Plant-Based vs. Pork Sausages: Protein Nutritional Quality and Antioxidant Potential in the Bioaccessible Fraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Products
2.2. Tiny-TIMsg Model and Protein Digestion Settings
2.3. Kjeldahl Analysis
2.4. Amino Acid Analysis by HPLC
2.5. Antioxidant Capacity
2.6. Statistical Analysis
3. Results
3.1. Crude Protein Content of Plant- and Pork-Based Sausages (Kjeldahl Method)
3.2. Amino Acid Profile and Calculated Protein Content of Plant- and Pork-Based Sausages (HPLC)
3.3. Bioaccessible Protein and Amino Acids of Plant- and Pork-Based Sausages
3.4. Digestible Indispensable Amino Acid Reference Ratio and Score
3.5. The Antioxidant Potential of the Bioaccessible Fraction
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAA | Aromatic Amino Acid |
| AAPH | 2,2′-Azobis(2-amidinopropane) Dihydrochloride |
| ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) Diammonium Salt |
| DIAAS | Digestible Indispensable Amino Acid Score |
| FAO | Food and Agriculture Organization |
| FRAP | Ferric Reducing Ability of Plasma |
| HPLC | High-Performance Liquid Chromatography |
| IAA | Indispensable Amino Acid |
| ORAC | Oxygen Radical Absorbance Capacity |
| SAA | Sulfuric Amino Acid |
| TEAC | Trolox Equivalent Antioxidative Capacity |
| TIM | TNO Gastrointestinal Model |
| TNO | The Netherlands Organization for Applied Scientific Research |
| TPTZ | 2,4,6-Tri-(2-pyridyl)-s-triazine |
Appendix A
| Product | Ingredients |
|---|---|
| Tofiner | Tofu 75% (soya beans 55%, water, coagulating agents: magnesium chloride, calcium sulfate), cold-pressed sunflower oil, soya sauce (water, soya beans, wheat, sea salt), oatmeal, sea salt, thickening agent: guar gum, fenugreek, coriander, white pepper, black pepper, sweet paprika, hot paprika, caraway, nutmeg, garlic, beech wood smoke. |
| Vegane Weenies | 82% seitan (water, wheat protein), high-oleic sunflower oil, yeast extract, rock salt, spices (contains mustard), onions, thickener: locust bean gum, paprika extract, beech wood smoke. |
| Tofu & Seitan Wiener | 29% tofu (soya beans, water, coagulant: magnesium chloride, calcium sulfate), water, 21% wheat protein, sunflower oil, red bell pepper, sea salt, spices, raw cane sugar, thickener: locust bean gum, tomato paste, herbs, celery |
| Deutschländer | Pork 86%, water, salt, spices, spice extracts (contains celery), dextrose, antioxidant: ascorbic acid, preservative: sodium nitrite, sheep casting, beech wood smoke. |
| Product | Energy | Carbohydrates | Fat | Protein | Salt | Fiber | ||||
|---|---|---|---|---|---|---|---|---|---|---|
| Protein Source | [kJ/100 g] | [kcal/100 g] | Total | Sugar | Total | Saturated Fatty Acids | ||||
| Tofiner | Soy | 1064 | 256 | 5.3 | <0.5 | 19 | 2.6 | 15 | 1.8 | |
| Vegane Weenies | Wheat | 1123 | 269 | 3.7 | <0.5 | 15 | 1.3 | 31 | 1.7 | |
| Tofu & Seitan Wiener | Soy, Wheat | 1072 | 257 | 4.1 | 2.9 | 15 | 1.9 | 26 | 2.2 | 2 |
| Deutschländer | Pork | 950 | 229 | 0.5 | <0.5 | 19 | 7.2 | 14 | 1.8 | |
References
- Parlasca, M.C.; Qaim, M. Meat consumption and sustainability. Annu. Rev. Resour. Econ. 2022, 14, 17–41. [Google Scholar] [CrossRef]
- Green Legend. Warum Verzichten Sie auf Fleisch? In Statista. Available online: https://de.statista.com/statistik/daten/studie/1200715/umfrage/fleischverzicht-motivation-nach-geschlecht/ (accessed on 4 December 2025).
