Climate Change and Plant Foods: The Influence of Environmental Stressors on Plant Metabolites and Future Food Sources
Abstract
:1. Introduction
2. Changes in Nutritional Value and Biological Activity of Plants Due to the Environmental Stresses
2.1. High Temperature
2.2. Low Temperature
2.3. Drought
2.4. Flood
2.5. Increased Salinity
2.6. UV-B Light
2.7. Ozone
2.8. CO2
3. Future Food Sources
3.1. Plant Protein Sources
3.2. Resilient Crops
3.3. New Food Sources
3.3.1. Invasive Plant Species as a Nutritional Resource
3.3.2. Algae: A Climate-Resilient Food
4. Conclusions and Further Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulian, T.; Diazgranados, M.; Pironon, S.; Padulosi, S.; Liu, U.; Davies, L.; Howes, M.R.; Borrell, J.S.; Ondo, I.; Pérez-Escobar, O.A.; et al. Unlocking Plant Resources to Support Food Security and Promote Sustainable Agriculture. Plants People Planet 2020, 2, 421–445. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, N.A.; Ainsworth, E.A.; Bahuguna, R.N.; Broadley, M.R.; Busch, W.; Carpita, N.C.; Castrillo, G.; Chory, J.; DeHaan, L.R.; Duarte, C.M.; et al. Climate Change Challenges, Plant Science Solutions. Plant Cell 2023, 35, 24–66. [Google Scholar] [CrossRef]
- Thuiller, W.; Albert, C.; Araújo, M.B.; Berry, P.M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; et al. Predicting Global Change Impacts on Plant Species’ Distributions: Future Challenges. Perspect. Plant Ecol. Evol. Syst. 2008, 9, 137–152. [Google Scholar] [CrossRef]
- World Meteorological Organization. WMO Global Annual to Decadal Climate Update; WMO: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- McClements, D.J.; Grossmann, L. A Brief Review of the Science behind the Design of Healthy and Sustainable Plant-Based Foods. NPJ Sci. Food 2021, 5, 17. [Google Scholar] [CrossRef]
- Agho, C.; Avni, A.; Bacu, A.; Bakery, A.; Balazadeh, S.; Baloch, F.S.; Bazakos, C.; Čereković, N.; Chaturvedi, P.; Chauhan, H.; et al. Integrative Approaches to Enhance Reproductive Resilience of Crops for Climate-Proof Agriculture. Plant Stress 2024, 100704. [Google Scholar] [CrossRef]
- Chaudhry, S.; Sidhu, G.P.S. Climate Change Regulated Abiotic Stress Mechanisms in Plants: A Comprehensive Review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef]
- Li, H.; Tsao, R.; Deng, Z. Factors Affecting the Antioxidant Potential and Health Benefits of Plant Foods. Can. J. Plant Sci. 2012, 92, 1101–1111. [Google Scholar] [CrossRef]
- Ziska, L. Rising Carbon Dioxide and Global Nutrition: Evidence and Action Needed. Plants 2022, 11, 1000. [Google Scholar] [CrossRef]
- Solecka, D. Role of Phenylpropanoid Compounds in Plant Responses to Different Stress Factors. Acta Physiol. Plant. 1997, 19, 257–268. [Google Scholar] [CrossRef]
- Pirotta, E.; Thomas, L.; Costa, D.P.; Hall, A.J.; Harris, C.M.; Harwood, J.; Kraus, S.D.; Miller, P.J.O.; Moore, M.J.; Photopoulou, T.; et al. Understanding the Combined Effects of Multiple Stressors: A New Perspective on a Longstanding Challenge. Sci. Total Environ. 2022, 821, 153322. [Google Scholar] [CrossRef]
- Sarkar, S.; Khatun, M.; Era, F.M.; Islam, A.K.M.M.; Anwar, M.P.; Danish, S.; Datta, R.; Islam, A.K.M.A. Abiotic Stresses: Alteration of Composition and Grain Quality in Food Legumes. Agronomy 2021, 11, 2238. [Google Scholar] [CrossRef]
- Vollenweider, P.; Günthardt-Goerg, M.S. Diagnosis of Abiotic and Biotic Stress Factors Using the Visible Symptoms in Foliage. Environ. Pollut. 2005, 137, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Singh, B.B.; Shakil, N.A.; Shamim, M.D.; Homa, F.; Chaudhary, R.; Yadav, P.; Srivastava, D.; Fatima, P.; Sharma, V.; et al. Effect of High Temperature Stress on Metabolome and Aroma in Rice Grains. Plant Gene 2024, 38, 100450. [Google Scholar] [CrossRef]
- Devi, P.; Awasthi, R.; Jha, U.; Sharma, K.D.; Prasad, P.V.V.; Siddique, K.H.M.; Roorkiwal, M.; Nayyar, H. Understanding the Effect of Heat Stress during Seed Filling on Nutritional Composition and Seed Yield in Chickpea (Cicer arietinum L.). Sci. Rep. 2023, 13, 15450. [Google Scholar] [CrossRef] [PubMed]
- Priya, M.; Bhardwaj, A.; Jha, U.C.; HanumanthaRao, B.; Prasad, P.V.V.; Sharma, K.D.; Siddique, K.H.M.; Nayyar, H. Investigating the Influence of Elevated Temperature on Nutritional and Yield Characteristics of Mung Bean (Vigna radiata L.) Genotypes during Seed Filling in a Controlled Environment. Front. Plant Sci. 2023, 14, 1233954. [Google Scholar] [CrossRef] [PubMed]
- Gmižić, D.; Pinterić, M.; Lazarus, M.; Šola, I. High Growing Temperature Changes Nutritional Value of Broccoli (Brassica oleracea L. Convar. botrytis (L.) Alef. Var. cymosa Duch.) Seedlings. Foods 2023, 12, 582. [Google Scholar] [CrossRef]
- Yousaf, M.I.; Riaz, M.W.; Jiang, Y.; Yasir, M.; Aslam, M.Z.; Hussain, S.; Sajid Shah, S.A.; Shehzad, A.; Riasat, G.; Manzoor, M.A.; et al. Concurrent Effects of Drought and Heat Stresses on Physio-Chemical Attributes, Antioxidant Status and Kernel Quality Traits in Maize (Zea mays L.) Hybrids. Front. Plant Sci. 2022, 13, 898823. [Google Scholar] [CrossRef]
