A Functional Flatbread (Bazlama): High in Beta-Glucan and Plant-Based Protein Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Milling
2.2.2. Chemical Analyses
2.2.3. Farinograph Analysis
2.2.4. Bazlama Production
2.2.5. Bazlama Quality Evaluations
2.2.6. Sample Preparations
2.2.7. Beta-Glucan Analysis
2.2.8. In Vitro Glycemic Index Value Determination
2.2.9. Determination of Phenolic Contents (Free, Bound, and Total) and Antioxidant Capacities (DPPH, ABTS, and FRAP Methods) of Bazlama Samples
2.2.10. Statistical Analysis
3. Results and Discussion
3.1. Farinograph Properties of Doughs
3.2. Textural Profile Analysis of the Bazlama Samples
3.3. Crumb and Crust Color Properties of the Bazlama Samples
3.4. Protein and β-Glucan Contents; In Vitro GI Values of the Bazlama Samples
3.5. Phenolic Contents and Antioxidant Capacities of the Bazlama Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaver, E.; Bilgicli, N. Utilisation of cereal-legume flour blends in commercial and traditional bread. Qual. Assur. Saf. Crops Foods 2018, 10, 297–306. [Google Scholar] [CrossRef]
- Piga, A.; Conte, P.; Fois, S.; Catzeddu, P.; Del Caro, A.; Sanguinetti, A.M.; Fadda, C. Technological, nutritional and sensory properties of an innovative gluten-free double-layered flat bread enriched with amaranth flour. Foods 2021, 10, 920. [Google Scholar] [CrossRef] [PubMed]
- Pasqualone, A. Traditional flat breads spread from the Fertile Crescent: Production process and history of baking systems. J. Ethn. Foods 2018, 5, 10–19. [Google Scholar] [CrossRef]
- Madenci, B.A.; Bilgicli, N. Effect of whey protein concentrate and buttermilk powders on rheological properties of dough and bread quality. J. Food Qual. 2014, 37, 117–124. [Google Scholar] [CrossRef]
- Basman, A.; Koksel, H. Properties and composition of turkish flat bread (bazlama) supplemented with barley flour and wheat bran. Cereal Chem. 1999, 76, 506–511. [Google Scholar] [CrossRef]
- Chlopicka, J.; Pasko, P.; Gorinstein, S.; Jedryas, A.; Zagrodzki, P. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT 2012, 46, 548–555. [Google Scholar] [CrossRef]
- Kaim, U.; Goluch, Z.S. Health benefits of bread fortification: A systematic review of clinical trials according to the PRISMA statement. Nutrients 2023, 15, 4459. [Google Scholar] [CrossRef]
- Goudar, G.; Sharma, P.; Janghu, S.; Longvah, T. Effect of processing on barley β- glucan content, its molecular weight and extractability. Int. J. Biol. Macromol. 2020, 162, 1204–1216. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. 2025. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 January 2025).
- Holtekjølen, A.K.; Bævre, A.B.; Rødbotten, M.; Berg, H.; Knutsen, S.H. Antioxidant properties and sensory profiles of breads containing barley flour. Food Chem. 2008, 110, 414–421. [Google Scholar] [CrossRef]
- Lukinac, J.; Jukić, M. Barley in the production of cereal-based products. Plants 2022, 11, 3519. [Google Scholar] [CrossRef] [PubMed]
- FDA. Food labeling: Health claims; soluble dietary fiber from certain foods and coronary heart disease. Interim final rule. Fed. Regist. 2005, 70, 76150–76162. [Google Scholar]
- Ciecierska, A.; Drywień, M.E.; Hamulka, J.; Sadkowski, T. Nutraceutical functions of beta-glucans in human nutrition. Rocz. Panstw. Zakl. Hig. 2019, 70, 315–324. [Google Scholar] [PubMed]
- Khazaei, H.; Subedi, M.; Nickerson, M.; Martínez-Villaluenga, C.; Frias, J.; Vandenberg, A. Seed protein of lentils: Current status, progress, and food applications. Foods 2019, 8, 391. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Gallo, V.; Ferranti, P.; Masi, P. Lentil flour: Nutritional and technological properties, in vitro digestibility and perspectives for use in the food industry. Curr. Opin. Food Sci. 2021, 40, 157–167. [Google Scholar] [CrossRef]
- Gallo, V.; Romano, A.; Miralles, B.; Ferranti, P.; Masi, P.; Santos-Hernández, M.; Recio, I. Physicochemical properties, structure and digestibility in simulated gastrointestinal environment of bread added with green lentil flour. LWT 2022, 154, 112713. [Google Scholar] [CrossRef]
