The Effects of Packaging Barrier Properties Coupled with Storage Temperatures on the Dominant Spoilage Bacteria Composition and Freshness Quality of Lamb
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Total Viable Count (TVC)
2.4. pH Value and Color
2.5. Water Phase Change
2.6. Total Volatile Base Nitrogen (TVB-N)
2.7. Total Sulfhydryl Content
2.8. Carbonyl Content
2.9. Volatile Odor
2.10. Microbial Community Characterization
2.11. Statistical Analysis
3. Results and Discussion
3.1. Effects of Packaging Barrier Coupled with Storage Temperature on TVC in Chilled Lamb During Storage
3.2. Effects of Packaging Barrier Coupled with Storage Temperature on Microflora Structure in Chilled Lamb During Storage
3.3. Effects of Packaging Barrier Coupled with Storage Temperature on pH Value in Chilled Lamb During Storage
3.4. Effects of Packaging Barrier Coupled with Storage Temperature on Color in Chilled Lamb During Storage
3.5. Effects of Packaging Barrier Coupled with Storage Temperature on TVB-N Value in Chilled Lamb During Storage
3.6. Effects of Packaging Barrier Coupled with Storage Temperature on Total Sulfhydryl Content in Chilled Lamb During Storage
3.7. Effects of Packaging Barrier Coupled with Storage Temperature on Carbonyl Content in Chilled Lamb During Storage
3.8. Effects of Packaging Barrier Coupled with Storage Temperature on Volatile Odor in Chilled Lamb During Storage
3.9. Effects of Packaging Barrier Coupled with Storage Temperature on Water Phase Change in Chilled Lamb During Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabrera, M.; Saadoun, A. An overview of the nutritional value of beef and lamb meat from South America. Meat Sci. 2014, 98, 435–444. [Google Scholar] [CrossRef]
- Predanócyová, K.; Kubicová, Ľ.; Pindešová, D. Understanding Gender Differences in Meat Consumption with an Emphasis on the Perception of the Quality and Health Aspect of Meat. J. Microbiol. Biotechnol. Food Sci. 2023, 12, e9886. [Google Scholar]
- Feng, L.; Jiang, X.; Han, J.; Li, L.; Kitazawa, H.; Wang, X.; Liu, H. Properties of an active film based on glutenin/tamarind gum and loaded with binary microemulsion of melatonin/pummelo essential oil and its preservation for Agaricus bisporus. Food Chem. 2023, 429, 136901. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.; Jaiswal, S. Essential oils as additives in active food packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef]
- Tian, B.; Cheng, J.; Zhang, T.; Liu, Y.; Chen, D. Multifunctional chitosan-based film loaded with hops β-acids: Preparation, characterization, controlled release and antibacterial mechanism. Food Hydrocolloid. 2022, 124, 107337. [Google Scholar] [CrossRef]
- Trinh, B.; Chang, B.; Mekonnen, T. The barrier properties of sustainable multiphase and multicomponent packaging materials: A review. Prog. Mater. Sci. 2023, 133, 101071. [Google Scholar] [CrossRef]
- Siddiqui, S.; Sundarsingh, A.; Bahmid, N.; Nirmal, N.; Denayer, J.; Karimi, K. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4147–4185. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Holley, R. Antimicrobial and antioxidative strategies to reduce pathogens and extend the shelf life of fresh red meats. Compr. Rev. Food Sci. Food Saf. 2012, 11, 340–354. [Google Scholar] [CrossRef]
- Kartika, S.; Candogan, K.; Grimes, L.; Acton, J. Rinse Treatment and Oxygen Barrier Properties of Films for Improving Quality Retention in Vacuum-Skin Packaged Fresh Chicken. J. Food Sci. 2003, 68, 1762–1765. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C. A double-layer smart film based on gellan gum/modified anthocyanin and sodium carboxymethyl cellulose/starch/Nisin for application in chicken breast. Int. J. Biol. Macromol. 2023, 232, 123464. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, E.; Vargas, M.; Torres-Giner, S. Quality and shelf-life stability of pork meat fillets packaged in multilayer polylactide films. Foods. 2022, 11, 426. [Google Scholar] [CrossRef]
- Ren, Q.; Fang, K.; Yang, X.; Han, J. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends Food Sci. Technol. 2022, 119, 133–151. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, S.; Lin, J.; Zheng, H.; Lei, H.; Yu, Q.; Jiang, W. Active film preparation using pectin and polyphenols of watermelon peel and its applications for super-chilled storage of chilled lamb. Food Chem. 2023, 417, 135838. [Google Scholar] [CrossRef]
- Coombs, C.; Holman, B.; Friend, M.; Hopkins, D. Long-term red meat preservation using chilled and frozen storage combinations: A review. Meat Sci. 2017, 125, 84–94. [Google Scholar] [CrossRef] [PubMed]
- GB 5009.228-2016; China Food Safety Standard, Determination of Volatile Basic Nitrogen in Food. Available online: http://down.foodmate.net/standard/yulan.php?itemid=49376 (accessed on 19 July 2017).