- Jasper, J.; Wagstaff, C.; Bell, L. Growth Temperature Influences Postharvest Glucosinolate Concentrations and Hydrolysis Product Formation in First and Second Cuts of Rocket Salad. Postharvest Biol. Technol. 2020, 163, 111157. [Google Scholar] [CrossRef] [PubMed]
- Shamloo, M.; Babawale, E.A.; Furtado, A.; Henry, R.J.; Eck, P.K.; Jones, P.J.H. Effects of Genotype and Temperature on Accumulation of Plant Secondary Metabolites in Canadian and Australian Wheat Grown under Controlled Environments. Sci. Rep. 2017, 7, 9133. [Google Scholar] [CrossRef] [PubMed]
- Soengas, P.; Rodríguez, V.M.; Velasco, P.; Cartea, M.E. Effect of Temperature Stress on Antioxidant Defenses in Brassica Oleracea. ACS Omega 2018, 3, 5237–5243. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Q.; Wang, R.; Gou, X.; Wang, H.; Wang, S. Temperature Changes the Dynamics of Trace Element Accumulation in Solanum tuberosum L. Clim. Change 2012, 112, 655–672. [Google Scholar] [CrossRef]
- Tomás, D.; Viegas, W.; Silva, M. Effects of Post-Anthesis Heat Waves on the Grain Quality of Seven European Wheat Varieties. Agronomy 2020, 10, 268. [Google Scholar] [CrossRef]
- Balla, K.; Rakszegi, M.; Li, Z.; Békés, F.; Bencze, S.; Veisz, O. Quality of Winter Wheat in Relation to Heat and Drought Shock after Anthesis. Czech J. Food Sci. 2011, 29, 117–128. [Google Scholar] [CrossRef]
- Altenbach, S.B. New Insights into the Effects of High Temperature, Drought and Post-Anthesis Fertilizer on Wheat Grain Development. J. Cereal Sci. 2012, 56, 39–50. [Google Scholar] [CrossRef]
- Savill, G.P.; Michalski, A.; Powers, S.J.; Wan, Y.; Tosi, P.; Buchner, P.; Hawkesford, M.J. Temperature and Nitrogen Supply Interact to Determine Protein Distribution Gradients in the Wheat Grain Endosperm. J. Exp. Bot. 2018, 69, 3117–3126. [Google Scholar] [CrossRef]
- Bell, L.; Lignou, S.; Wagstaff, C. High Glucosinolate Content in Rocket Leaves (Diplotaxis tenuifolia and Eruca sativa) after Multiple Harvests Is Associated with Increased Bitterness, Pungency, and Reduced Consumer Liking. Foods 2020, 9, 1799. [Google Scholar] [CrossRef]
- Ruelland, E.; Zachowski, A. How Plants Sense Temperature. Environ. Exp. Bot. 2010, 69, 225–232. [Google Scholar] [CrossRef]
- Turhan, E.; Ergin, S. Soluble Sugars and Sucrose-Metabolizing Enzymes Related to Cold Acclimation of Sweet Cherry Cultivars Grafted on Different Rootstocks. Sci. World J. 2012, 2012, 979682. [Google Scholar] [CrossRef]
- Šola, I.; Gmižić, D.; Pinterić, M.; Tot, A.; Ludwig-Müller, J. Adjustments of the Phytochemical Profile of Broccoli to Low and High Growing Temperatures: Implications for the Bioactivity of Its Extracts. Int. J. Mol. Sci. 2024, 25, 3677. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Liu, G.-L.; Phan, T.T.; Yang, L.-T.; Li, Y.-R.; Xing, Y.-X. Effects of Cold Stress on Root Growth and Physiological Metabolisms in Seedlings of Different Sugarcane Varieties. Sugar Tech 2017, 19, 165–175. [Google Scholar] [CrossRef]
- Terletskaya, N.V.; Shadenova, E.A.; Litvinenko, Y.A.; Ashimuly, K.; Erbay, M.; Mamirova, A.; Nazarova, I.; Meduntseva, N.D.; Kudrina, N.O.; Korbozova, N.K.; et al. Influence of Cold Stress on Physiological and Phytochemical Characteristics and Secondary Metabolite Accumulation in Microclones of Juglans regia L. Int. J. Mol. Sci. 2024, 25, 4991. [Google Scholar] [CrossRef] [PubMed]
- Koç, E.; Işlek, C.; Üstün, A.S. Effect of Cold on Protein, Proline, Phenolic Compounds and Chlorophyll Content of Two Pepper (Capsicum annuum L.) Varieties. Gazi Univ. J. Sci. 2010, 23, 1–6. [Google Scholar]
- Ljubej, V.; Radojčić Redovniković, I.; Salopek-Sondi, B.; Smolko, A.; Roje, S.; Šamec, D. Chilling and Freezing Temperature Stress Differently Influence Glucosinolates Content in Brassica oleracea Var. acephala. Plants 2021, 10, 1305. [Google Scholar] [CrossRef]
- Olennikov, D.; Chirikova, N.; Kashchenko, N.; Gornostai, T.; Selyutina, I.; Zilfikarov, I. Effect of Low Temperature Cultivation on the Phytochemical Profile and Bioactivity of Arctic Plants: A Case of Dracocephalum Palmatum. Int. J. Mol. Sci. 2017, 18, 2579. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.; Kim, K.-M.; Kim, Y.; Kang, C.-S.; Son, J.; Ko, J.; Kim, K.-H. Low-Temperature Effects on the Growth and Phytochemical Properties of Wheat Sprouts. Agriculture 2022, 12, 745. [Google Scholar] [CrossRef]
- Ji, W.; Hu, X.; Kang, M.; Qiu, X.; Liu, B.; Tang, L.; Zhu, Y.; Cao, W.; Liu, L. Effects of Pre-Anthesis Low-Temperature Stress on the Mineral Components in Wheat Grains. Front. Plant Sci. 2023, 14, 1221466. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Song, H.; Shi, K.; Liu, B.; Zhang, Y.; Tang, L.; Cao, W.; Zhu, Y. Response of Wheat Grain Quality to Low Temperature during Jointing and Booting Stages—On the Importance of Considering Canopy Temperature. Agric. For. Meteorol. 2019, 278, 107658. [Google Scholar] [CrossRef]
- Kang, M.; Liu, G.; Zeng, Y.; Zhou, J.; Shi, J.; Tang, L.; Liu, L.; Cao, W.; Zhu, Y.; Liu, B. Extreme Low-Temperature Stress Affects Nutritional Quality of Amino Acids in Rice. Front. Plant Sci. 2022, 13, 905348. [Google Scholar] [CrossRef]