- Dhull, S.B.; Kinabo, J.; Uebersax, M.A. Nutrient profile and effect of processing methods on the composition and functional properties of lentils (Lens culinaris Medik): A review. Legume Sci. 2023, 5, e156. [Google Scholar] [CrossRef]
- Jarpa-Parra, M.; Wong, L.; Wismer, W.; Temelli, F.; Han, J.; Huang, W.; Eckhart, E.; Tian, Z.; Shi, K.; Sun, T.; et al. Quality characteristics of angel food cake and muffin using lentil protein as egg/milk replacer. Int. J. Food Sci. Technol. 2017, 52, 1604–1613. [Google Scholar] [CrossRef]
- Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for bread fortification: A necessity or a choice? Trends Food Sci. Technol. 2019, 88, 416–428. [Google Scholar] [CrossRef]
- Chamberlin, M.L.; Wilson, S.M.G.; Gaston, M.E.; Kuo, W.Y.; Miles, M.P. Twelve weeks of daily lentil consumption improves fasting cholesterol and postprandial glucose and inflammatory responses-a randomized clinical trial. Nutrients 2024, 16, 419. [Google Scholar] [CrossRef]
- Coskuner, Y.; Karababa, E. Studies on the quality of Turkish flat breads based on blends of triticale and wheat flour. Int. J. Food Sci. Technol. 2005, 40, 469–479. [Google Scholar] [CrossRef]
- Koksel, H.; Tekin-Cakmak, Z.H.; Oruc, S.; Kilic, G.; Ozkan, K.; Cetiner, B.; Sagdic, O.; Sestili, F.; Jilal, A. A new functional wheat flour flatbread (bazlama) enriched with high-β-glucan hull-less barley flour. Foods 2024, 13, 326. [Google Scholar] [CrossRef]
- AACCI. Approved Methods of the American Association of Cereal Chemists; The Association: St. Paul, MN, USA, 2010. [Google Scholar]
- ASTM, American Society for Testing and Materials. Method No: E. In Standard Practice for Obtaining Spectrophotometric Data for Object-Color Evaluation; ASTM: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Marchetti, L.; Califano, A.N.; Andres, S.C. Partial replacement of wheat flour by pecan nut expeller meal on bakery products. Effect on muffins quality. LWT 2018, 95, 85–91. [Google Scholar] [CrossRef]
- Goñi, I.; Garcia-Alonso, A.; Saura-Calixto, F. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 1997, 17, 427–437. [Google Scholar] [CrossRef]
- Tekin-Cakmak, Z.H.; Ozer, C.; Ozkan, K.; Yildirim, H.; Sestili, F.; Jilal, A.; Sagdic, O.; Ozgolet, M.; Koksel, H. High-beta-glucan and low-glycemic index functional bulgur produced from high-beta-glucan barley. J. Funct. Foods 2024, 112, 105939. [Google Scholar] [CrossRef]
- Shamanin, V.P.; Tekin-Cakmak, Z.H.; Gordeeva, E.I.; Karasu, S.; Pototskaya, I.; Chursin, A.S.; Pozherukova, V.E.; Ozulku, G.; Morgounov, A.I.; Sagdic, O.; et al. Antioxidant capacity and profiles of phenolic acids in various genotypes of purple wheat. Foods 2022, 11, 2515. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Singh, R.P.; Chidambara Murthy, K.N.; Jayaprakasha, G.K. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 2002, 50, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Cetiner, B.; Shamanin, V.P.; Tekin-Cakmak, Z.H.; Pototskaya, I.V.; Koksel, F.; Shepelev, S.S.; Aydarov, A.N.; Ozdemir, B.; Morgounov, A.I.; Koksel, H. Utilization of intermediate wheatgrass (Thinopyrum intermedium) as an innovative ingredient in bread making. Foods 2023, 12, 2109. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Ma, Y.; Zhao, Y.; Pan, Y.; Tian, R.; Yao, X.; Yao, Y.; Cao, X.; Geng, L.; Wang, Z.; et al. Effect of hull-less barley flours on dough rheological properties, baking quality, and starch digestibility of wheat bread. Front. Nutr. 2021, 8, 785847. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, Q.; Zhai, H.; Zhang, Y.; Zeng, X.; Tang, Y.; Tashi, N.; Pan, Z. Effects of the addition of waxy and normal hull-less barley flours on the Farinograph and pasting properties of composite flours and on the nutritional value, textural qualities, and in vitro digestibility of resultant breads. J. Food Sci. 2020, 85, 3141–3149. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, F.; Ferrari, B.; Gianinetti, A.; Scazzina, F.; Pellegrini, N.; Caramanico, R.; Salati, C.; Shirvanian, V.; Stanca, A.M. Effects of barley β-glucan-enriched flour fractions on the glycaemic index of bread. Int. J. Food Sci. Nutr. 2012, 63, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Turfani, V.; Narducci, V.; Durazzo, A.; Galli, V.; Carcea, M. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. LWT 2017, 78, 361–366. [Google Scholar] [CrossRef]