- Mustapa, M.A.C.; Baba, Y.; Baishakhy, S.D.; Kallas, Z. Evolving appetites: Current evidence and future perspectives in terms of meat substitutes in europe. Food Sci. Nutr. 2025, 13, e4753. [Google Scholar] [CrossRef]
- Abe-Inge, V.; Aidoo, R.; de la Fuente, M.M.; Kwofie, E.M. Plant-based dietary shift: Current trends, barriers, and carriers. Trends Food Sci. Technol. 2024, 143, 104292. [Google Scholar] [CrossRef]
- Federal Statistical Office of Germany. Trend zu Fleischersatz Ungebrochen: Produktion Steigt 2023 um 16.6% Gegenüber Vorjahr; Destatis-Federal Statistical Office of Germany (Destatis-Statistisches Bundesamt): Wiesbaden, Germany, 2024; Available online: https://www.destatis.de/DE/Presse/Pressemitteilungen/2024/05/PD24_N018_42.html (accessed on 6 May 2025).
- Food and Agriculture Organization. Report of an FAO Expert Consultation. In Dietary Protein Quality Evaluation in Human Nutrition; Food and Agriculture Organization: Rome, Italy, 2013; Volume 92, pp. 1–66. [Google Scholar]
- Cutroneo, S.; Prandi, B.; Faccini, A.; Pellegrini, N.; Sforza, S.; Tedeschi, T. Comparison of protein quality and digestibility between plant-based and meat-based burgers. Food Res. Int. 2023, 172, 113183. [Google Scholar] [CrossRef] [PubMed]
- Ajomiwe, N.; Boland, M.; Phongthai, S.; Bagiyal, M.; Singh, J.; Kaur, L. Protein nutrition: Understanding structure, digestibility, and bioavailability for optimal health. Foods 2024, 13, 1771. [Google Scholar] [CrossRef]
- Tuncel, N.Y.; Kaya, H.P.; Andac, A.E.; Korkmaz, F.; Tuncel, N.B. A comprehensive review of antinutrients in plant-based foods and their key ingredients. Nutr. Bull. 2025, 50, 171–205. [Google Scholar] [CrossRef]
- Popova, A.; Mihaylova, D. Antinutrients in plant-based foods: A review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef]
- Abdullah, F.A.A.; Dordevic, D.; Kabourkova, E.; Zemancová, J.; Dordevic, S. Antioxidant and sensorial properties: Meat analogues versus conventional meat products. Processes 2022, 10, 1864. [Google Scholar] [CrossRef]
- Chen, Y.W. Nutritional Compositions, Total Phenolics, Antioxidant Capacities, and Students’ Knowledge Level About Plant-Based Meat Items; UTAR: Perak, Malaysia, 2023. [Google Scholar]
- Raita, J.; Ahmed, H.; Chen, K.; Houttu, V.; Haikonen, R.; Karlund, A.; Kortesniemi, M.; Yang, B.; Koistinen, V.; Hanhineva, K. Existing food processing classifications overlook the phytochemical composition of processed plant-based protein-rich foods. Nat. Food 2025, 6, 503–512. [Google Scholar] [CrossRef]
- Toydemir, G.; Subasi, B.G.; Hall, R.D.; Beekwilder, J.; Boyacioglu, D.; Capanoglu, E. Effect of food processing on antioxidants, their bioavailability and potential relevance to human health. Food Chem. X 2022, 14, 100334. [Google Scholar] [CrossRef]
- Vahid, F.; Wagener, L.; Leners, B.; Bohn, T. Pro- and antioxidant effect of food items and matrices during simulated in vitro digestion. Foods 2023, 12, 1719. [Google Scholar] [CrossRef] [PubMed]
- Opazo-Navarrete, M.; Burgos-Díaz, C.; Bravo-Reyes, C.; Gajardo-Poblete, I.; Chacón-Fuentes, M.; Reyes, J.E.; Mojica, L. Comprehensive review of plant protein digestibility: Challenges, assessment methods, and improvement strategies. Appl. Sci. 2025, 15, 3538. [Google Scholar] [CrossRef]