- GB 4789.2-2022; China Food Safety Standard, Determination of Aerobie Plate Count in Food. Available online: http://down.foodmate.net/standard/yulan.php?itemid=123310 (accessed on 30 December 2022).
- Gao, Z.; Zhang, D.; Wu, R.; He, J.; Ma, J.; Sun, X.; Gu, M.; Wang, Z. Fluctuation of flavor quality in roasted duck: The consequences of raw duck preform’s repetitive freeze-thawing. Food Res. Int. 2024, 187, 114424. [Google Scholar] [CrossRef]
- Rood, L.; Bowman, J.; Ross, T.; Corkrey, R.; Pagnon, J.; Kaur, M.; Kocharunchitt, C. Spoilage potential of bacterial species from chilled vacuum-packed lamb. Food Microbiol. 2022, 107, 104093. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Yang, J.; Holman, B.; Tassou, C.; Papadopoulou, O.; Luo, X.; Zhu, L.; Mao, Y.; Zhang, Y. Exploration of the shelf-life difference between chilled beef and pork with similar initial levels of bacterial contamination. Meat Sci. 2024, 213, 109480. [Google Scholar] [CrossRef] [PubMed]
- NY/T 632-2002; Chinese Agricultural Industry Standard, Chilled Pork. Available online: http://down.foodmate.net/standard/yulan.php?itemid=10091 (accessed on 1 March 2003).
- Cauchie, E.; Delhalle, L.; Baré, G.; Tahiri, A.; Taminiau, B.; Korsak, N.; Burteau, S.; Fall, P.A.; Farnir, F.; Daube, G. Modeling the growth and interaction between Brochothrix thermosphacta, Pseudomonas spp., and Leuconostoc gelidum in minced pork samples. Front. Microbiol. 2022, 11, 639. [Google Scholar] [CrossRef]
- Lauritsen, C.; Kjeldgaard, J.; Ingmer, H.; Bisgaard, M.; Christensen, H. Microbiota encompassing putative spoilage bacteria in retail packaged broiler meat and commercial broiler abattoir. Int. J. Food Microbiol. 2019, 300, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.; Sin, L.; Tee, T.; Bee, S.; Rahmat, A.; Rahman, W.; Tan, A.C.; Vikhraman, M. Antimicrobial agents for food packaging applications. Trends Food Sci. Technol. 2013, 33, 110–123. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, D.; Wen, X.; Li, X.; Chen, L.; Zheng, X.; Fang, F.; Li, J.; Hou, C. Effects of chilling rate on the freshness and microbial community composition of lamb carcasses. LWT 2022, 153, 112559. [Google Scholar] [CrossRef]
- Wang, X.; Yao, Y.; Yu, J.; Cui, H.; Hayat, K.; Zhang, X.; Ho, C. Evolution of lean meat tenderness stimulated by coordinated variation of water status, protein structure and tissue histology during cooking of braised pork. Food Res. Int. 2023, 171, 113081. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wen, X.; Zhang, D.; Schroyen, M.; Wang, D.; Li, X.; Hou, C. Changes in the Freshness and Bacterial Community of Fresh Pork in Controlled Freezing Point Storage Assisted by Different Electrostatic Field Usage Frequencies. Food Bioprocess Technol. 2024, 17, 939–954. [Google Scholar] [CrossRef]
- Neath, K.; Del Barrio, A.; Lapitan, R.; Herrera, J.; Cruz, L.; Fujihara, T.; Muroya, S.; Chikuni, K.; Hirabayashi, M.; Kanai, Y. Difference in tenderness and pH decline between water buffalo meat and beef during postmortem aging. Meat Sci. 2007, 75, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Wei, Y.; Guo, X.; Lei, Y.; Deng, X.; Zhang, J. Dynamic changes of the microbial community and volatile organic compounds of the northern pike (Esox lucius) during storage. Foods 2023, 12, 2479. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Li, Z.; Li, M.; Liu, Y.; Zhang, D. The effect of temperature in the range of −0.8 to 4 °C on lamb meat color stability. Meat Sci. 2017, 134, 28–33. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, X.; Chen, Z.; Zhang, Y.; Du, M.; Dong, X.; Qin, L.; Zhu, B. Fresh and grilled eel volatile fingerprinting by e-Nose, GC-O, GC–MS and GC × GC-QTOF combined with purge and trap and solvent-assisted flavor evaporation. Food Res. Int. 2019, 115, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Soladoye, O.; Juárez, M.; Aalhus, J.; Shand, P.; Estévez, M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.; Holman, B.; Giteru, S.; Hopkins, D. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol. 2021, 109, 280–302. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, Y.; Luo, Y.; Li, X.; Hong, H. Evidence of myofibrillar protein oxidation and degradation induced by exudates during the thawing process of bighead carp fillets. Food Chem. 2024, 434, 137396. [Google Scholar] [CrossRef]
- Tan, C.; Li, X.; Yu, Y.; Nie, S.; Wen, Q.; Tu, Z.; Zhang, L. Effects of five thermal processing methods on the physicochemical properties and flavor characteristics of grass carp meat. LWT 2024, 206, 116599. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Bao, Y.; Tan, Y.; Lametsch, R.; Hong, H.; Luo, Y. Recent advances on characterization of protein oxidation in aquatic products: A comprehensive review. Crit. Rev. Food Sci. 2024, 64, 1572–1591. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Li, C.; Xu, B. Effect of frozen storage on the lipid oxidation, protein oxidation, and flavor profile of marinated raw beef meat. Food Chem. 2022, 376, 131881. [Google Scholar] [CrossRef]
- Hsieh, R.; Kinsella, J. Lipoxygenase generation of specific volatile flavor carbonyl compounds in fish tissues. J. Agr. Food Chem. 1989, 37, 279–286. [Google Scholar] [CrossRef]
- Campo, M.; Nute, G.; Hughes, S.; Enser, M.; Wood, J.; Richardson, R. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Ribeaucourt, D.; Bissaro, B.; Lambert, F.; Lafond, M.; Berrin, J. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol. Adv. 2022, 56, 107787. [Google Scholar] [CrossRef]
- Bassey, A.; Boateng, E.; Zhu, Z.; Zhou, T.; Nasiru, M.; Guo, Y.; Dou, H.; Ye, K.; Li, C.; Zhou, G. Volatilome evaluation of modified atmosphere packaged chilled and super-chilled pork loins using electronic nose and HS-GC-IMS integration. Food Packag. Shelf Life 2022, 34, 100953. [Google Scholar] [CrossRef]
- Apple, J.; Yancey, J. Water-Holding Capacity of Meat; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013; pp. 119–145. [Google Scholar]
- Gill, C.O.; Newton, K.G. The ecology of bacterial spoilage of fresh meat at chill temperatures. Meat Sci. 1978, 2, 207–217. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, R.; Li, X.; Wang, X.; Zeng, L.; Wen, X.; Huang, Q. Effect of oil-modified crosslinked starch as a new fat replacer on gel properties, water distribution, and microstructures of pork meat batter. Food Chem. 2023, 409, 135337. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, C.; Ma, G.; Yu, Q.; Zhang, L. LF-NMR determination of water distribution and its relationship with protein- related properties of yak and cattle during postmortem aging. Food Chem. X 2023, 20, 100891. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, X.; Hong, C.; Liu, N.; Ouyang, N.; Chen, J.; Ashokkumar, M.; Ma, H. Application of ultrasound treatment in pork marination: Effects on moisture migration and microstructure. Food Chem. 2024, 447, 138950. [Google Scholar] [CrossRef]