- Cacak-Pietrzak, G.; Sujka, K.; Księżak, J.; Bojarszczuk, J.; Ziarno, M.; Studnicki, M.; Krajewska, A.; Dziki, D. Assessment of physicochemical properties and quality of the breads made from organically grown wheat and legumes. Foods 2024, 13, 1244. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Hu, Z.; Yang, Y.; Jin, Z.; Jiao, A. Regulation of baking quality and starch digestibility in whole wheat bread based on β-glucans and protein addition strategy: Significance of protein-starch-water interaction in dough. Int. J. Biol. Macromol. 2024, 256 Pt 2, 128021. [Google Scholar] [CrossRef]
- Kurek, M.A.; Moczkowska, M.; Karp, S.; Horbańczuk, O.K.; Rodak, E. Application of rich in β-glucan flours and preparations in bread baked from frozen dough. Food Sci. Technol. Int. 2020, 26, 53–64. [Google Scholar]
- Nkurikiye, E.; Xiao, R.; Tilley, M.; Siliveru, K.; Li, Y. Bread-making properties of different pulse flours in composites with refined wheat flour. J. Texture Stud. 2023, 54, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Luo, Z.; Yang, Q.; Xiao, Z.; Lu, X. Effect of quinoa flour on baking performance, antioxidant properties and digestibility of wheat bread. Food Chem. 2019, 294, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Sciurba, E.; Nikolay, S.; Husken, A.; Smit, I. Relevance of β-Glucan molecular properties on its suitability as health promoting bread ingredient. Nutrients 2022, 14, 1570. [Google Scholar] [CrossRef] [PubMed]
- Kohajdová, Z.; Karovičová, J.; Magala, M. Effect of lentil and bean flours on rheological and baking properties of wheat dough. Chem. Pap. 2013, 67, 398–407. [Google Scholar] [CrossRef]
- Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’Donnell, C.P. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Kumar, A.; Sahoo, U.; Baisakha, B.; Okpani, O.A.; Ngangkham, U.; Parameswaran, C.; Sharma, S.G. Resistant starch could be decisive in determining the glycemic index of rice cultivars. J. Cereal Sci. 2018, 79, 348–353. [Google Scholar] [CrossRef]
- Kazemi, F.; Danaei, G.; Farzadfar, F.; Malik, V.; Parsaeian, M.; Pouraram, H.; Zamaninour, N.; Rahmani, J.; Dorosty Motlagh, A.R. Glycemic index (GI) values for major sources of dietary carbohydrates in Iran. Int. J. Endocrinol. Metab. 2020, 18, e99793. [Google Scholar] [CrossRef] [PubMed]
- Thondre, P.S.; Henry, C.J. High-molecular-weight barley beta-glucan in chapatis (unleavened Indian flatbread) lowers glycemic index. Nutr. Res. 2009, 29, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.; Tsuchida, A.; Yamaji, A.; Kurosawa, C.; Shinohara, M.; Takayama, I.; Nakagomi, H.; Izumi, K.; Ichikawa, Y.; Hariya, N.; et al. Consumption of a meal containing refined barley flour bread is associated with a lower postprandial blood glucose concentration after a second meal compared with one containing refined wheat flour bread in healthy Japanese: A randomized control trial. Nutrition 2020, 72, 110637. [Google Scholar] [CrossRef] [PubMed]
- Carcea, M.; Turfani, V.; Narducci, V.; Durazzo, A.; Finamore, A.; Roselli, M.; Rami, R. Bread for the aging population: The effect of a functional wheat-lentil bread on the immune function of aged mice. Foods 2019, 8, 510. [Google Scholar] [CrossRef]
- European Parliament and the Council Regulation (EC). No 1924/2006 of the European Parliament and of the Council of 20 December 2006, on nutrition and health claims made on foods. Off. J. Eur. Union 2006, 404, 9–25. [Google Scholar]
- Codex Alimentarius International Food Standards, Guidelines on Nutrition Labelling: CXG 2-1985 (Adopted in 1985. Revised in 1993 and 2011. Amended in 2003, 2006, 2009, 2010, 2012, 2013, 2015, 2016, 2017, 2021). Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B2-1985%252FCXG_002e.pdf (accessed on 20 November 2024).