- Šola, I.; Davosir, D.; Kokić, E.; Zekirovski, J. Effect of Hot- and Cold-Water Treatment on Broccoli Bioactive Compounds, Oxidative Stress Parameters and Biological Effects of Their Extracts. Plants 2023, 12, 1135. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.N.; Ren, J.L.; Zhang, Y.; Chen, X.M.; Qi, M.F.; Li, T.L.; Zhang, G.Z.; Liu, Y.L. Effect of Low Root-Zone Temperature on Photosynthesis, Root Structure and Mineral Element Absorption of Tomato Seedlings. Sci. Hortic. 2023, 315, 111956. [Google Scholar] [CrossRef]
- Sarhadi, E.; Mahfoozi, S.; Hosseini, S.A.; Salekdeh, G.H. Cold Acclimation Proteome Analysis Reveals Close Link between the Up-Regulation of Low-Temperature Associated Proteins and Vernalization Fulfillment. J. Proteome Res. 2010, 9, 5658–5667. [Google Scholar] [CrossRef]
- Adeleye, O.C.; Risenga, I.M. The In Vitro Assessment of Antidiabetic Activity of the Plant Extracts Obtained from Portulacaria Afra Jack. Grown under Concurrent Extreme Temperatures and Water-Deficit Conditions. Biomed. Pharmacol. J. 2024, 17, 309–322. [Google Scholar] [CrossRef]
- Airaki, M.; Leterrier, M.; Mateos, R.M.; Valderrama, R.; Chaki, M.; Barroso, J.B.; DEL Río, L.A.; Palma, J.M.; Corpas, F.J. Metabolism of Reactive Oxygen Species and Reactive Nitrogen Species in Pepper (Capsicum annuum L.) Plants under Low Temperature Stress. Plant. Cell Environ. 2012, 35, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lei, S.; Du, K.; Li, L.; Pang, X.; Wang, Z.; Wei, M.; Fu, S.; Hu, L.; Xu, L. RNA-Seq Based Transcriptomic Analysis Uncovers α-Linolenic Acid and Jasmonic Acid Biosynthesis Pathways Respond to Cold Acclimation in Camellia japonica. Sci. Rep. 2016, 6, 36463. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Ahluwalia, O.; Singh, P.C.; Bhatia, R. A Review on Drought Stress in Plants: Implications, Mitigation and the Role of Plant Growth Promoting Rhizobacteria. Resour. Environ. Sustain. 2021, 5, 100032. [Google Scholar] [CrossRef]
- Kogan, F.; Guo, W.; Yang, W. Drought and Food Security Prediction from NOAA New Generation of Operational Satellites. Geomat. Nat. Hazards Risk 2019, 10, 651–666. [Google Scholar] [CrossRef]
- Paim, B.T.; Crizel, R.L.; Tatiane, S.J.; Rodrigues, V.R.; Rombaldi, C.V.; Galli, V. Mild Drought Stress Has Potential to Improve Lettuce Yield and Quality. Sci. Hortic. 2020, 272, 109578. [Google Scholar] [CrossRef]
- Šola, I.; Stić, P.; Rusak, G. Effect of Flooding and Drought on the Content of Phenolics, Sugars, Photosynthetic Pigments and Vitamin C, and Antioxidant Potential of Young Chinese Cabbage. Eur. Food Res. Technol. 2021, 247, 1913–1920. [Google Scholar] [CrossRef]
- Hosseini, M.S.; Samsampour, D.; Ebrahimi, M.; Abadía, J.; Khanahmadi, M. Effect of Drought Stress on Growth Parameters, Osmolyte Contents, Antioxidant Enzymes and Glycyrrhizin Synthesis in Licorice (Glycyrrhiza glabra L.) Grown in the Field. Phytochemistry 2018, 156, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Ghanaatiyan, K.; Sadeghi, H. Differential Responses of Chicory Ecotypes Exposed to Drought Stress in Relation to Enzymatic and Non-Enzymatic Antioxidants as Well as ABA Concentration. J. Hortic. Sci. Biotechnol. 2017, 92, 404–410. [Google Scholar] [CrossRef]
- Radovich, T.J.K.; Kleinhenz, M.D.; Streeter, J.G. Irrigation Timing Relative to Head Development Influences Yield Components, Sugar Levels, and Glucosinolate Concentrations in Cabbage. J. Am. Soc. Hortic. Sci. 2005, 130, 943–949. [Google Scholar] [CrossRef]
- Babić, I.; Šamec, D.; Hižak, M.; Huđ, A.; Senko, H.; Šangut, I.J.; Mlinarić, S.; Petek, M.; Palijan, G.; Kolić, N.U.; et al. Evaluating Drought Impact on White Cabbage: Plant Stress Response and Soil Microbiome Adaptation. Plant Stress 2024, 14, 100683. [Google Scholar] [CrossRef]
- Oh, M.; Komatsu, S. Characterization of Proteins in Soybean Roots under Flooding and Drought Stresses. J. Proteomics 2015, 114, 161–181. [Google Scholar] [CrossRef]
- Barber, A.; Müller, C. Drought and Subsequent Soil Flooding Affect the Growth and Metabolism of Savoy Cabbage. Int. J. Mol. Sci. 2021, 22, 13307. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Q.; Shi, Y.; Li, X.; Hou, L.; Xing, G.; Ahammed, G.J. Elevated CO2 Improves Antioxidant Capacity, Ion Homeostasis, and Polyamine Metabolism in Tomato Seedlings under Ca(NO3)2-Induced Salt Stress. Sci. Hortic. 2020, 273, 109644. [Google Scholar] [CrossRef]
- Gutbrodt, B.; Dorn, S.; Unsicker, S.B.; Mody, K. Species-Specific Responses of Herbivores to within-Plant and Environmentally Mediated between-Plant Variability in Plant Chemistry. Chemoecology 2012, 22, 101–111. [Google Scholar] [CrossRef]
- Laddomada, B.; Blanco, A.; Mita, G.; D’Amico, L.; Singh, R.P.; Ammar, K.; Crossa, J.; Guzmán, C. Drought and Heat Stress Impacts on Phenolic Acids Accumulation in Durum Wheat Cultivars. Foods 2021, 10, 2142. [Google Scholar] [CrossRef]
