Simultaneous Determination and Dietary Risk Assessment of 26 Pesticide Residues in Wheat Grain and Bran Using QuEChERS-UHPLC-MS/MS
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Standard Solution Preparation
2.3. Instrumentation and Chromatographic Conditions
2.4. Sample Pre-Treament
2.5. Method Validation
2.5.1. Linearity and Limit of Quantification
2.5.2. Precision and Accuracy
2.5.3. Matrix Effect
2.6. Sample Collection
2.7. Health Risk Assessment
2.7.1. Chronic Risk Assessment
2.7.2. Acute Risk Assessment
3. Results and Discussion
3.1. Optimization of Extraction Procedure
3.2. Method Validation
3.3. Application to Real Samples
3.4. Dietary Exposure Assessment
3.4.1. Chronic Risk Assessment
3.4.2. Acute Risk Assessment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT-Compare Data. 2023. Available online: https://www.fao.org/faostat/en/#compare (accessed on 10 March 2025).
- Grewal, S.; Goel, S. Current research status and future challenges to wheat production in India. Indian J. Biotechnol. 2015, 14, 445–454. Available online: https://www.researchgate.net/publication/301360788 (accessed on 10 March 2025).
- Wang, J.; Hasanalieva, G.; Wood, L.; Anagnostopoulos, C.; Ampadogiannis, G.; Bempelou, E.; Kiousi, M.; Markellou, E.; Iversen, P.O.; Seal, C.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour—Results of a retail survey in the UK and Germany—3. Pesticide residue content. Food Chem. X 2020, 7, 100089. [Google Scholar] [CrossRef]
- Onipe, O.O.; Jideani, A.I.; Beswa, D. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Pesticide Registration Information Query. China Pesticide Information Network. 2024. Available online: http://www.chinapesticide.org.cn/zwb/dataCenter (accessed on 28 March 2025).
- Meng, P.; Sha, M.; Zhang, Z.Y. Advances in the Application of Surface-Enhanced Raman Spectroscopy for Quality Control of Cereal Foods. Foods 2025, 14, 3551. [Google Scholar] [CrossRef]
- Tang, T.; Lei, C.T.; Lv, L.; Wang, F.D.; Cheng, X.; Gao, M.Y.; Lou, J.J.; Zhu, Y.K.; Xu, N.H.; Zhang, Q.; et al. Systematic assessments of ecological and health risks of soil pesticide residues. Environ. Pollut. 2025, 375, 126348. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Y.; Zhang, S.; Ma, L.; Sun, Q.; Zhao, L.; Wang, W.; Dong, M. Optimization and validation of an oxidation and solid-phase extraction procedure for analysis of imidacloprid and its metabolites in cereals using ultra-performance liquid chromatography tandem mass spectrometry. Food Control 2023, 152, 109878. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Qi, X.X.; Wang, X.Y.; Liang, L.; Zuo, B.J. Residue dissipation and dietary risk assessment of trifloxystrobin, trifloxystrobin acid, and tebuconazole in wheat under field conditions. Int. J. Environ. Anal. Chem. 2022, 102, 1598–1612. [Google Scholar] [CrossRef]
- Kolberg, D.I.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Development of a fast multiresidue method for the determination of pesticides in dry samples (wheat grains, flour and bran) using QuEChERS based method and GC–MS. Food Chem. 2011, 125, 1436–1442. [Google Scholar] [CrossRef]
- Qin, F.Y.; Bi, Y.Y.; Han, L.J.; Song, S.Y.; Lv, X.R. Method Validation and Residue Analysis of Mesosulfuron-Methyl and Diflufenican in Wheat Field Trial by Liquid Chromatography with Tandem Mass Spectrometry. Food Anal. Methods 2022, 15, 2617–2624. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, F.W.; Duan, Y.X.; Lu, X.T.; Peng, X.G.; Wang, J.X.; Pan, L.; Liu, W.T.; Wang, H.Z. Method validation and dissipation kinetics of the novel HPPD-inhibiting herbicide cypyrafluone in winter wheat using QuEChERS method coupled with UPLC-MS/MS. Ecotoxicol. Environ. Saf. 2023, 260, 115090. [Google Scholar] [CrossRef]
- Yigitsoy, C.; Sadighfard, S. Pesticide residues in wheat grains in Türkiye (2021–2024): Multi-year monitoring and health risk assessment. J. Food Compos. Anal. 2025, 147, 108053. [Google Scholar] [CrossRef]
- Mebdoua, S.; Ounane, G. Evaluation of pesticide residues in wheat grains and its products from Algeria. Food Addit. Contam. Part B 2019, 12, 289–295. [Google Scholar] [CrossRef]
- Kalantary, R.R.; Jaafarzadeh, N.; Kermani, M.; Hesami Arani, M. Deltamethrin and malathion pesticide residues determination in the wheat and probabilistic health risk assessment by Monte Carlo simulation: A case study in Aran-Bidgol, Iran. Int. J. Environ. Anal. Chem. 2024, 104, 5701–5712. [Google Scholar] [CrossRef]
- Teló, G.M.; Senseman, S.A.; Marchesan, E.; Camargo, E.R.; Jones, T.; McCauley, G. Residues of Thiamethoxam and Chlorantraniliprole in Rice Grain. J. Agric. Food Chem. 2015, 63, 2119–2126. [Google Scholar] [CrossRef]
- SANTE. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. SANTE/11312/2021. 2021. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 10 March 2025).