- Bouhlal, O.; Taghouti, M.; Benbrahim, N.; Benali, A.; Visioni, A.; Benba, J. Wheat-lentil fortified flours: Health benefits, physicochemical, nutritional and technological properties. J. Mater. Environ. Sci. 2019, 10, 1098–1106. [Google Scholar]
- Ge, X.; Jing, L.; Zhao, K.; Su, C.; Zhang, B.; Zhang, Q.; Han, L.; Yu, X.; Li, W. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem. 2021, 335, 127655. [Google Scholar] [CrossRef]
- Li, Q.; Yang, S.; Li, Y.; Huang, Y.; Zhang, J. Antioxidant activity of free and hydrolyzed phenolic compounds in soluble and insoluble dietary fibres derived from hull-less barley. LWT 2019, 111, 534–540. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Antioxidant potential of wheat flour chapattis as affected by incorporating barley flour. LWT 2014, 56, 118–123. [Google Scholar] [CrossRef]
- del Carmen Robles-Ramírez, M.; Ortega-Robles, E.; Monterrubio-López, R.; Mora-Escobedo, R.; del Carmen Beltrán-Orozco, M. Barley bread with improved sensory and antioxidant properties. Int. J. Gastron. Food Sci. 2020, 22, 100279. [Google Scholar] [CrossRef]
Sample | Development Time (min) | Water Absorption (%) | Stability (min) | Softening Degree 1 (BU) | Quality Number |
---|---|---|---|---|---|
Control | 6.50 ± 0.18 a | 61.6 ± 0.21 a | 11.92 ± 0.02 a | 45 ± 1 c | 148 ± 4 a |
15% Barley | 4.68 ± 0.28 b | 60.5 ± 0.07 b | 9.34 ± 0.13 b | 59 ± 1 bc | 105 ± 0 b |
30% Barley | 1.39 ± 0.04 c | 59.1 ± 0.64 c | 7.37 ± 0.69 c | 61 ± 7 b | 78 ± 7 c |
45% Barley | 1.25 ± 0.10 c | 57.5 ± 0.28 d | 2.98 ± 0.42 d | 93 ± 8 a | 32 ± 5 d |
Control | 6.50 ± 0.18 a | 61.6 ± 0.21 a | 11.92 ± 0.02 a | 45 ± 0.7 c | 148 ± 3.5 a |
15% Lentil | 4.38 ± 0.15 c | 61.8 ± 0.28 a | 4.14 ± 0.41 b | 107 ± 13.4 b | 71 ± 4.9 bc |
30% Lentil | 4.58 ± 0.05 c | 60.1 ± 0.42 b | 2.21 ± 0.03 c | 151 ± 1.4 a | 62 ± 1.4 c |
45% Lentil | 5.73 ± 0.22 b | 57.1 ± 0.14 c | 2.21 ± 0.14 c | 118 ± 7.8 b | 76 ± 2.1 b |
Sample | Hardness (N) | Springiness | Cohesiveness | Gumminess | Chewiness | Resilience |
---|---|---|---|---|---|---|
2 h | ||||||
Control | 1.05 ± 0.04 cC | 0.974 ± 0.021 aA | 0.81 ± 0.05 aA | 0.85 ± 0.05 cC | 0.83 ± 0.06 cC | 0.401 ± 0.009 aA |
15% Barley | 1.09 ± 0.09 cC | 1.032 ± 0.117 aA | 0.81 ± 0.02 aA | 0.88 ± 0.08 cC | 0.90 ± 0.08 cC | 0.398 ± 0.008 aA |
30% Barley | 1.91 ± 0.12 bC | 0.964 ± 0.012 aA | 0.78 ± 0.01 aA | 1.50 ± 0.08 bC | 1.44 ± 0.06 bC | 0.393 ± 0.010 aA |
45% Barley | 2.24 ± 0.20 aC | 0.956 ± 0.021 aA | 0.77 ± 0.03 aA | 1.72 ± 0.10 aC | 1.65 ± 0.13 aC | 0.395 ± 0.019 aA |
Control | 1.05 ± 0.04 dC | 0.974 ± 0.021 aA | 0.81 ± 0.05 aA | 0.85 ± 0.05 dC | 0.83 ± 0.06 cC | 0.401 ± 0.009 aA |
15% Lentil | 1.98 ± 0.18 cC | 0.938 ± 0.014 bcB | 0.82 ± 0.01 aA | 1.63 ± 0.15 cC | 1.53 ± 0.15 cC | 0.399 ± 0.002 aA |