- Verwei, M.; Minekus, M.; Zeijdner, E.; Schilderink, R.; Havenaar, R. Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (tim-1 and tiny-tim) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. Int. J. Pharm. 2016, 498, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Havenaar, R.; Maathuis, A.; de Jong, A.; Mancinelli, D.; Berger, A.; Bellmann, S. Herring roe protein has a high digestible indispensable amino acid score (diaas) using a dynamic in vitro gastrointestinal model. Nutr. Res. 2016, 36, 798–807. [Google Scholar] [CrossRef]
- Khamzaeva, N.; Kunz, C.; Schamann, A.; Pferdmenges, L.; Briviba, K. Bioaccessibility and digestibility of proteins in plant-based drinks and cow’s milk: Antioxidant potential of the bioaccessible fraction. J. Agric. Food Chem. 2024, 72, 2300–2308. [Google Scholar] [CrossRef]
- Bellmann, S.; Lelieveld, J.; Gorissen, T.; Minekus, M.; Havenaar, R. Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Res. Int. 2016, 88, 191–198. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F. Infogest static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Krul, E.S. Calculation of nitrogen-to-protein conversion factors: A review with a focus on soy protein. J. Am. Oil Chem. Soc. 2019, 96, 339–364. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Gilani, G.S. Amino acid analysis. Curr. Protoc. Protein Sci. 2009, 58, 11.9.1–11.9.37. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (frap) as a measure of “antioxidant power”: The frap assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef]
- van den Berg, L.; Mes, J.J.; Mensink, M.; Wanders, A.J. Protein quality of soy and the effect of processing: A quantitative review. Front. Nutr. 2022, 9, 1004754. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, N.S.; Bailey, H.M.; Thompson, T.W.; Delmore, R.; Nair, M.N.; Stein, H.H. Digestible indispensable amino acid score (diaas) is greater in animal-based burgers than in plant-based burgers if determined in pigs. Eur. J. Nutr. 2022, 61, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Reynaud, Y.; Buffiere, C.; Cohade, B.; Vauris, M.; Liebermann, K.; Hafnaoui, N.; Lopez, M.; Souchon, I.; Dupont, D.; Remond, D. True ileal amino acid digestibility and digestible indispensable amino acid scores (diaass) of plant-based protein foods. Food Chem. 2021, 338, 128020. [Google Scholar] [CrossRef] [PubMed]
- Rutherfurd, S.M.; Torbatinejad, N.M.; Moughan, P.J. Available (ileal digestible reactive) lysine in selected cereal-based food products. J. Agric. Food Chem. 2006, 54, 9453–9457. [Google Scholar] [CrossRef]
- Malila, Y.; Owolabi, I.O.; Chotanaphuti, T.; Sakdibhornssup, N.; Elliott, C.T.; Visessanguan, W.; Karoonuthaisiri, N.; Petchkongkaew, A. Current challenges of alternative proteins as future foods. NPJ Sci. Food 2024, 8, 53. [Google Scholar] [CrossRef]
- Max Rubner-Institut. Bundeslebensmittelschlüssel (bls): Version 3.02 (German Nutrient Database: Version 3.02); MRI: Karlsruhe, Germany, 2014; Available online: http://www.blsdb.de (accessed on 16 October 2020).