- Trufelli, H.; Palma, P.; Famiglini, G.; Cappiello, A. An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom. Rev. 2011, 30, 491–509. [Google Scholar] [CrossRef] [PubMed]
- Balkan, T.; Karaağaçlı, H. Determination of 301 pesticide residues in tropical fruits imported to Turkey using LC–MS/MS and GC-MS. Food Control 2023, 147, 109576. [Google Scholar] [CrossRef]
- Ministry of Agriculture of the People’s Republic of China Notice No. 2308. China Pesticide Information Network. 2017. Available online: www.chinapesticide.org.cn/zgnyxxw/zwb/detail/13124 (accessed on 30 March 2025).
- Li, L.M.; Rao, K.Q.; Kong, L.Z.; Yao, C.H.; Xiang, H.D.; Zhai, F.Y.; Ma, G.S.; Yang, X.G. A description on the Chinese national nutrition and health survey in 2002. Zhonghua Liu Xing Bing Xue Za Zhi = Zhonghua Liuxingbingxue Zazhi 2025, 26, 478–484. [Google Scholar]
- Gu, M.Y.; Wang, P.S.; Shi, S.M.; Xue, J. Dietary Risk Assessment and Ranking of Multipesticides in Dendrobium officinale. J. Food Qual. 2021, 2021, 9916758. [Google Scholar] [CrossRef]
- WHO. Global Environment Monitoring System (GEMS)/Food Contamination Monitoring and Assessment Programme. 2014. Available online: https://www.who.int/teams/nutrition-and-food-safety/databases/global-environment-monitoring-system-food-contamination (accessed on 28 November 2025).
- WHO. Dietary Risk Assessment Guidelines for Pesticide Residues. 2022. Available online: https://apps.who.int/foscollab/Download/DownloadConso (accessed on 28 November 2025).
- FAO. NSP-JMPR Reports and Evaluations. 2025. Available online: https://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/jmpr/jmpr-rep/en/ (accessed on 28 November 2025).
- Wu, X.Q.; Li, J.X.; Wei, J.; Tong, K.X.; Xie, Y.J.; Chang, Q.Y.; Yu, X.X.; Li, B.; Lu, M.L.; Fan, C.L.; et al. Multi-residue analytical method development and dietary exposure risk assessment of 345 pesticides in mango by LC-Q-TOF/MS. Food Control 2025, 170, 111016. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.; Štajnbaher, D.; Schenck, F. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Kaczynski, P.; Lozowicka, B. One-Step QuEChERS-Based Approach to Extraction and Cleanup in Multiresidue Analysis of Sulfonylurea Herbicides in Cereals by Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods 2017, 10, 147–160. [Google Scholar] [CrossRef]
- Pang, X.; Qiu, J.; Zhang, Z.Y.; Li, P.; Xing, J.T.; Su, X.; Liu, G.Q.; Yu, C.Y.; Weng, R. Wide-Scope Multi-residue analysis of pesticides in beef by gas chromatography coupled with quadrupole Orbitrap mass spectrometry. Food Chem. 2023, 407, 135171. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.M.; Fan, S.F.; Yang, L.Q.; He, L.N.; Zhai, H.W.; Ren, X.W.; Li, Q.; Zhang, Y. Rapid screening of 420 pesticide residues in fruits and vegetables using ultra high performance liquid chromatography combined with quadrupole-time of flight mass spectrometry. Food Sci. Hum. Wellness 2023, 12, 1064–1070. [Google Scholar] [CrossRef]