30% Lentil | 3.11 ± 0.44 bC | 0.973 ± 0.028 abA | 0.79 ± 0.01 aA | 2.44 ± 0.34 bC | 3.02 ± 0.72 bB | 0.386 ± 0.009 aA |
45% Lentil | 6.50 ± 0.50 aA | 0.930 ± 0.021 cA | 0.75 ± 0.04 aA | 4.62 ± 0.67 aB | 4.28 ± 0.54 aA | 0.359 ± 0.029 bA |
Control | 1.05 ± 0.04 dC | 0.974 ± 0.021 aA | 0.81 ± 0.05 aA | 0.85 ± 0.05 dC | 0.83 ± 0.06 dC | 0.401 ± 0.009 abA |
Mix1 | 4.43 ± 0.61 bC | 0.927 ± 0.014 cA | 0.75 ± 0.03 bA | 3.30 ± 0.42 bB | 3.06 ± 0.43 bB | 0.366 ± 0.017 cA |
Mix2 | 6.01 ± 0.13 aC | 0.930 ± 0.009 bcA | 0.73 ± 0.01 bA | 4.39 ± 0.12 aC | 4.08 ± 0.09 aC | 0.357 ± 0.003 cA |
Mix3 | 4.26 ± 0.35 bC | 0.944 ± 0.023 bcA | 0.76 ± 0.01 abA | 3.25 ± 0.23 bC | 3.07 ± 0.22 bC | 0.386 ± 0.015 bA |
Mix4 | 2.61 ± 0.04 cC | 0.954 ± 0.012 abA | 0.79 ± 0.01 aA | 2.07 ± 0.03 cC | 1.98 ± 0.01 cC | 0.418 ± 0.011 aA |
24 h | ||||||
Control | 1.88 ± 0.34 bB | 0.970 ± 0.013 aA | 0.76 ± 0.03 aA | 1.42 ± 0.23 bB | 1.38 ± 0.24 bB | 0.368 ± 0.011 aB |
15% Barley | 2.23 ± 0.11 bB | 0.962 ± 0.016 aA | 0.74 ± 0.01 aB | 1.65 ± 0.10 bB | 1.58 ± 0.07 bB | 0.358 ± 0.012 aB |
30% Barley | 3.81 ± 0.10 aB | 0.965 ± 0.010 aA | 0.72 ± 0.02 aB | 2.75 ± 0.02 aB | 2.75 ± 0.17 aB | 0.364 ± 0.012 aB |
45% Barley | 3.86 ± 0.73 aB | 0.958 ± 0.015 aA | 0.73 ± 0.03 aA | 2.93 ± 0.46 aB | 2.51 ± 0.42 aB | 0.385 ± 0.031 aA |
Control | 1.88 ± 0.34 dB | 0.970 ± 0.013 aA | 0.76 ± 0.03 aA | 1.42 ± 0.23 dB | 1.38 ± 0.24 dB | 0.368 ± 0.011 aB |
15% Lentil | 3.45 ± 0.59 cB | 0.963 ± 0.007 aA | 0.74 ± 0.02 aB | 2.54 ± 0.38 cB | 2.45 ± 0.38 cB | 0.361 ± 0.013 aB |
30% Lentil | 4.88 ± 0.38 bB | 0.968 ± 0.012 aA | 0.74 ± 0.03 aB | 3.59 ± 0.16 bB | 3.47 ± 0.19 bAB | 0.374 ± 0.028 aA |
45% Lentil | 8.69 ± 0.54 aA | 0.966 ± 0.057 aA | 0.73 ± 0.06 aA | 6.77 ± 0.54 aA | 6.53 ± 0.39 aA | 0.344 ± 0.041 aA |
Control | 1.88 ± 0.34 eB | 0.970 ± 0.013 aA | 0.76 ± 0.03 aA | 1.42 ± 0.23 eB | 1.38 ± 0.24 dB | 0.368 ± 0.011 aB |
Mix1 | 8.70 ± 0.48 aB | 0.926 ± 0.014 bcA | 0.66 ± 0.02 bcB | 5.52 ± 0.14 aA | 5.06 ± 0.12 aA | 0.329 ± 0.018 bcB |
Mix2 | 7.44 ± 0.51 bB | 0.937 ± 0.007 bA | 0.67 ± 0.01 bcB | 4.96 ± 0.30 bB | 4.64 ± 0.25 aB | 0.337 ± 0.008 bcB |
Mix3 | 6.59 ± 0.22 cB | 0.914 ± 0.004 cB | 0.65 ± 0.0 cB | 4.31 ± 0.15 cB | 3.94 ± 0.15 bB | 0.318 ± 0.005 cB |
Mix4 | 4.93 ± 0.75 dB | 0.938 ± 0.012 bA | 0.68 ± 0.02 bB | 3.35 ± 0.43 dB | 3.14 ± 0.38 cB | 0.342 ± 0.018 bB |
72 h | ||||||
Control | 3.03 ± 0.48 bA | 0.969 ± 0.016 aA | 0.67 ± 0.01 aB | 2.03 ± 0.33 bA | 1.97 ± 0.29 bA | 0.313 ± 0.010 aC |
15% Barley | 3.35 ± 0.40 bA | 0.966 ± 0.022 aA | 0.64 ± 0.01 bcC | 2.15 ± 0.23 bA | 2.07 ± 0.22 bA | 0.310 ± 0.007 aC |
30% Barley | 6.07 ± 1.35 aA | 0.945 ± 0.016 aA | 0.65 ± 0.01 bC | 3.92 ± 0.90 aA | 3.70 ± 0.80 aA | 0.317 ± 0.011 aC |