- Herreman, L.; Nommensen, P.; Pennings, B.; Laus, M.C. Comprehensive overview of the quality of plant- and animal-sourced proteins based on the digestible indispensable amino acid score. Food Sci. Nutr. 2020, 8, 5379–5391. [Google Scholar] [CrossRef]
- Briviba, K.; Sies, H. Non enzymztic antioxidant defence systems. In Natural Antioxidants in Human Health and Disease, 1st ed.; Academic Press: San Diego, CA, USA, 1994; pp. 107–128. [Google Scholar]
- Abeyrathne, E.D.N.S.; Nam, K.; Huang, X.; Ahn, D.U. Plant-and animal-based antioxidants’ structure, efficacy, mechanisms, and applications: A review. Antioxidants 2022, 11, 1025. [Google Scholar] [CrossRef]
- Cruz, S.; Velásquez, R.; Lima, S.; Menéndez, M.; Dardón, R.; Córdova, D.; Cáceres, A.; Lange, K.; González, J. Assessment of antioxidant activity of 24 native plants used in guatemala for their potential application in natural product industry. In Proceedings of the International Symposium on Medicinal and Aromatic Plants IMAPS2010 and History of Mayan Ethnopharmacology IMAPS2011, Chiang Mai, Thailand, 15–18 December 2011; Volume 964, pp. 85–92. [Google Scholar]
- Kumar, P.; Kumar, S.; Ktripathi, M.K.; Mehta, N.; Ranjan, R.; Bhat, Z.; Singh, P.K. Flavonoids in the development of functional meat products: A review. Vet. World 2013, 6, 573–578. [Google Scholar] [CrossRef]
- Tan, S.T.; Tan, S.S.; Tan, C.X. Soy protein, bioactive peptides, and isoflavones: A review of their safety and health benefits. PharmaNutrition 2023, 25, 100352. [Google Scholar] [CrossRef]
- Akram, M.U.; Uguz, A.B.; Uygun, U.; Salantur, A.; Yilmaz, R. Investigation of phenolic composition and antioxidant capacities in selected turkish indigenous wheat varieties. Food Sci. Nutr. 2025, 13, e4614. [Google Scholar] [CrossRef] [PubMed]
- Habza-Kowalska, E.; Kaczor, A.A.; Bartuzi, D.; Pilat, J.; Gawlik-Dziki, U. Some dietary phenolic compounds can activate thyroid peroxidase and inhibit lipoxygenase-preliminary study in the model systems. Int. J. Mol. Sci. 2021, 22, 5108. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.N.; Mitra, K.; Haque, M.Z. Comparative bio-active compounds determination and in vitro antioxidant properties of newly developed soy mixed wheat flour and traditional wheat flour. Int. J. Food Prop. 2016, 19, 2113–2126. [Google Scholar] [CrossRef]
- Ma, D.; Wang, C.; Feng, J.; Xu, B. Wheat grain phenolics: A review on composition, bioactivity, and influencing factors. J. Sci. Food Agric. 2021, 101, 6167–6185. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Capasso, G.; Rando, A.; Perna, A.M. Antioxidant activity of beef, pork and chicken burgers before and after cooking and after in vitro intestinal digestion. Foods 2023, 12, 4100. [Google Scholar] [CrossRef]
- Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- Kajiya, K.; Arino, M.; Koshio, A.; Minami, Y. Composition and taste of beef, pork, and duck meat and bioregulatory functions of imidazole dipeptides in meat. Sci. Rep. 2023, 13, 2125. [Google Scholar] [CrossRef]