- Kang, S.; Chang, N.; Zhao, Y.; Pan, C.P. Development of a Method for the Simultaneous Determination of Six Sulfonylurea Herbicides in Wheat, Rice, and Corn by Liquid Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 2011, 59, 9776–9781. [Google Scholar] [CrossRef]
- Wu, X.L.; Ding, Z.M. Evaluation of matrix effects for pesticide residue analysis by QuEChERs coupled with UHPLC-MS/MS in complex herbal matrix. Food Chem. 2023, 405, 134755. [Google Scholar] [CrossRef]
- Kim, K.G.; Park, D.W.; Kang, G.R.; Kim, T.S.; Yang, Y.; Moon, S.J.; Choi, E.A.; Ha, D.R.; Kim, E.S.; Cho, B.S. Simultaneous determination of plant growth regulator and pesticides in bean sprouts by liquid chromatography-tandem mass spectrometry. Food Chem. 2016, 208, 239–244. [Google Scholar] [CrossRef]
- Ni, Y.X.; Yang, H.; Zhang, H.T.; He, Q.A.; Huang, S.Q.; Qin, M.L.; Chai, S.S.; Gao, H.H.; Ma, Y.N. Analysis of four sulfonylurea herbicides in cereals using modified Quick, Easy, Cheap, Effective, Rugged, and Safe sample preparation method coupled with liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2018, 1537, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, X.; Han, L.; Wang, Q.; Kong, X.; Xu, M.; Wang, K.; Xu, H.; Shen, Y.; Gao, G.; et al. Determination and risk assessment of 31 pesticide residues in apples from China’s major production regions. J. Food Compos. Anal. 2023, 118, 105188. [Google Scholar] [CrossRef]
- Lu, C.B.; Hou, K.X.; Zhou, T.T.; Wang, X.L.; Zhang, J.W.; Cheng, C.; Du, Z.K.; Li, B.; Wang, J.H.; Wang, J.; et al. Characterization of the responses of soil micro-organisms to azoxystrobin and the residue dynamics of azoxystrobin in wheat-corn rotation fields over two years. Chemosphere 2023, 318, 137918. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Sun, R.X.; Su, Y.; Hu, J.Y.; Liu, X.L. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China. Ecotoxicol. Environ. Saf. 2021, 207, 111236. [Google Scholar] [CrossRef]
- Wu, X.; Ma, J.; Wang, H.; Zhou, L.; Li, T.; An, L.; Wu, J.; Zhang, J. Residue and dissipation of epoxiconazole in Triticum aestivum L. and soil under field conditions. Chin. J. Pestic. Sci. 2017, 19, 474–481. [Google Scholar] [CrossRef]
- Medina, M.B.; Munitz, M.S.; Resnik, S.L. Pesticides in randomly collected rice commercialised in Entre Rios, Argentina. Food Addit. Contam. Part B-Surveill. 2019, 12, 252–258. [Google Scholar] [CrossRef]
- Xiong, S. Dietary Risk Assessment of Epoxiconazole and Kresomix-Methyl on Rice and the Adsorption of Epoxiconazole in Biochar. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2019; p. 19. [Google Scholar] [CrossRef]
- Saraswati, M.; Naik, R.H.; Pallavi, M.S.; Bheemanna, M.; Paramasivam, M.; Kumar, P.; Poornima, G.; Ratnamma, P.; Sujay, H.; Naik, M.N.; et al. LC-MS/MS and GC-MS/MS quantification of pesticide residues in paddy grains and processed rice and dietary risk assessment. Microchem. J. 2025, 212, 113391. [Google Scholar] [CrossRef]