Storage Time (d) | 4 °C | −1 °C | |||||
---|---|---|---|---|---|---|---|
CHORP | CMORP | CLORP | FHORP | FMORP | FLORP | ||
L* | 0 | 40.63 ± 0.61 Aa | 40.63 ± 0.61 Ab | 40.63 ± 0.61 Ab | 40.63 ± 0.61 Aab | 40.63 ± 0.61 Aa | 40.63 ± 0.61 Ab |
7 | 42.13 ± 0.86 Aa | 41.42 ± 0.69 Aab | 42.85 ± 0.87 Aa | 41.90 ± 0.69 Aa | 40.84 ± 0.78 Aa | 40.97 ± 0.74 Aab | |
14 | 41.96 ± 0.45 Aa | 40.33 ± 0.44 BCb | 41.02 ± 0.39 ABCab | 39.73 ± 0.54 Cb | 40.17 ± 0.66 Ca | 41.79 ± 0.69 ABab | |
21 | 42.50 ± 0.55 Aa | 41.91 ± 0.64 Aab | 41.87 ± 0.55 Aab | 41.30 ± 0.71 Aab | 41.22 ± 0.63 Aa | 41.15 ± 0.53 Aab | |
28 | 41.51 ± 0.39 ABa | 42.90 ± 0.85 Aa | 42.47 ± 0.57 ABab | 41.13 ± 0.34 ABab | 40.93 ± 0.69 Ba | 42.65 ± 0.77 ABa | |
a* | 0 | 18.26 ± 0.51 Ab | 18.26 ± 0.51 Ab | 18.26 ± 0.51 Aa | 18.26 ± 0.51 Ab | 18.26 ± 0.51 Ab | 18.26 ± 0.51 Aa |
7 | 19.70 ± 0.47 Aab | 19.84 ± 0.43 Aa | 14.78 ± 0.90 Cbc | 18.86 ± 0.45 Ab | 19.66 ± 0.36 Aa | 17.08 ± 0.91 Ba | |
14 | 20.09 ± 0.62 ABa | 18.66 ± 0.26 Bb | 16.63 ± 0.58 Cab | 20.68 ± 0.36 Aa | 18.90 ± 0.41 Bab | 12.34 ± 0.74 Db | |
21 | 19.17 ± 0.30 Bab | 18.44 ± 0.32 Bb | 15.93 ± 0.47 Cbc | 21.05 ± 0.42 Aa | 18.77 ± 0.57 Bab | 12.45 ± 1.19 Db | |
28 | 17.90 ± 0.84 Ab | 17.42 ± 0.41 Ab | 14.53 ± 0.59 Bc | 18.36 ± 0.44 Ab | 17.76 ± 0.49 Ab | 13.06 ± 1.07 Bb | |
b* | 0 | 9.54 ± 0.40 Ac | 9.54 ± 0.40 Ac | 9.54 ± 0.40 Ac | 9.54 ± 0.40 Ac | 9.54 ± 0.40 Ac | 9.54 ± 0.40 Ac |
7 | 11.16 ± 0.31 ABab | 11.41 ± 0.32 ABa | 11.16 ± 0.39 Aa | 10.44 ± 0.36 Bc | 10.83 ± 0.31 ABab | 11.65 ± 0.52 Ab | |
14 | 11.76 ± 0.56 Ba | 10.90 ± 0.28 BCab | 11.36 ± 0.41 Ba | 11.72 ± 0.23 Bb | 10.21 ± 0.24 Cbc | 13.93 ± 0.36 Aa | |
21 | 11.04 ± 0.34 BCDab | 10.46 ± 0.33 CDabc | 9.94 ± 0.41 Dbc | 12.78 ± 0.54 Aa | 11.49 ± 0.66 BCa | 11.96 ± 0.55ABb | |
28 | 10.30 ± 0.24 Bbc | 9.99 ± 0.37 Bbc | 10.82 ± 0.48 Bab | 9.93 ± 0.27 Bc | 10.30 ± 0.24 Bbc | 11.94 ± 0.46 Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Chai, X.; Wang, S.; Zhao, T.; Zheng, X.; Rao, W.; Yang, H.; Zhang, D.; Hou, C. The Effects of Packaging Barrier Properties Coupled with Storage Temperatures on the Dominant Spoilage Bacteria Composition and Freshness Quality of Lamb. Foods 2025, 14, 343. https://doi.org/10.3390/foods14030343
Wang D, Chai X, Wang S, Zhao T, Zheng X, Rao W, Yang H, Zhang D, Hou C. The Effects of Packaging Barrier Properties Coupled with Storage Temperatures on the Dominant Spoilage Bacteria Composition and Freshness Quality of Lamb. Foods. 2025; 14(3):343. https://doi.org/10.3390/foods14030343
Chicago/Turabian StyleWang, Debao, Xiaoyu Chai, Su Wang, Tongtong Zhao, Xiaochun Zheng, Weili Rao, Huiguo Yang, Dequan Zhang, and Chengli Hou. 2025. "The Effects of Packaging Barrier Properties Coupled with Storage Temperatures on the Dominant Spoilage Bacteria Composition and Freshness Quality of Lamb" Foods 14, no. 3: 343. https://doi.org/10.3390/foods14030343
APA StyleWang, D., Chai, X., Wang, S., Zhao, T., Zheng, X., Rao, W., Yang, H., Zhang, D., & Hou, C. (2025). The Effects of Packaging Barrier Properties Coupled with Storage Temperatures on the Dominant Spoilage Bacteria Composition and Freshness Quality of Lamb. Foods, 14(3), 343. https://doi.org/10.3390/foods14030343