45% Barley | 6.77 ± 0.93 aA | 0.946 ± 0.012 aA | 0.63 ± 0.02 cB | 4.22 ± 0.47 aA | 3.99 ± 0.42 aA | 0.315 ± 0.024 aB |
Control | 3.03 ± 0.48 cA | 0.969 ± 0.016 aA | 0.67 ± 0.01 bB | 2.03 ± 0.33 dA | 1.97 ± 0.29 cA | 0.313 ± 0.010 bC |
15% Lentil | 5.59 ± 0.35 bA | 0.941 ± 0.004 bB | 0.65 ± 0.01 cC | 3.61 ± 0.25 cA | 3.40 ± 0.24 bcC | 0.308 ± 0.006 bC |
30% Lentil | 7.04 ± 1.02 aA | 0.932 ± 0.020 bB | 0.64 ± 0.01 cC | 4.50 ± 0.60 bA | 4.21 ± 0.64 bA | 0.311 ± 0.010 bB |
45% Lentil | 8.33 ± 0.68 aA | 0.928 ± 0.021 bA | 0.72 ± 0.02 aA | 5.54 ± 0.51 aB | 6.28 ± 2.10 aA | 0.385 ± 0.023 aA |
Control | 3.03 ± 0.48 dA | 0.969 ± 0.016 aA | 0.67 ± 0.01 aB | 2.03 ± 0.33 eA | 1.97 ± 0.29 eA | 0.313 ± 0.010 aC |
Mix1 | 9.66 ± 0.26 bA | 0.922 ± 0.010 bA | 0.59 ± 0.02 bC | 5.69 ± 0.05 cA | 5.25 ± 0.10 cA | 0.285 ± 0.017 aC |
Mix2 | 11.90 ± 0.78 aA | 0.918 ± 0.019 bA | 0.61 ± 0.02 bC | 7.19 ± 0.32 aA | 6.59 ± 0.17 aA | 0.304 ± 0.019 aC |
Mix3 | 10.34 ± 0.75 bA | 0.915 ± 0.017 bB | 0.62 ± 0.03 bC | 6.36 ± 0.36 bA | 5.82 ± 0.36 bA | 0.308 ± 0.020 aB |
Mix4 | 7.81 ± 0.75 cA | 0.912 ± 0.009 bB | 0.60 ± 0.02 bC | 4.69 ± 0.42 dA | 4.27 ± 0.39 dA | 0.284 ± 0.021 aC |
Crumb Color | Crust Color | |||||||
---|---|---|---|---|---|---|---|---|
Samples | L* | a* | b* | ΔE | L* | a* | b* | ΔE |
Control | 77.12 ± 0.21 a | 0.90 ± 0.01 c | 23.22 ± 0.57 a | 68.04 ± 0.54 a | 7.85 ± 0.35 a | 28.96 ± 0.01 a | ||
15% Barley | 73.26 ± 1.12 b | 1.37 ± 0.03 bc | 22.86 ± 0.23 a | 3.91 | 68.10 ± 1.51 a | 7.74 ± 0.42 a | 23.27 ± 0.79 bc | 5.69 |
30% Barley | 69.40 ± 0.45 c | 2.01 ± 0.23 b | 23.49 ± 1.07 a | 7.80 | 69.52 ± 0.06 a | 7.22 ± 0.58 a | 23.46 ± 0.52 b | 5.73 |
45% Barley | 65.68 ± 0.39 d | 2.79 ± 0.42 a | 24.51 ± 0.31 a | 11.66 | 71.44 ± 1.82 a | 6.36 ± 0.26 a | 22.02 ± 0.03 c | 7.87 |
Control | 77.12 ± 0.21 a | 0.90 ± 0.01 c | 23.22 ± 0.57 c | 68.04 ± 0.54 a | 7.85 ± 0.35 a | 28.96 ± 0.01 a | ||
15% Lentil | 64.77 ± 0.66 b | 1.63 ± 0.08 bc | 26.04 ± 0.06 b | 12.68 | 66.43 ± 2.39 ab | 8.33 ± 1.49 a | 24.08 ± 1.24 b | 5.16 |
30% Lentil | 61.98 ± 0.96 c | 2.35 ± 0.74 ab | 28.22 ± 0.93 a | 16.01 | 62.29 ± 2.70 bc | 8.99 ± 0.03 a | 21.76 ± 1.38 b | 9.28 |
45% Lentil | 58.86 ± 1.41 d | 3.34 ± 0.18 a | 28.99 ± 0.37 a | 19.30 | 59.81 ± 0.80 c | 8.90 ± 0.53 a | 23.50 ± 2.45 b | 9.93 |
Control | 77.12 ± 0.21 a | 0.90 ± 0.01 c | 23.22 ± 0.57 b | 68.04 ± 0.54 a | 7.85 ± 0.35 b | 28.96 ± 0.01 a | ||
Mix1 | 61.54 ± 0.57 c | 3.30 ± 0.06 b | 25.45 ± 0.64 a | 15.92 | 60.08 ± 2.64 c | 9.96 ± 0.01 a | 25.23 ± 1.80 b | 9.04 |
Mix2 | 61.59 ± 0.63 c | 3.47 ± 0.09 ab | 25.66 ± 0.10 a | 15.93 | 60.54 ± 0.97 c | 9.82 ± 0.15 a | 28.48 ± 0.17 a | 7.77 |