- Pareja, L.; Colazzo, M.; Pérez-Parada, A.; Besil, N.; Heinzen, H.; Böcking, B.; Cesio, V.; Fernández-Alba, A.R. Occurrence and Distribution Study of Residues from Pesticides Applied under Controlled Conditions in the Field during Rice Processing. J. Agric. Food Chem. 2012, 60, 4440–4448. [Google Scholar] [CrossRef] [PubMed]
- Janaki, P.; Nithya, C.; Kalaiyarasi, D.; Sakthivel, N.; Prabhakaram, N.K.; Chinnusamy, C. Residue of bensulfuron methyl in soil and rice following its pre- and post-emergence application. Plant Soil Environ. 2016, 62, 428–434. [Google Scholar] [CrossRef]
- Li, Y.; Hai, N.; Lin, J.; Huang, Y.; Lin, Z.; Liang, B.; Fang, S. Analysis of the critical threshold value of tobacco phytotoxicity caused by bensulfuron methyl residue in soil. Agrochemicals 2020, 59, 509–511+522. [Google Scholar] [CrossRef]
- Li, Z.-J.; Xu, J.-M.; Muhammad, A.; Ma, G.-R. Effect of bound residues of metsulfuron-methyl in soil on rice growth. Chemosphere 2005, 58, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.F.; Liu, F.; Zhang, X.B.; Dong, J.N.; Qiao, Y.X.; Zhang, R.Y.; Liao, H. Dissipation rates, residue distribution and dietary risk assessment of isoprothiolane and tebuconazole in paddy field using UPLC-MS/MS. Int. J. Environ. Anal. Chem. 2022, 102, 5200–5212. [Google Scholar] [CrossRef]
- Dors, G.C.; Primel, E.G.; Fagundes, C.A.; Mariot, C.H.; Badiale-Furlong, E. Distribution of pesticide residues in rice grain and in its coproducts. J. Braz. Chem. Soc. 2011, 22, 1921–1930. [Google Scholar] [CrossRef]
- Jang, S.; Xu, Z. Lipophilic and Hydrophilic Antioxidants and Their Antioxidant Activities in Purple Rice Bran. J. Agric. Food Chem. 2009, 57, 858–862. [Google Scholar] [CrossRef]
- Yan, B.; Fei, Y.; Gao, D. Residues of fungicide epoxiconazole in rice and paddy in Chinese field ecosystem. Pest Manag. Sci. 2015, 71, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Gazza, L.; Beni, C.; Barbini, D.A.; Picardo, V.; Gambale, C.; Amendola, G. Processing factors of pesticide residues in durum wheat milling fractions and pasta. Food Chem. 2025, 477, 143622. [Google Scholar] [CrossRef] [PubMed]
- Hakme, E.; Hajeb, P.; Herrmann, S.S.; Poulsen, M.E. Processing factors of pesticide residues in cereal grain fractions. Food Control 2024, 161, 110369. [Google Scholar] [CrossRef]
- Li, T.; Li, L.; Li, S.Z.; Ren, X.; Wu, M.N.; Liu, F.J.; Cheng, Y.P.; Chen, Z.L. Integrating processing factors and large-scale cabbage cultivation to understand the fate tendency and health risks of tolfenpyrad using deterministic and probabilistic models. J. Hazard. Mater. 2025, 486, 137131. [Google Scholar] [CrossRef]
