.; Karadag, A.; Sagdic, O. The effects of different drying methods on the in vitro bioaccessibility of phenolics, antioxidant capacity, minerals and morphology of black ‘Isabel’ grape. LWT 2022, 158, 113185. [Google Scholar] [CrossRef]
- Pintać Šarac, D.; Tremmel, M.; Vujetić, J.; Torović, L.; Orčić, D.; Popović, L.; Mimica-Dukić, N.; Lesjak, M. How do in vitro digestion and cell metabolism affect the biological activity and phenolic profile of grape juice and wine. Food Chem. 2024, 449, 139228. [Google Scholar] [CrossRef]
- Ruíz-García, Y.; Beres, C.; Chávez, D.W.H.; Pereira, D.C.d.S.; Santiago, M.C.P.A.; Godoy, R.d.O.; Gomes, F.d.S.; Antoniassi, R.; Tonon, R.V.; Cabral, L.M.C. In vitro digestion and colonic fermentation of an Alicante Bouschet (Vitis vinifera L.) skin extract. LWT 2022, 157, 113083. [Google Scholar] [CrossRef]
- Rocchetti, G.; Rizzi, C.; Cervini, M.; Rainero, G.; Bianchi, F.; Giuberti, G.; Lucini, L.; Simonato, B. Impact of Grape Pomace Powder on the Phenolic Bioaccessibility and on In Vitro Starch Digestibility of Wheat Based Bread. Foods 2021, 10, 507. [Google Scholar] [CrossRef]
- Silva, F.A.; Queiroga, R.d.C.R.d.E.; de Souza, E.L.; Voss, G.B.; Borges, G.d.S.C.; Lima, M.d.S.; Pintado, M.M.E.; Vasconcelos, M.A.d.S. Incorporation of phenolic-rich ingredients from integral valorization of Isabel grape improves the nutritional, functional and sensory characteristics of probiotic goat milk yogurt. Food Chem. 2022, 369, 130957. [Google Scholar] [CrossRef]
- He, Z.; Tao, Y.; Zeng, M.; Zhang, S.; Tao, G.; Qin, F.; Chen, J. High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chem. 2016, 200, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Lamothe, S.; Guérette, C.; Dion, F.; Sabik, H.; Britten, M. Antioxidant activity of milk and polyphenol-rich beverages during simulated gastrointestinal digestion of linseed oil emulsions. Food Res. Int. 2019, 122, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Cilla, A.; González-Sarrías, A.; Tomás-Barberán, F.; Espín, J.C.; Barberá, R. Availability of polyphenols in fruit beverages subjected to in vitro gastrointestinal digestion and their effects on proliferation, cell-cycle and apoptosis in human colon cancer Caco-2 cells. Food Chem. 2009, 114, 813–820. [Google Scholar] [CrossRef]
- Dufour, C.; Loonis, M.; Delosière, M.; Buffière, C.; Hafnaoui, N.; Santé-Lhoutellier, V.; Rémond, D. The matrix of fruit & vegetables modulates the gastrointestinal bioaccessibility of polyphenols and their impact on dietary protein digestibility. Food Chem. 2018, 240, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Sengul, H.; Surek, E.; Nilufer-Erdil, D. Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model. Food Res. Int. 2014, 62, 1069–1079. [Google Scholar] [CrossRef]
- Cebeci, F.; Şahin-Yeşilçubuk, N. The matrix effect of blueberry, oat meal and milk on polyphenols, antioxidant activity and potential bioavailability. Int. J. Food Sci. Nutr. 2014, 65, 69–78. [Google Scholar] [CrossRef]
- Đorđević, N.O.; Stanisavljević, N.; Todorović Vukotić, N.; Novović, K.; Žakula, J.J.; Stanković, D.; Pajović, S.B. Antioxidant and cytotoxic activity of red wine after in vitro simulated digestion in the presence of complex food matrix. Nat. Prod. Res. 2023, 37, 990–995. [Google Scholar] [CrossRef]
- Stanisavljević, N.; Samardžić, J.; Janković, T.; Šavikin, K.; Mojsin, M.; Topalović, V.; Stevanović, M. Antioxidant and antiproliferative activity of chokeberry juice phenolics during in vitro simulated digestion in the presence of food matrix. Food Chem. 2015, 175, 516–522. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milinčić, D.D.; Stanisavljević, N.S.; Pešić, M.M.; Kostić, A.Ž.; Stanojević, S.P.; Pešić, M.B. The Bioaccessibility of Grape-Derived Phenolic Compounds: An Overview. Foods 2025, 14, 607. https://doi.org/10.3390/foods14040607
Milinčić DD, Stanisavljević NS, Pešić MM, Kostić AŽ, Stanojević SP, Pešić MB. The Bioaccessibility of Grape-Derived Phenolic Compounds: An Overview. Foods. 2025; 14(4):607. https://doi.org/10.3390/foods14040607
Chicago/Turabian StyleMilinčić, Danijel D., Nemanja S. Stanisavljević, Milica M. Pešić, Aleksandar Ž. Kostić, Slađana P. Stanojević, and Mirjana B. Pešić. 2025. "The Bioaccessibility of Grape-Derived Phenolic Compounds: An Overview" Foods 14, no. 4: 607. https://doi.org/10.3390/foods14040607
APA StyleMilinčić, D. D., Stanisavljević, N. S., Pešić, M. M., Kostić, A. Ž., Stanojević, S. P., & Pešić, M. B. (2025). The Bioaccessibility of Grape-Derived Phenolic Compounds: An Overview. Foods, 14(4), 607. https://doi.org/10.3390/foods14040607