Mix3 | 64.52 ± 1.01 b | 3.51 ± 0.13 a | 25.54 ± 0.52 a | 13.07 | 64.58 ± 0.70 b | 7.97 ± 0.52 b | 25.03 ± 0.03 b | 5.23 |
Mix4 | 65.28 ± 0.25 b | 3.36 ± 0.00 ab | 25.71 ± 0.25 a | 12.35 | 62.82 ± 0.10 bc | 9.83 ± 0.06 a | 24.32 ± 0.73 b | 7.26 |
Samples | Protein Content (dwb, %) | β-Glucan (g/100 g Dry Weight) | Glycemic Index (GI) |
---|---|---|---|
Control | 16.67 ± 0.29 a | 0.43 ± 0.04 d | 75.16 ± 0.38 a |
15% Barley | 15.82 ± 0.16 b | 0.86 ± 0.01 c | 71.30 ± 0.21 b |
30% Barley | 15.33 ± 0.05 b | 1.30 ± 0.01 b | 66.68 ± 0.16 c |
45% Barley | 14.59 ± 0.15 c | 1.85 ± 0.02 a | 62.27 ± 0.21 d |
Control | 16.67 ± 0.29 d | 0.43 ± 0.04 a | 75.16 ± 0.38 a |
15% Lentil | 18.23 ± 0.06 c | 0.37 ± 0.02 ab | 70.50 ± 0.13 b |
30% Lentil | 20.20 ± 0.18 b | 0.34 ± 0.03 b | 65.27 ± 0.29 c |
45% Lentil | 22.15 ± 0.09 a | 0.14 ± 0.01 c | 61.78 ± 0.17 d |
Control | 16.67 ± 0.29 b | 0.43 ± 0.04 d | 75.16 ± 0.38 a |
Mix1 | 17.25 ± 0.00 a | 1.45 ± 0.00 c | 62.74 ± 0.30 b |
Mix2 | 17.00 ± 0.00 ab | 1.51 ± 0.01 b | 57.24 ± 0.33 d |
Mix3 | 16.31 ± 0.00 c | 1.56 ± 0.01 b | 58.01 ± 0.36 d |
Mix4 | 15.59 ± 0.00 d | 1.62 ± 0.02 a | 59.17 ± 0.50 c |
Samples | Phenolic Content | DPPH | FRAP | ABTS | |
---|---|---|---|---|---|
Free | Control | 200.73 ± 0.87 d | 33.84 ± 0.67 d | 13.32 ± 0.65 d | 52.30 ± 0.76 d |
15% Barley | 210.41 ± 1.19 c | 42.56 ± 0.67 c | 21.02 ± 0.66 c | 70.23 ± 0.30 c | |
30% Barley | 220.95 ± 0.88 b | 46.42 ± 1.36 b | 27.50 ± 0.83 b | 85.45 ± 0.93 b | |
45% Barley | 231.34 ± 2.04 a | 54.94 ± 1.05 a | 37.51 ± 0.92 a | 277.16 ± 2.50 a | |
Bound | Control | 204.33 ± 0.87 d | 39.21 ± 0.67 d | 36.48 ± 0.90 d | 85.84 ± 0.46 d |
15% Barley | 232.25 ± 1.74 c | 44.58 ± 1.34 c | 45.33 ± 0.62 c | 166.02 ± 0.60 c | |
30% Barley | 235.54 ± 1.00 b | 56.83 ± 1.71 b | 58.55 ± 0.50 b | 187.78 ± 0.77 b | |
45% Barley | 243.95 ± 1.16 a | 60.42 ± 1.05 a | 65.75 ± 2.02 a | 290.34 ± 1.55 a | |
Total * | Control | 405.06 ± 1.71 d | 73.05 ± 0.67 d | 49.80 ± 0.97 d | 138.14 ± 1.22 d |
15% Barley | 442.66 ± 2.85 c | 87.14 ± 2.01 c | 66.35 ± 0.99 c | 236.25 ± 0.91 c | |
30% Barley | 456.49 ± 0.33 b | 103.25 ± 0.39 b | 86.05 ± 1.33 b | 273.23 ± 0.64 b | |
45% Barley | 475.29 ± 1.87 a | 115.36 ± 1.98 a | 103.26 ± 2.26 a | 567.50 ± 3.76 a | |
Free | Control | 200.73 ± 0.87 d | 33.84 ± 0.67 d | 13.32 ± 0.65 d | 52.30 ± 0.76 d |
15% Lentil | 207.37 ± 1.14 c | 38.98 ± 1.03 c | 28.64 ± 0.78 c | 112.43 ± 0.46 c | |
30% Lentil | 218.77 ± 1.14 b | 40.77 ± 1.03 b | 34.97 ± 0.76 b | 126.94 ± 0.76 b | |
45% Lentil | 229.40 ± 1.19 a | 45.47 ± 1.03 a | 49.72 ± 0.45 a | 142.13 ± 2.31 a | |
Bound | Control | 204.33 ± 0.87 d | 39.21 ± 0.67 d | 36.48 ± 0.90 b | 85.84 ± 0.46 d |
15% Lentil | 212.31 ± 1.19 c | 45.70 ± 1.03 c | 36.84 ± 0.75 b | 120.09 ± 0.91 c | |