- Li, T.; Wu, X.J.; Zheng, L.F.; Cheng, Y.P.; Zhao, L.L.; Chen, Z.L. Quantitative tracing of typical herbicides and their metabolites in sorghum agrosystems for fate tendency and cumulative risk. Food Chem. 2025, 464, 141638. [Google Scholar] [CrossRef]
- Kosimov, D.; Ergashev, R.; Mavjudova, A.; Kuziev, S. Organophosphorus Pesticide Degradation by Microorganisms: A Review. Front. Biosci. (Elite Ed.) 2025, 17, 38805. [Google Scholar] [CrossRef]
- Koenig, J.A.; Acon Chen, C.; Shih, T.-M. Development of a Larval Zebrafish Model for Acute Organophosphorus Nerve Agent and Pesticide Exposure and Therapeutic Evaluation. Toxics 2020, 8, 106. [Google Scholar] [CrossRef]
- Zentai, A.; Szabó, I.J.; Kerekes, K.; Ambrus, Á. Risk assessment of the cumulative acute exposure of Hungarian population to organophosphorus pesticide residues with regard to consumers of plant based foods. Food Chem. Toxicol. 2016, 89, 67–72. [Google Scholar] [CrossRef] [PubMed]






| Pesticides | Type | Molecular Formula | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | Cone Voltage (V) | Collision Energy (eV) |
|---|---|---|---|---|---|---|---|
| Acetamiprid | Insecticide | C10H11ClN4 | 2.54 | 223 | 56.1/126 * | 34 | 15/20 |
| Azoxystrobin | Fungicide | C22H17N3O5 | 4.4 | 404 | 329/372 * | 28 | 30/15 |
| Bensulfuron methyl | Herbicide | C16H18N4O7S | 3.44 | 411.1 | 149 */128 | 30 | 22/20 |
| Chlortoluron | Herbicide | C10H13ClN2O | 3.12 | 213 | 46/72 * | 25 | 15/15 |
| Clothianidin | Insecticide | C6H8ClN5O2S | 2.47 | 250 | 132/169 * | 30 | 18/12 |
| Cyproconazole | Fungicide | C15H18CIN3O | 4.11 | 292.2 | 70.2 */125.1 | 36 | 18/24 |
| Diazinon | Insecticide | C12H21N2O3PS | 5.13 | 305.1 | 96.9/169 * | 31 | 35/22 |
| Dichlorvos | Insecticide | C4H7Cl2O4P | 2.90 | 221 | 109 */79 | 20 | 15/25 |
| Difenoconazole | Fungicide | C19H17Cl2N3O3 | 5.03 | 406 | 111.1/251.1 * | 37 | 60/25 |
| Diflufenican | Herbicide | C19H11F5N2O2 | 5.18 | 359.1 | 266 */246 | 26 | 24/32 |
| Dimethoate | Insecticide | C5H12NO3PS2 | 2.54 | 230.1 | 125 */199 | 40 | 20/10 |
| Diniconazole | Fungicide | C15H17Cl2N3O | 4.91 | 326.1 | 70.2 */159 | 46 | 25/34 |
| Epoxiconazole | Fungicide | C17H13ClFN3O | 4.51 | 330 | 121.04/101 * | 40 | 20/40 |
| Fenaminstrobin | Fungicide | C17H19NO4 | 5.19 | 434 | 171 */212 | 10 | 17/15 |
| Flumetsulam | Herbicide | C12H9F2N5O2S | 2.58 | 326.1 | 109/129 * | 37 | 50/25 |
| Hexaconazole | Fungicide | C14H17Cl2N3O | 4.83 | 314 | 70.1*/159 | 40 | 22/28 |
| Imidacloprid | Insecticide | C9H10ClN5O2 | 2.51 | 256.1 | 175.1 */209.1 | 30 | 20/15 |
| Isoproturon | Herbicide | C12H18N2O | 3.28 | 207 | 47/72 * | 30 | 16/22 |
| Kresoxim-methyl | Fungicide | C18H19NO4 | 4.99 | 314.1 | 116 */206 | 15 | 12/7 |
| Metsulfuron-methyl | Herbicide | C14H15N5O6S | 2.87 | 411.2 | 167 */198.9 | 30 | 30/15 |
| Myclobutanil | Fungicide | C15H17ClN4 | 4.50 | 289.1 | 70.2 */125.1 | 34 | 18/32 |
| Pirimicarb | Insecticide | C11H18N4O2 | 2.41 | 239.1 | 72 */182.1 | 30 | 18/15 |
| Tebuconazole | Fungicide | C16H22ClN3O | 4.71 | 308 | 70.1 */125 | 40 | 22/40 |