- Kumar, A.; Suryakumar, G.; Singh, S.N.; Rathor, R. A comprehensive review on physiological and biological activities of carnosine: Turning from preclinical facts to potential clinical applications. Naunyn Schmiedebergs Arch. Pharmacol. 2025, 398, 1341–1366. [Google Scholar] [CrossRef]
- Keska, P.; Rohn, S.; Halagarda, M.; Wójciak, K.M. Peptides from different carcass elements of organic and conventional pork-potential source of antioxidant activity. Antioxidants 2020, 9, 835. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant activity of spices and their impact on human health: A review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Luo, D.; Cheng, J.; Lu, J.; Akan, O.; Luo, F. Effects of simulated gastrointestinal digestion in vitro on the antioxidant, α-glucosidase and α-amylase inhibitory activities of quinoa. J. Chin. Cereals Oils 2021, 36, 51–58. [Google Scholar]
- Manzanilla-Valdez, M.L.; Ma, Z.; Mondor, M.; Hernandez-Alvarez, A.J. Decoding the duality of antinutrients: Assessing the impact of protein extraction methods on plant-based protein sources. J. Agric. Food Chem. 2024, 72, 12319–12339. [Google Scholar] [CrossRef]
- Jacobs, D.R., Jr.; Gross, M.D.; Tapsell, L.C. Food synergy: An operational concept for understanding nutrition. Am. J. Clin. Nutr. 2009, 89, 1543S–1548S. [Google Scholar] [CrossRef]
- van Trijp, M.P.H.; Wilms, E.; Rios-Morales, M.; Masclee, A.A.; Brummer, R.J.; Witteman, B.J.; Troost, F.J.; Hooiveld, G.J. Using naso- and oro-intestinal catheters in physiological research for intestinal delivery and sampling in vivo: Practical and technical aspects to be considered. Am. J. Clin. Nutr. 2021, 114, 843–861. [Google Scholar] [CrossRef]
- Mackie, A.; Mulet-Cabero, A.I.; Torcello-Gomez, A. Simulating human digestion: Developing our knowledge to create healthier and more sustainable foods. Food Funct. 2020, 11, 9397–9431. [Google Scholar] [CrossRef]



| Soy Sausage | Wheat Sausage | Wheat-Soy Sausage | Pork Sausage | |
|---|---|---|---|---|
| g/100 g Product | g/100 g Product | g/100 g Product | g/100 g Product | |
| histidine | 0.312 ± 0.020 | 0.760 ± 0.075 | 0.539 ± 0.024 | 0.437 ± 0.049 |
| asparagine | 0.109 ± 0.016 | 0.139 ± 0.017 | 0.092 ± 0.006 | 0.280 ± 0.032 |
| serine | 0.517 ± 0.021 | 1.113 ± 0.0143 | 0.999 ± 0.021 | 0.428 ± 0.012 |
| glycine | 0.418 ± 0.019 | 0.832 ± 0.087 | 0.691 ± 0.016 | 0.677 ± 0.038 |
| arginine | 0.847 ± 0.031 | 1.230 ± 0.091 | 1.059 ± 0.117 | 0.892 ± 0.043 |
| aspartic acid | 1.437 ± 0.063 | 0.977 ± 0.140 | 1.067 ± 0.010 | 1.145 ± 0.054 |
| glutamic acid | 2.259 ± 0.107 | 9.171 ± 1.038 | 6.564 ± 0.026 | 1.588 ± 0.071 |
| threonine | 0.438 ± 0.045 | 0.731 ± 0.083 | 0.586 ± 0.052 | 0.537 ± 0.024 |
| alanine | 0.495 ± 0.024 | 0.726 ± 0.078 | 0.627 ± 0.007 | 0.718 ± 0.038 |
| proline | 0.577 ± 0.025 | 3.159 ± 0.337 | 2.353 ± 0.039 | 0.596 ± 0.034 |
| lysine | 0.822 ± 0.040 | 0.534 ± 0.078 | 0.499 ± 0.036 | 1.075 ± 0.048 |