30% Lentil | 221.23 ± 1.83 b | 56.22 ± 1.03 b | 50.94 ± 9.97 a | 144.57 ± 0.30 b | |
45% Lentil | 233.96 ± 2.30 a | 58.68 ± 1.16 a | 52.02 ± 0.54 a | 295.18 ± 1.21 a | |
Total * | Control | 405.06 ± 1.71 d | 73.05 ± 0.67 d | 49.80 ± 0.97 d | 138.14 ± 1.22 d |
15% Lentil | 419.68 ± 2.16 c | 84.68 ± 1.03 c | 65.48 ± 1.51 c | 232.52 ± 0.70 c | |
30% Lentil | 440.00 ± 0.87 b | 96.99 ± 1.94 b | 85.92 ± 10.60 b | 271.50 ± 0.46 b | |
45% Lentil | 463.36 ± 2.16 a | 104.15 ± 0.78 a | 101.74 ± 0.94 a | 437.30 ± 2.93 a | |
Free | Control | 200.73 ± 0.87 c | 33.84 ± 0.67 e | 13.32 ± 0.65 e | 52.30 ± 0.76 d |
Mix1 | 241.23 ± 1.47 b | 83.07 ± 1.05 b | 53.39 ± 0.77 c | 288.90 ± 1.29 b | |
Mix2 | 243.95 ± 1.16 a | 88.10 ± 1.37 a | 59.86 ± 0.84 a | 296.31 ± 1.29 a | |
Mix3 | 241.68 ± 0.88 ab | 65.65 ± 1.71 d | 56.95 ± 0.91 b | 294.11 ± 1.62 a | |
Mix4 | 239.38 ± 2.02 b | 68.59 ± 1.04 c | 50.33 ± 0.87 d | 274.96 ± 1.96 c | |
Bound | Control | 204.33 ± 0.87 c | 39.21 ± 0.67 e | 36.48 ± 0.90 e | 85.84 ± 0.46 c |
Mix1 | 260.60 ± 1.85 a | 88.10 ± 1.37 b | 72.14 ± 0.56 b | 291.78 ± 0.62 b | |
Mix2 | 263.17 ± 2.82 a | 92.22 ± 1.37 a | 77.50 ± 0.99 a | 299.19 ± 1.24 a | |
Mix3 | 254.78 ± 2.11 b | 84.65 ± 1.04 c | 58.63 ± 1.79 c | 299.81 ± 2.15 a | |
Mix4 | 251.78 ± 1.74 b | 80.13 ± 1.04 d | 55.79 ± 1.09 d | 293.70 ± 1.27 b | |
Total * | Control | 405.06 ± 1.71 e | 73.05 ± 0.67 d | 49.80 ± 0.97 e | 138.14 ± 1.22 d |
Mix1 | 501.84 ± 2.68 b | 171.17 ± 1.98 b | 125.52 ± 1.09 b | 580.68 ± 0.94 b | |
Mix2 | 507.12 ± 1.68 a | 180.31 ± 1.37 a | 137.36 ± 1.25 a | 595.50 ± 2.34 a | |
Mix3 | 496.46 ± 2.17 c | 150.30 ± 0.78 c | 115.58 ± 2.33 c | 593.92 ± 0.71 a | |
Mix4 | 491.16 ± 1.57 d | 148.72 ± 1.04 c | 106.12 ± 1.00 d | 568.66 ± 1.83 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyaz, S.; Cetiner, B.; Ozkan, K.; Sagdic, O.; Sestili, F.; Koksel, H. A Functional Flatbread (Bazlama): High in Beta-Glucan and Plant-Based Protein Content. Foods 2025, 14, 482. https://doi.org/10.3390/foods14030482
Beyaz S, Cetiner B, Ozkan K, Sagdic O, Sestili F, Koksel H. A Functional Flatbread (Bazlama): High in Beta-Glucan and Plant-Based Protein Content. Foods. 2025; 14(3):482. https://doi.org/10.3390/foods14030482
Chicago/Turabian StyleBeyaz, Seda, Buket Cetiner, Kubra Ozkan, Osman Sagdic, Francesco Sestili, and Hamit Koksel. 2025. "A Functional Flatbread (Bazlama): High in Beta-Glucan and Plant-Based Protein Content" Foods 14, no. 3: 482. https://doi.org/10.3390/foods14030482
APA StyleBeyaz, S., Cetiner, B., Ozkan, K., Sagdic, O., Sestili, F., & Koksel, H. (2025). A Functional Flatbread (Bazlama): High in Beta-Glucan and Plant-Based Protein Content. Foods, 14(3), 482. https://doi.org/10.3390/foods14030482