| Thiamethoxam | Insecticide | C8H10ClN5O3S | 2.40 | 292 | 132/211.2 * | 40 | 20/12 |
| Triazophos | Insecticide | C12H16N3O3PS | 4.81 | 314.1 | 118.9 */161.9 | 31 | 35/18 |
| Trichlorfon | Insecticide | C4H8Cl3O4P | 2.44 | 257 | 79/109 * | 28 | 30/18 |
| Analyte | Solvent | Wheat Grain | Wheat Bran | |||||
|---|---|---|---|---|---|---|---|---|
| Calibration Curve | R2 | Calibration Curve | R2 | ME (%) | Calibration Curve | R2 | ME (%) | |
| Acetamiprid | y = 1.925 × 106x + 7.200 × 102 | 0.9999 | y = 1.724 × 106x + 1.654 × 103 | 0.9996 | −10.47 | y = 1.310 × 106x + 3.007 × 103 | 0.9997 | −31.95 |
| Azoxystrobin | y = 5.247 × 106x + 8.730 × 102 | 0.9999 | y = 7.109 × 106x + 8.519 × 103 | 0.9995 | 35.49 | y = 8.545 × 106x + 2.382 × 104 | 0.9996 | 62.85 |
| Bensulfuron methyl | y = 2.831 × 106x − 5.950 × 102 | 0.9999 | y = 3.701 × 106x + 2.433 × 103 | 0.9999 | 30.71 | y = 4.410 × 106x − 1.394 × 103 | 0.9997 | 55.78 |
| Chlortoluron | y = 6.238 × 106x − 2.390 × 102 | 0.9998 | y = 6.382 × 106x + 3.756 × 103 | 0.9996 | 1.57 | y = 5.181 × 106x − 4.120 × 103 | 0.9995 | −17.00 |
| Clothianidin | y = 4.555 × 105x + 1.849 × 105 | 0.9997 | y = 3.228 × 105x + 7.610 × 102 | 0.9997 | −29.14 | y = 2.198 × 105x + 1.759 × 103 | 0.9988 | −51.75 |
| Cyproconazole | y = 6.546 × 106x + 2.829 × 103 | 0.9999 | y = 6.128 × 106x + 4.475 × 103 | 0.9999 | −6.38 | y = 5.398 × 106x + 1.100 × 103 | 0.9998 | −17.54 |
| Diazinon | y = 4.104 × 107x − 1.343 × 105 | 0.9998 | y = 3.354 × 106x + 2.383 × 104 | 0.9999 | −91.83 | y = 2.001 × 107x + 1.135 × 104 | 0.9996 | −51.23 |
| Dichlorvos | y = 9.001 × 106x + 1.826 × 105 | 0.9960 | y = 7.693 × 106x + 1.150 × 103 | 0.9990 | 22.44 | y = 6.354 × 106x + 3.203 × 104 | 0.9975 | 1.13 |
| Difenoconazole | y = 7.124 × 106x − 1.078 × 104 | 0.9999 | y = 5.542 × 106x + 1.898 × 103 | 0.9997 | −22.21 | y = 1.929 × 106x + 5.26 × 102 | 0.9998 | −8.26 |
| Diflufenican | y = 1.306 × 107x − 4.901 × 103 | 0.9997 | y = 1.719 × 107x + 1.688 × 104 | 0.9999 | 31.63 | y = 1.197 × 107x + 2.255 × 104 | 0.9998 | −72.92 |
| Dimethoate | y = 2.781 × 106x − 3.610 × 102 | 0.9998 | y = 1.709 × 106x + 2.219 × 103 | 0.9999 | −38.55 | y = 1.183 × 106x + 4.957 × 103 | 0.9998 | −57.49 |
| Diniconazole | y = 7.137 × 106x + 7.200 × 102 | 0.9999 | y = 8.783 × 106x + 5.000 × 104 | 0.9999 | 23.06 | y = 6.410 × 106x + 9.208 × 103 | 0.9997 | −10.19 |
| Epoxiconazole | y = 2.346 × 106x − 1.861 × 103 | 0.9997 | y = 2.330 × 105x + 5.003 × 103 | 0.9993 | −90.07 | y = 1.942 × 106x + 7.745 × 103 | 0.9989 | −17.24 |
| Fenaminstrobin | y = 1.565 × 107x − 2.214 × 103 | 0.9999 | y = 1.328 × 107x + 1.433 × 104 | 0.9999 | −15.17 | y = 9.219 × 106x + 2.201 × 103 | 0.9996 | −41.11 |
| Flumetsulam | y = 2.625 × 106x + 8.190 × 102 | 0.9999 | y = 2.330 × 106x + 1.969 × 103 | 0.9997 | 11.27 | y = 1.466 × 106x + 4.800 × 103 | 0.9997 | −44.14 |