| tyrosine | 0.380 ± 0.028 | 0.924 ± 0.115 | 0.755 ± 0.032 | 0.494 ± 0.058 |
| valine | 0.624 ± 0.030 | 1.163 ± 0.118 | 0.950 ± 0.015 | 0.667 ± 0.033 |
| isoleucine | 0.603 ± 0.027 | 1.105 ± 0.116 | 0.921 ± 0.015 | 0.626 ± 0.034 |
| leucine | 0.917 ± 0.042 | 1.928 ± 0.201 | 1.611 ± 0.025 | 0.979 ± 0.050 |
| phenylalanine | 0.616 ± 0.025 | 1.477 ± 0.156 | 1.269 ± 0.022 | 0.540 ± 0.028 |
| cysteine | 0.211 ± 0.005 | 0.737 ± 0.122 | 0.528 ± 0.027 | 0.139 ± 0.013 |
| methionine | 0.162 ± 0.003 | 0.498 ± 0.069 | 0.360 ± 0.018 | 0.298 ± 0.027 |
| tryptophan | 0.229 ± 0.012 | 0.526 ± 0.183 | 0.259 ± 0.035 | 0.135 ± 0.009 |
| Ʃ | 11.973 ± 0.583 | 27.731 ± 3.250 | 21.730 ± 0.542 | 12.249 ± 0.693 |
| Soy Sausage | Wheat Sausage | Wheat-Soy Sausage | Pork Sausage | |
|---|---|---|---|---|
| Mean Value% | Mean Value% | Mean Value% | Mean Value% | |
| Amino Acids | ||||
| His | 81.7 ± 0.2 | 87.8 ± 2.7 | 87.3 ± 3.9 | 89.1 ± 1.4 |
| Thr | 80.7 ± 0.5 | 85.9 ± 1.3 | 85.8 ± 3.5 | 88.5 ± 1.9 |
| Val | 79.4 ± 0.2 | 86.6 ± 1.9 | 86.2 ± 4.1 | 87.5 ± 2.2 |
| Met | 74.8 ± 7.4 | 78.4 ± 6.0 | 82.0 ± 3.3 | 80.9 ± 2.0 |
| Ile | 80.8 ± 0.1 | 86.4 ± 2.0 | 86.5 ± 3.7 | 87.4 ± 2.4 |
| Leu | 81.7 ± 0.2 | 88.4 ± 1.8 | 88.8 ± 3.0 | 89.4 ± 2.0 |
| Lys | 86.4 ± 1.6 | 81.6 ± 5.5 | 85.1 ± 2.8 | 91.9 ± 1.5 |
| Phe | 83.2 ± 0.3 | 90.9 ± 1.2 | 91.8 ± 2.1 | 89.3 ± 2.1 |
| Trp | 76.7 ± 3.4 | 81.9 ± 4.2 | 82.7 ± 4.3 | 83.7 ± 1.6 |
| DIAA Reference Ratio | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| His | Thr | Val | SAA | Ile | Leu | Lys | AAA | Trp | |
| soy sausage | 1.33 | 1.18 | 1.03 | 0.86 | 1.35 | 1.02 | 1.23 | 1.66 | 2.60 |
| wheat sausage | 1.52 | 0.92 | 0.92 | 1.23 | 1.16 | 1.02 | 0.33 | 1.90 | 1.77 |
| wheat-soy sausage | 1.36 | 0.93 | 0.95 | 1.17 | 1.23 | 1.09 | 0.41 | 2.06 | 1.50 |
| pork sausage | 1.97 | 1.54 | 1.18 | 1.45 | 1.48 | 1.16 | 1.67 | 1.79 | 1.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamzaeva, N.; Hieronimus, B.; Kunz, C.; Pferdmenges, L.E.; Briviba, K. Plant-Based vs. Pork Sausages: Protein Nutritional Quality and Antioxidant Potential in the Bioaccessible Fraction. Foods 2025, 14, 4271. https://doi.org/10.3390/foods14244271
Khamzaeva N, Hieronimus B, Kunz C, Pferdmenges LE, Briviba K. Plant-Based vs. Pork Sausages: Protein Nutritional Quality and Antioxidant Potential in the Bioaccessible Fraction. Foods. 2025; 14(24):4271. https://doi.org/10.3390/foods14244271
Chicago/Turabian StyleKhamzaeva, Narigul, Bettina Hieronimus, Christina Kunz, Larissa E. Pferdmenges, and Karlis Briviba. 2025. "Plant-Based vs. Pork Sausages: Protein Nutritional Quality and Antioxidant Potential in the Bioaccessible Fraction" Foods 14, no. 24: 4271. https://doi.org/10.3390/foods14244271
APA StyleKhamzaeva, N., Hieronimus, B., Kunz, C., Pferdmenges, L. E., & Briviba, K. (2025). Plant-Based vs. Pork Sausages: Protein Nutritional Quality and Antioxidant Potential in the Bioaccessible Fraction. Foods, 14(24), 4271. https://doi.org/10.3390/foods14244271