- Abdollahi Mandoulakani, B.; Eyvazpour, E.; Ghadimzadeh, M. The Effect of Drought Stress on the Expression of Key Genes Involved in the Biosynthesis of Phenylpropanoids and Essential Oil Components in Basil (Ocimum basilicum L.). Phytochemistry 2017, 139, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-E.; Kim, J.; Purevdorj, E.; Son, Y.-J.; Nho, C.W.; Yoo, G. Effects of Long Light Exposure and Drought Stress on Plant Growth and Glucosinolate Production in Pak Choi (Brassica rapa Subsp. Chinensis). Food Chem. 2021, 340, 128167. [Google Scholar] [CrossRef] [PubMed]
- VISSER, E.J.W. Flooding and Plant Growth. Ann. Bot. 2003, 91, 107–109. [Google Scholar] [CrossRef]
- Wu, Y.-S.; Yang, C.-Y. Physiological Responses and Expression Profile of NADPH Oxidase in Rice (Oryza sativa) Seedlings under Different Levels of Submergence. Rice 2016, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Vaskasi, F.; Pirdashti, H.; Araei, A.C.; Saadatmand, S. Waterlogging Effects on Some Antioxidant Enzymes Activities and Yield of Three Wheat Promising Lines. Acta Agric. Slov. 2018, 111, 621–631. [Google Scholar] [CrossRef]
- Anee, T.I.; Nahar, K.; Rahman, A.; Al Mahmud, J.; Bhuiyan, T.F.; Alam, M.U.; Fujita, M.; Hasanuzzaman, M. Oxidative Damage and Antioxidant Defense in Sesamum Indicum after Different Waterlogging Durations. Plants 2019, 8, 196. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Li, D.; Wang, L.; Ding, X.; Zhang, Y.; Gao, Y.; Zhang, X. Morpho-Anatomical and Physiological Responses to Waterlogging of Sesame (Sesamum indicum L.). Plant Sci. 2013, 208, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Sharmin, R.A.; Karikari, B.; Bhuiyan, M.R.; Kong, K.; Yu, Z.; Zhang, C.; Zhao, T. Comparative Morpho-Physiological, Biochemical, and Gene Expressional Analyses Uncover Mechanisms of Waterlogging Tolerance in Two Soybean Introgression Lines. Plants 2024, 13, 1011. [Google Scholar] [CrossRef]
- Adegoye, G.A.; Olorunwa, O.J.; Alsajri, F.A.; Walne, C.H.; Wijewandana, C.; Kethireddy, S.R.; Reddy, K.N.; Reddy, K.R. Waterlogging Effects on Soybean Physiology and Hyperspectral Reflectance during the Reproductive Stage. Agriculture 2023, 13, 844. [Google Scholar] [CrossRef]
- Huđ, A.; Šamec, D.; Senko, H.; Petek, M.; Brkljačić, L.; Pole, L.; Lazarević, B.; Rajnović, I.; Udiković-Kolić, N.; Mešić, A.; et al. Response of White Cabbage (Brassica oleracea Var. Capitata) to Single and Repeated Short-Term Waterlogging. Agronomy 2023, 13, 200. [Google Scholar] [CrossRef]
- Lu, H.; Wang, M.; Li, W.; Chen, Z.; Li, S.; Yi, Z.; Zhang, Y. Superior Antioxidant Capacity and Auxin Production Promote Seedling Formation of Rice Seeds under Submergence Stress. Agronomy 2023, 13, 171. [Google Scholar] [CrossRef]
- Yordanova, R. Antioxidative Enzymes in Barley Plants Subjected to Soil Flooding. Environ. Exp. Bot. 2004, 51, 93–101. [Google Scholar] [CrossRef]
- FAO. Global Map of Salt-Affected Soils: GSASmap V1.0; FAO: Rome, Italy, 2021; p. 20. [Google Scholar]
- Šamec, D.; Linić, I.; Salopek-Sondi, B. Salinity Stress as an Elicitor for Phytochemicals and Minerals Accumulation in Selected Leafy Vegetables of Brassicaceae. Agronomy 2021, 11, 361. [Google Scholar] [CrossRef]
- Karalija, E.; Lošić, A.; Demir, A.; Šamec, D. Effects of Seed Priming on Mitigating the Negative Effects of Increased Salinity in Two Varieties of Sweet Pepper (Capsicum annuum L.). Soil Syst. 2024, 8, 35. [Google Scholar] [CrossRef]
- Salinas, J.; Padilla, F.M.; Thompson, R.B.; Teresa Peña-Fleitas, M.; López-Martín, M.; Gallardo, M. Responses of Yield, Fruit Quality and Water Relations of Sweet Pepper in Mediterranean Greenhouses to Increasing Salinity. Agric. Water Manag. 2023, 290, 108578. [Google Scholar] [CrossRef]
- Marra, F.; Maffia, A.; Canino, F.; Petrovicova, B.; Mallamaci, C.; Russo, M.; Iftikhar Hussain, M.; Muscolo, A. Enhancing the Nutritional Value of Sweet Bell Pepper through Moderate NaCl Salinity. Heliyon 2023, 9, e22439. [Google Scholar] [CrossRef] [PubMed]
- Petrić, I.; Šamec, D.; Karalija, E.; Salopek-Sondi, B. Beneficial Microbes and Molecules for Mitigation of Soil Salinity in Brassica Species: A Review. Soil Syst. 2022, 6, 18. [Google Scholar] [CrossRef]
- Ma, C.H.; Chu, J.Z.; Shi, X.F.; Liu, C.Q.; Yao, X.Q. Effects of Enhanced UV-B Radiation on the Nutritional and Active Ingredient Contents during the Floral Development of Medicinal Chrysanthemum. J. Photochem. Photobiol. B Biol. 2016, 158, 228–234. [Google Scholar] [CrossRef]
- Skowron, E.; Trojak, M.; Pacak, I. Effects of UV-B and UV-C Spectrum Supplementation on the Antioxidant Properties and Photosynthetic Activity of Lettuce Cultivars. Int. J. Mol. Sci. 2024, 25, 9298. [Google Scholar] [CrossRef] [PubMed]
- Conklin, P.L. Recent Advances in the Role and Biosynthesis of Ascorbic Acid in Plants. Plant. Cell Environ. 2001, 24, 383–394. [Google Scholar] [CrossRef]
- Liu, S.; Yu, L.; Liu, L.; Yang, A.; Huang, X.; Zhu, A.; Zhou, H. Effects of Ultraviolet-B Radiation on the Regulation of Ascorbic Acid Accumulation and Metabolism in Lettuce. Horticulturae 2023, 9, 200. [Google Scholar] [CrossRef]
- Pacak, I.; Trojak, M.; Skowron, E. The Use of UV-A Radiation for Biofortification of Lettuce and Basil Plants with Antioxidant Phenolic and Flavonoid Compounds. Acta Univ. Lodz. Folia Biol. Oecologica 2024, 18, 110–121. [Google Scholar] [CrossRef]