| Hexaconazole | y = 5.566 × 106x + 1.881 × 104 | 0.9970 | y = 7.227 × 106x + 3.091 × 104 | 0.9995 | 29.84 | y = 5.627 × 106x + 4.042 × 104 | 0.9996 | 1.10 |
| Imidacloprid | y = 5.180 × 105x + 1.700 × 102 | 0.9999 | y = 4.162 × 105x + 4.260 × 102 | 0.9998 | −19.65 | y = 2.992 × 105x + 3.506 × 103 | 0.9989 | −42.23 |
| Isoproturon | y = 8.141 × 106x − 1.327 × 103 | 0.9998 | y = 8.526 × 106x + 7.472 × 103 | 0.9998 | 4.72 | y = 7.659 × 106x − 6.180 × 102 | 0.9997 | −5.93 |
| Kresoxim-methyl | y = 2.844 × 105x − 1.000 × 102 | 0.9999 | y = 2.249 × 105x + 3.520 × 102 | 0.9996 | −20.92 | y = 9.482 × 104x + 5.030 × 102 | 0.9988 | −66.66 |
| Metsulfuron-methyl | y = 2.631 × 106x + 2.208 × 103 | 0.9996 | y = 4.487 × 106x + 5.776 × 103 | 0.9999 | 70.51 | y = 3.479 × 106x + 5.900 × 101 | 0.9997 | 32.20 |
| Myclobutanil | y = 4.562 × 106x + 1.899 × 103 | 0.9999 | y = 4.454 × 106x + 2.797 × 103 | 0.9999 | −2.37 | y = 3.891 × 106x + 2.403 × 103 | 0.9995 | −14.71 |
| Pirimicarb | y = 2.057 × 108x + 1.849 × 105 | 0.9998 | y = 2.118 × 108x + 9.480 × 104 | 0.9998 | 2.97 | y = 1.891 × 108x + 5.004 × 104 | 0.9998 | −8.10 |
| Tebuconazole | y = 8.610 × 106x − 5.680 × 102 | 0.9999 | y = 8.456 × 106x + 4.180 × 105 | 0.9993 | −1.79 | y = 6.792 × 106x + 1.716 × 105 | 0.9996 | −21.12 |
| Thiamethoxam | y = 1.397 × 107x + 6.632 × 104 | 0.9960 | y = 9.586 × 106x + 1.303 × 104 | 0.9993 | −31.39 | y = 5.613 × 106x + 1.105 × 104 | 0.9998 | −59.82 |
| Triazophos | y = 1.210 × 108x + 3.927 × 105 | 0.9968 | y = 1.737 × 108x + 2.675 × 105 | 0.9991 | 43.47 | y = 1.445 × 108x + 1.431 × 105 | 0.9994 | 19.42 |
| Trichlorfon | y = 2.314 × 107x − 9.036 × 104 | 0.9949 | y = 1.866 × 107x + 2.171 × 104 | 0.9998 | −19.36 | y = 1.281 × 107x + 9.128 × 104 | 0.9999 | −44.63 |
| Pesticides | Wheat Grain | Wheat Bran | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.005 (mg kg−1) | 0.1 (mg kg−1) | 0.2 (mg kg−1) | 0.01 (mg kg−1) | 0.1 (mg kg−1) | 0.2 (mg kg−1) | |||||||
| Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | Recovery (%) | RSD (%) | |
| Acetamiprid | 101.8 | 5.6 | 91.0 | 15.7 | 76.5 | 3.6 | 101.9 | 2.5 | 99.1 | 4.6 | 94.7 | 2.2 |
| Azoxystrobin | 104.4 | 5.0 | 98.1 | 9.7 | 86.3 | 8.8 | 107.7 | 2.7 | 103.5 | 4.6 | 104.4 | 0.9 |
| Bensulfuron methyl | 111.3 | 9.0 | 100.5 | 12.4 | 87.1 | 3.5 | 110.7 | 2.4 | 104.5 | 3.3 | 97.7 | 1.7 |
| Chlortoluron | 116.8 | 6.3 | 93.7 | 13.7 | 73.9 | 2.4 | 101.5 | 5.0 | 99.4 | 2.6 | 95.8 | 2.6 |
| Clothianidin | 97.5 | 10.7 | 95.2 | 14.6 | 80.1 | 3.5 | 93.9 | 9.7 | 102.6 | 3.3 | 95.2 | 2.8 |
| Cyproconazole | 102.6 | 9.6 | 81.2 | 5.9 | 85.3 | 1.8 | 104.2 | 1.9 | 101.4 | 2.6 | 93.9 | 2.1 |
| Diazinon | 98.9 | 4.3 | 88.4 | 3.8 | 81.9 | 2.8 | 94.1 | 4.7 | 95.3 | 2.4 | 87.7 | 4.1 |
| Dichlorvos | 103.6 | 8.3 | 81.9 | 6.7 | 92.4 | 6.8 | 97.6 | 7.1 | 94.7 | 18.5 | 95.8 | 2.4 |
| Difenoconazole | 102.1 | 9.1 | 96.6 | 11.7 | 81.8 | 2.1 | 101.1 | 3.4 | 101.4 | 3.7 | 96.9 | 2.7 |
| Diflufenican | 92.9 | 3.2 | 94.6 | 3.6 | 78.3 | 5.1 | 102.0 | 10.2 | 92.3 | 1.1 | 101.7 | 8.9 |
| Dimethoate | 99.6 | 3.5 | 86.6 | 12.9 | 77.2 | 1.1 | 98.4 | 3.7 | 100.8 | 3.6 | 92.8 | 2.2 |
| Diniconazole | 105.6 | 3.9 | 92.1 | 12.5 | 80.5 | 2.5 | 97.9 | 1.7 | 97.9 | 1.4 | 93.1 | 2.4 |
| Epoxiconazole | 108.8 | 4.3 | 109.3 | 2.4 | 84.7 | 2.1 | 107.2 | 0.8 | 103.6 | 1.6 | 98.4 | 2.7 |
| Fenaminstrobin | 107.4 | 6.9 | 88.5 | 6.5 | 84.1 | 3.1 | 102.7 | 4.1 | 97.8 | 4.6 | 93.1 | 5.8 |
| Flumetsulam | 101.7 | 8.9 | 92.3 | 11.8 | 73.2 | 4.8 | 98.4 | 3.9 | 99.3 | 2.4 | 91.7 | 2.1 |
| Hexaconazole | 101.9 | 4.4 | 103.2 | 9.9 | 83.1 | 3.7 | 93.0 | 2.9 | 96.3 | 3.0 | 93.6 | 1.9 |
| Imidacloprid | 98.3 | 6.2 | 110.7 | 17.1 | 85.8 | 4.3 | 105.9 | 8.1 | 105.4 | 6.7 | 98.5 | 3.6 |
| Isoproturon | 102.0 | 10.2 | 83.4 | 10.3 | 81.6 | 1.5 | 92.3 | 1.1 | 98.7 | 1.7 | 92.1 | 1.6 |
| Kresoxim-methyl | 101.6 | 9.5 | 108.6 | 17.9 | 88.4 | 5.5 | 99.0 | 10.7 | 99.4 | 3.0 | 94.5 | 4.2 |
| Metsulfuron-methyl | 102.8 | 6.6 | 88.5 | 6.6 | 88.2 | 4.9 | 105.1 | 4.2 | 101.7 | 1.8 | 97.3 | 3.3 |
| Myclobutanil | 105.5 | 7.2 | 98.6 | 7.7 | 89.4 | 2.3 | 104.5 | 3.2 | 97.9 | 4.5 | 101.2 | 3.8 |
| Pirimicarb | 106.3 | 6.9 | 86.4 | 2.9 | 102.1 | 2.2 | 103.2 | 3.9 | 103.7 | 1.0 | 95.5 | 1.9 |
| Tebuconazole | 97.6 | 8.6 | 100.9 | 3.0 | 92.8 | 4.2 | 103.1 | 4.3 | 99.6 | 4.1 | 93.8 | 3.3 |
| Thiamethoxam | 93.9 | 3.3 | 83.8 | 3.0 | 84.9 | 3.2 | 97.6 | 5.9 | 101.2 | 1.4 | 93.5 | 1.9 |
| Triazophos | 103.8 | 4.9 | 84.7 | 4.8 | 88.4 | 3.7 | 101.7 | 2.2 | 102.1 | 2.0 | 97.1 | 2.9 |
| Trichlorfon | 104.4 | 8.3 | 86.4 | 4.1 | 102.0 | 2.6 | 102.3 | 4.0 | 103.7 | 2.6 | 95.6 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, Q.; Dong, X.; Qiao, X.; Li, C.; Cao, J.; Ren, P.; Li, J.; Qin, S. Simultaneous Determination and Dietary Risk Assessment of 26 Pesticide Residues in Wheat Grain and Bran Using QuEChERS-UHPLC-MS/MS. Foods 2025, 14, 4351. https://doi.org/10.3390/foods14244351
Zhang H, Liu Q, Dong X, Qiao X, Li C, Cao J, Ren P, Li J, Qin S. Simultaneous Determination and Dietary Risk Assessment of 26 Pesticide Residues in Wheat Grain and Bran Using QuEChERS-UHPLC-MS/MS. Foods. 2025; 14(24):4351. https://doi.org/10.3390/foods14244351
Chicago/Turabian StyleZhang, Hongwei, Quan Liu, Xinhui Dong, Xueyang Qiao, Chunyong Li, Junli Cao, Pengcheng Ren, Jindong Li, and Shu Qin. 2025. "Simultaneous Determination and Dietary Risk Assessment of 26 Pesticide Residues in Wheat Grain and Bran Using QuEChERS-UHPLC-MS/MS" Foods 14, no. 24: 4351. https://doi.org/10.3390/foods14244351
APA StyleZhang, H., Liu, Q., Dong, X., Qiao, X., Li, C., Cao, J., Ren, P., Li, J., & Qin, S. (2025). Simultaneous Determination and Dietary Risk Assessment of 26 Pesticide Residues in Wheat Grain and Bran Using QuEChERS-UHPLC-MS/MS. Foods, 14(24), 4351. https://doi.org/10.3390/foods14244351