- Tonelli, M.; Pellegrini, E.; D’Angiolillo, F.; Petersen, M.; Nali, C.; Pistelli, L.; Lorenzini, G. Ozone-Elicited Secondary Metabolites in Shoot Cultures of Melissa officinalis L. Plant Cell Tissue Organ Cult. 2015, 120, 617–629. [Google Scholar] [CrossRef]
- Onopiuk, A.; Półtorak, A.; Moczkowska, M.; Szpicer, A.; Wierzbicka, A. The Impact of Ozone on Health-Promoting, Microbiological, and Colour Properties of Rubus Ideaus Raspberries. CyTA-J. Food 2017, 15, 563–573. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Balawejder, M. Effect of Ozone Treatment on the Contents of Selected Bioactive Phytochemicals in Leaves of Alligator Plant Kalanchoe Daigremontiana. Appl. Sci. 2022, 12, 8934. [Google Scholar] [CrossRef]
- Hymus, G.J.; Baker, N.R.; Long, S.P. Growth in Elevated CO2 Can Both Increase and Decrease Photochemistry and Photoinhibition of Photosynthesis in a Predictable Manner. Dactylis Glomerata Grown in Two Levels of Nitrogen Nutrition. Plant Physiol. 2001, 127, 1204–1211. [Google Scholar] [CrossRef] [PubMed]
- Jo, N.-Y.; Lee, J.; Byeon, J.-E.; Park, H.-J.; Ryoo, J.-W.; Hwang, S.-G. Elevated CO2 Concentration Induces Changes in Plant Growth, Transcriptome, and Antioxidant Activity in Fennel (Foeniculum vulgare Mill.). Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E. Impact of Elevated Carbon Dioxide on Primary, Secondary Metabolites and Antioxidant Responses of Eleais guineensis Jacq. (Oil palm) Seedlings. Molecules 2012, 17, 5195–5211. [Google Scholar] [CrossRef]
- Saleh, A.M.; Selim, S.; Al Jaouni, S.; AbdElgawad, H. CO2 Enrichment Can Enhance the Nutritional and Health Benefits of Parsley (Petroselinum crispum L.) and Dill (Anethum graveolens L.). Food Chem. 2018, 269, 519–526. [Google Scholar] [CrossRef] [PubMed]
- AbdElgawad, H.; Okla, M.K.; Al-amri, S.S.; AL-Hashimi, A.; AL-Qahtani, W.H.; Al-Qahtani, S.M.; Abbas, Z.K.; Al-Harbi, N.A.; Abd Algafar, A.; Almuhayawi, M.S.; et al. Effect of Elevated CO2 on Biomolecules’ Accumulation in Caraway (Carum carvi L.) Plants at Different Developmental Stages. Plants 2021, 10, 2434. [Google Scholar] [CrossRef] [PubMed]
- Almuhayawi, M.S.; AbdElgawad, H.; Al Jaouni, S.K.; Selim, S.; Hassan, A.H.A.; Khamis, G. Elevated CO2 Improves Glucosinolate Metabolism and Stimulates Anticancer and Anti-Inflammatory Properties of Broccoli Sprouts. Food Chem. 2020, 328, 127102. [Google Scholar] [CrossRef] [PubMed]
- Idso, S.B.; Kimball, B.A.; Pettit Iii, G.R.; Garner, L.C.; Pettit, G.R.; Backhaus, R.A. Effects of Atmospheric CO2 Enrichment on the Growth and Development of Hymenocallis littoralis (Amaryllidaceae) and the Concentrations of Several Antineoplastic and Antiviral Constituents of Its Bulbs. Am. J. Bot. 2000, 87, 769–773. [Google Scholar] [CrossRef]
- Basson, D.C.; Van Vuuren, S.; Risenga, I.M. The Effect of Elevated Carbon Dioxide on the Medicinal Properties of Portulacaria Afra. S. Afr. J. Sci. 2024, 120, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, S.G.; Ju, Z.; van Santen, E.; Qiu, J.; Weaver, D.B.; Prior, S.A.; Rogers, H.H. The Influence of Elevated CO2 on the Activities of Antioxidative Enzymes in Two Soybean Genotypes. Funct. Plant Biol. 2000, 27, 1061. [Google Scholar] [CrossRef]
- Safdar, L.B.; Foulkes, M.J.; Kleiner, F.H.; Searle, I.R.; Bhosale, R.A.; Fisk, I.D.; Boden, S.A. Challenges Facing Sustainable Protein Production: Opportunities for Cereals. Plant Commun. 2023, 4, 100716. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Potkule, J.; Verma, R.; Punia, S.; Mahapatra, A.; Belwal, T.; Dahuja, A.; Joshi, S.; Berwal, M.K.; et al. Advances in the Plant Protein Extraction: Mechanism and Recommendations. Food Hydrocoll. 2021, 115, 106595. [Google Scholar] [CrossRef]
- Sim, S.Y.J.; SRV, A.; Chiang, J.H.; Henry, C.J. Plant Proteins for Future Foods: A Roadmap. Foods 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Rout, S.; Srivastav, P.P. A Review on Development of Plant-based Meat Analogues as Future Sustainable Food. Int. J. Food Sci. Technol. 2024, 59, 481–487. [Google Scholar] [CrossRef]
- Karabulut, G.; Goksen, G.; Mousavi Khaneghah, A. Plant-Based Protein Modification Strategies towards Challenges. J. Agric. Food Res. 2024, 15, 101017. [Google Scholar] [CrossRef]
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food Proteins from Animals and Plants: Differences in the Nutritional and Functional Properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Arif, M.; Pauls, K.P. Properties of Plant Proteins. In Plant Bioproducts; Springer: New York, NY, USA, 2018; pp. 121–142. [Google Scholar]
- Tan, M.; Nawaz, M.A.; Buckow, R. Functional and Food Application of Plant Proteins–A Review. Food Rev. Int. 2023, 39, 2428–2456. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Agricultural Research Service U.S. Department of Agriculture (USDA), Agricultural Research Service. FoodData Central: USDA Global. Branded Food Products Database. Available online: https://fdc.nal.usda.gov/food-search?type=Foundation (accessed on 10 November 2024).
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellù, L.; Sims, R. The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef]
- Dabija, A.; Ciocan, M.E.; Chetrariu, A.; Codină, G.G. Buckwheat and Amaranth as Raw Materials for Brewing, a Review. Plants 2022, 11, 756. [Google Scholar] [CrossRef]
- Perdon, A.A.; Schonauer, S.L.; Poutanen, K.S. (Eds.) Breakfast Cereals and How They Are Made; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128120439. [Google Scholar]
- Wrigley, C.W. An Overview of the Family of Cereal Grains Prominent in World Agriculture. In Encyclopedia of Food Grains; Elsevier: Amsterdam, The Netherlands, 2016; pp. 73–85. [Google Scholar]
- Jain, T. Fatty Acid Composition of Oilseed Crops: A Review. In Emerging Technologies in Food Science; Springer: Singapore, 2020; pp. 147–153. [Google Scholar]
- Nawaz, M.A.; Tan, M.; Øiseth, S.; Buckow, R. An Emerging Segment of Functional Legume-Based Beverages: A Review. Food Rev. Int. 2022, 38, 1064–1102. [Google Scholar] [CrossRef]
- Nikodijevic, C.J.; Probst, Y.C.; Batterham, M.J.; Tapsell, L.C.; Neale, E.P. Nut Consumption in a Representative Survey of Australians: A Secondary Analysis of the 2011–2012 National Nutrition and Physical Activity Survey. Public Health Nutr. 2020, 23, 3368–3378. [Google Scholar] [CrossRef]
- Son, A.R. Variation in Energy and Nutrient Composition of Oilseed Meals from Different Countries. Korean J. Poult. Sci. 2020, 47, 107–114. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Qazanfarzadeh, Z.; Majzoobi, M.; Sheiband, S.; Oladzadabbasabad, N.; Esmaeili, Y.; Barrow, C.J.; Timms, W. Alternative Proteins; A Path to Sustainable Diets and Environment. Curr. Res. Food Sci. 2024, 9, 100882. [Google Scholar] [CrossRef]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [PubMed]
- Fraeye, I.; Kratka, M.; Vandenburgh, H.; Thorrez, L. Sensorial and Nutritional Aspects of Cultured Meat in Comparison to Traditional Meat: Much to Be Inferred. Front. Nutr. 2020, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Zhu, J.-K. Developing Naturally Stress-Resistant Crops for a Sustainable Agriculture. Nat. Plants 2018, 4, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Lucht, J. Public Acceptance of Plant Biotechnology and GM Crops. Viruses 2015, 7, 4254–4281. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Urlić, B.; Salopek-Sondi, B. Kale (Brassica oleracea Var. Acephala) as a Superfood: Review of the Scientific Evidence behind the Statement. Crit. Rev. Food Sci. Nutr. 2019, 59, 2411–2422. [Google Scholar] [CrossRef]
- Pavlović, I.; Petřík, I.; Tarkowská, D.; Lepeduš, H.; Vujčić Bok, V.; Radić Brkanac, S.; Novák, O.; Salopek-Sondi, B. Correlations between Phytohormones and Drought Tolerance in Selected Brassica Crops: Chinese Cabbage, White Cabbage and Kale. Int. J. Mol. Sci. 2018, 19, 2866. [Google Scholar] [CrossRef] [PubMed]
- Kanda, H.; Oishi, K.; Machmudah, S.; Wahyudiono; Goto, M. Ethanol-free Extraction of Resveratrol and Its Glycoside from Japanese Knotweed Rhizome by Liquefied Dimethyl Ether without Pretreatments. Asia-Pac. J. Chem. Eng. 2021, 16, e2600. [Google Scholar] [CrossRef]
- Cui, T.; Tang, S.; Liu, C.; Li, Z.; Zhu, Q.; You, J.; Si, X.; Zhang, F.; He, P.; Liu, Z.; et al. Three New Isoflavones from the Pueraria montana var. lobata (Willd.) and Their Bioactivities. Nat. Prod. Res. 2018, 32, 2817–2824. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Pugliese, A.; Bonesi, M.; Tenuta, M.C.; Menichini, F.; Xiao, J.; Tundis, R. Edible Flowers: A Rich Source of Phytochemicals with Antioxidant and Hypoglycemic Properties. J. Agric. Food Chem. 2016, 64, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Kowalczewski, P.Ł.; Pauter, P.; Smarzyński, K.; Różańska, M.B.; Jeżowski, P.; Dwiecki, K.; Mildner-Szkudlarz, S. Thermal Processing of Pasta Enriched with Black Locust Flowers Affect Quality, Phenolics, and Antioxidant Activity. J. Food Process. Preserv. 2019, 43, e14106. [Google Scholar] [CrossRef]
- Hallmann, E. Quantitative and Qualitative Identification of Bioactive Compounds in Edible Flowers of Black and Bristly Locust and Their Antioxidant Activity. Biomolecules 2020, 10, 1603. [Google Scholar] [CrossRef]
- Uzelac, M.; Sladonja, B.; Šola, I.; Dudaš, S.; Bilić, J.; Famuyide, I.M.; McGaw, L.J.; Eloff, J.N.; Mikulic-Petkovsek, M.; Poljuha, D. Invasive Alien Species as a Potential Source of Phytopharmaceuticals: Phenolic Composition and Antimicrobial and Cytotoxic Activity of Robinia Pseudoacacia L. Leaf and Flower Extracts. Plants 2023, 12, 2715. [Google Scholar] [CrossRef] [PubMed]
- Sawicka, B.; Skiba, D.; PszczóÅ‚kowski, P.; Aslan, I.; Sharifi, J.; Krochmal-Marczak, B. Jerusalem Artichoke (Helianthus tuberosus L.) as a Medicinal Plant and Its Natural Products. Cell. Mol. Biol. 2020, 66, 160–177. [Google Scholar] [CrossRef] [PubMed]
- Kaszás, L.; Alshaal, T.; El-Ramady, H.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É.; Cziáky, Z.; Fári, M.; Domokos-Szabolcsy, É. Identification of Bioactive Phytochemicals in Leaf Protein Concentrate of Jerusalem Artichoke (Helianthus tuberosus L.). Plants 2020, 9, 889. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Zhang, Z.; Sun, D.-W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of Emerging Technologies for the Extraction of Bioactive Compounds. Crit. Rev. Food Sci. Nutr. 2020, 60, 1826–1841. [Google Scholar] [CrossRef] [PubMed]
- Srithi, K.; Balslev, H.; Tanming, W.; Trisonthi, C. Weed Diversity and Uses: A Case Study from Tea Plantations in Northern Thailand. Econ. Bot. 2017, 71, 147–159. [Google Scholar] [CrossRef]
- Iyer, A.; Bestwick, C.S.; Duncan, S.H.; Russell, W.R. Invasive Plants Are a Valuable Alternate Protein Source and Can Contribute to Meeting Climate Change Targets. Front. Sustain. Food Syst. 2021, 5, 575056. [Google Scholar] [CrossRef]
- Drobnik, J. Allium Paradoxum from Asia to Europe: Ornamental, Invasive, Edible, and Medicinal. Hum. Ecol. 2023, 51, 559–567. [Google Scholar] [CrossRef]
- Ebel, R. Eating Instead of Managing It?–A Systematic Literature Review on Potential Uses of Creeping Thistle as Food and Medicinal Plant. J. Crop Improv. 2023, 37, 595–625. [Google Scholar] [CrossRef]
- Nuñez, M.A.; Kuebbing, S.; Dimarco, R.D.; Simberloff, D. Invasive Species: To Eat or Not to Eat, That Is the Question. Conserv. Lett. 2012, 5, 334–341. [Google Scholar] [CrossRef]
- Wu, J.Y.; Tso, R.; Teo, H.S.; Haldar, S. The Utility of Algae as Sources of High Value Nutritional Ingredients, Particularly for Alternative/Complementary Proteins to Improve Human Health. Front. Nutr. 2023, 10, 1277343. [Google Scholar] [CrossRef]
- Costa, M.M.; Spínola, M.P.; Alves, V.D.; Mestre Prates, J.A. Improving Protein Extraction and Peptide Production from Chlorella Vulgaris Using Combined Mechanical/Physical and Enzymatic Pre-Treatments. Heliyon 2024, 10, e32704. [Google Scholar] [CrossRef]
- Panahi, Y.; Darvishi, B.; Jowzi, N.; Beiraghdar, F.; Sahebkar, A. Chlorella Vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties. Curr. Pharm. Des. 2015, 22, 164–173. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Effect of Selected Mechanical/Physical Pre-Treatments on Chlorella Vulgaris Protein Solubility. Agriculture 2023, 13, 1309. [Google Scholar] [CrossRef]
- Bungudu, J.I.; Murphy, L.M. Determination and Analysis of Metals in Freshwater Microalgae (Chlorella vulgaris and Spirulina platensis) through Total Reflection X-Ray Fluorescence Spectroscopy (TXRF). Asian J. Appl. Chem. Res. 2021, 8, 32–38. [Google Scholar] [CrossRef]
- Salido, M.; Soto, M.; Seoane, S. Seaweed: Nutritional and Gastronomic Perspective. A Review. Algal Res. 2024, 77, 103357. [Google Scholar] [CrossRef]
- Sá Monteiro, M.; Sloth, J.; Holdt, S.; Hansen, M. Analysis and Risk Assessment of Seaweed. EFSA J. 2019, 17, e170915. [Google Scholar] [CrossRef]
- Banach, J.L.; Hoek-van den Hil, E.F.; van der Fels-Klerx, H.J. Food Safety Hazards in the European Seaweed Chain. Compr. Rev. Food Sci. Food Saf. 2020, 19, 332–364. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, U.; Stengel, D.B. Quantification of Iodine Loss in Edible Irish Seaweeds during Processing. J. Appl. Phycol. 2016, 28, 3527–3533. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Murphy, B.; McLoughlin, P.; Duggan, P.; Lawlor, P.G.; Hughes, H.; Gardiner, G.E. Prebiotics from Marine Macroalgae for Human and Animal Health Applications. Mar. Drugs 2010, 8, 2038–2064. [Google Scholar] [CrossRef]
- Salerno, T.M.G.; Coppolino, C.; Donato, P.; Mondello, L. The Online Coupling of Liquid Chromatography to Fourier Transform Infrared Spectroscopy Using a Solute-Deposition Interface: A Proof of Concept. Anal. Bioanal. Chem. 2022, 414, 703–712. [Google Scholar] [CrossRef]
- Raja, R.; Coelho, A.; Hemaiswarya, S.; Kumar, P.; Carvalho, I.S.; Alagarsamy, A. Applications of Microalgal Paste and Powder as Food and Feed: An Update Using Text Mining Tool. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 740–747. [Google Scholar] [CrossRef]
- Hernández-López, I.; Abadias, M.; Prieto-Santiago, V.; Chic-Blanco, Á.; Ortiz-Solà, J.; Aguiló-Aguayo, I. Exploring the Nutritional Potential of Microalgae in the Formulation of Bakery Products. Foods 2023, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Qin, Y.; Zhou, X.; Jin, W.; He, Z.; Li, X.; Wang, Q. Microalgae as Future Food: Rich Nutrients, Safety, Production Costs and Environmental Effects. Sci. Total Environ. 2024, 927, 172167. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.M.M.; Bastos, T.S.; Santos, M.C. dos Microalgae Use in Animal Nutrition. Res. Soc. Dev. 2021, 10, e53101622986. [Google Scholar] [CrossRef]
Plant Food Sources | Plant Part | Temperature (Day/Night) | Impact of High Temperature | Reference | |
---|---|---|---|---|---|
mung bean (Vigna radiata) | leaves | 42 °C/30 °C | ↓ starch, protein, fat, minerals, storage proteins | [18] | |
broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var.cymosa Duch.) | sprouts | 38 °C/33 °C | ↑ As, Co, Cr, Hg, K, Na, Ni, Pb, Se, and Sn ↓ Ca, Cd, Cu, Mg, Mn, P | [19] | |
chickpea (Cicer arietinum) | leaves | 32 °C/20 °C | ↓ Ca, P, and Fe ↓ total souluble proteins ↓ starch | [17] | |
maize (Zea mays) | leaves | ≤40 °C (data day/night not available) | ↓ total soluble proteins ↓ starch ↓ chlorophyll a and b, carotenoids | [20] | |
rocket salad (Diplotaxis tenuifolia and Eruca sativa) | leaves | 40 °C/30 °C | ↑ glucosinolate | [21] | |
wheat (Triticum spp.) | grains | 30 °C (data day/night not available) | ↑ total phenolic acids, total flavonoids, palmitic acid, oleic acid ↓ linoleic acid, linolenic acid, campesterol | [22] | |
kale and cabbage (Brassica oleracea) | leaves | 32 °C (data day/night not separated) | ↑ chlorophylls ↓ total phenolics | [23] | |
potato (Solanum tuberosum) | tubers | increase from optimal temperature for 1 °C, 2 °C, 3 °C | ↓ Fe, Cu, Zn | [24] |
Plant Food Sources | Plant Part | Temperature | Impact of Low Temperature | Reference | |
---|---|---|---|---|---|
sweet cherry (Prunus avium) | bark of shoots | −25 °C (data day/night not separated) | ↑ total soluble sugars, reducing sugars, and sucrose | [31] | |
broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) | microgreens | 12 °C/7 °C | ↑ total soluble sugars, glucosinolates ↓ anthocyanins | [32] | |
sugarcane seedlings (Saccharum officinarum) | seedlings | 4 °C (data day/night not separated) | ↑ total soluble sugar | [33] | |
walnut (Juglans regia) | shoots | 3–5 °C (data day/night not separated) | ↑ juglone, flavones, phenolic acids, tannins, polysacharids, alkaloids, fatty acid esters, terpenoids, along with other volatile components | [34] | |
pepper (Capsicum annuum) | seedlings | 4 °C (data day/night not separated) | ↑ soluble proteins | [35] | |
flat leaf kale (Brassica oleracea var. acephala) | leaves | 8 °C (data day/night not separated) | ↑ chlorophylls, phenolic acids, flavonoids, carotenoids, glucosinolates | [33,36] | |
palmate dragonhead herb (Dracocephalum palmatum) | leaves | 1 °C (data day/night not separated) | ↓ palmitic acid, arachidic acid, saturated acids, caryophyllene, germacrene, isorhoifolin ↑ oleic acid, linoleic acid, linolenic acid, unsaturated acids, caffeic acid, rosmarinic acid, cosmosiin, tilianin, luteolin glucosides, eriodictyol, naringenin, apigenin, total phenolic compounds, total sugars ≈ total fat acids, total proteins | [37] | |
wheat (Triticum aestivum) | sprouts | <4 °C (data day/night not separated) | ↑ total phenolics, total flavonoids | [38] | |
wheat (Triticum aestivum) | grains | 0 °C/10 °C −2 °C/8 °C −4 °C/6 °C | ↑ P, K, Ca, Zn, proteins ↓ starch | [39,40] | |
rice (Oryza sativa) | grains | 6 °C/12 °C | ↑ amino acids | [41] |
Plant Food Sources | Plant Part | Impact of Drought | Reference | |
---|---|---|---|---|
lettuce (Lactuca sativa) | leaves | ↑ polyphenols, flavonoids | [51] | |
Chinese cabbage (Brassica rapa ssp. pekinensis) | leaves | ↑ phenolic acids, proanthocyanidins, total sugars ↓ total tannins | [52] | |
licorice (Glycyrrhiza glabra) | leaves and root | ↑ soluble sugars, glycine betain | [53] | |
common chicory (Cichorium intybus) | leaves | ↑ ascorbic acid | [54] | |
maize (Zea mays) | kernel | ↓ oil, chlorophylls, proteins, starch | [20] | |
cabbage (Brassica oleracea L. capitata Group) | head tissues | ↑ glucosinolate, proline, phenolic acids, flavonoids, total polyphenols, ↓ total chlorophylls ≈ carotenoids | [55,56] | |
soybean (Glycine max L. cultivar Enrei) | root | ↑ proteins | [57] | |
savoy cabbage (Brassica oleracea convar. capitata var. sabauda) [58] | leaves | ↑ total aminoacids ≈ glucosinolates | [58] | |
carrot (Daucus carota) | taproots | ↑ lutein ↓ lycopene | [59] | |
Brussels sprouts (Brassica oleracea) | leaves | ≈ glucosinolates | [60] | |
durum wheat (Triticum turgidum ssp. durum) [61] | grains | ↑ ferulic acid, total phenolic acids | [56,61] | |
basil (Ocimum basilicum) | essential oil from leaves | ↑ methylchavicol, methyleugenol, b-myrcene and a-bergamotene in basil essential oil | [57,62] |
Plant Food Sources | Plant Part | Impact of Flood | Reference | |
---|---|---|---|---|
Chinese cabbage (Brassica rapa ssp. pekinensis) | leaves | ↑ sugars | [52] | |
rice (Oryza sativa) | seedlings | ↓ chlorophylls | [65] | |
wheat (Triticum aestivum) | leaves | ↑ proline, sugars, soluble proteins, and free amino acids | [66] | |
sesame (Sesamum indicum) | leaves | ↓ chlorophylls and carotenoids, ascorbic acid | [67,68] | |
maize (Zea mays) | kernel | ↓ carotenoids | [20] | |
soybean (Glycine max) | leaves | ↓ chlorophylls, proteins, N, Mg, carotenoids ↑ P, K, Fe, Mg, Zn, Cu, Ca, B | [69,70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šola, I.; Poljuha, D.; Pavičić, I.; Jurinjak Tušek, A.; Šamec, D. Climate Change and Plant Foods: The Influence of Environmental Stressors on Plant Metabolites and Future Food Sources. Foods 2025, 14, 416. https://doi.org/10.3390/foods14030416
Šola I, Poljuha D, Pavičić I, Jurinjak Tušek A, Šamec D. Climate Change and Plant Foods: The Influence of Environmental Stressors on Plant Metabolites and Future Food Sources. Foods. 2025; 14(3):416. https://doi.org/10.3390/foods14030416
Chicago/Turabian StyleŠola, Ivana, Danijela Poljuha, Ivana Pavičić, Ana Jurinjak Tušek, and Dunja Šamec. 2025. "Climate Change and Plant Foods: The Influence of Environmental Stressors on Plant Metabolites and Future Food Sources" Foods 14, no. 3: 416. https://doi.org/10.3390/foods14030416
APA StyleŠola, I., Poljuha, D., Pavičić, I., Jurinjak Tušek, A., & Šamec, D. (2025). Climate Change and Plant Foods: The Influence of Environmental Stressors on Plant Metabolites and Future Food Sources. Foods, 14(3), 416. https://doi.org/10.3390/foods14030416