Effect of CaCl2-Induced Surface Gelatinization on Enzymatic Porous Starch
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of Starch with CaCl2 Solution
2.3. Gelatinization Degree and Enzyme Sensitivity of Starch Treated with CaCl2 Solution
2.4. Scanning Electron Microscopy Observation
2.5. Preparation of PS
2.6. Specific Volume, Water Solubility, Swelling Power, and Oil Absorption of PS Pretreated with CaCl2 Solution
2.7. Preparation and Absorption of Fisetin into PS Pretreated with CaCl2 Solution
2.8. Structural Characterizations of CaCl2 Pretreated Natural Starch, PS, and PS/FIT
2.8.1. Fourier Transform Infrared Determination
2.8.2. X-Ray Diffraction Analysis
2.8.3. Thermal Characterization
2.9. Antioxidant Activity of CaCl2 Pretreated PS/FIT
2.10. Statistical Analysis
3. Results and Discussion
3.1. Effect of CaCl2 Soaking Time on Gelatinization Degree and Enzyme Sensitivity of Starch
3.2. SEM of Surface Gelatinization Starch
3.3. SEM of PS
3.4. Effect of CaCl2 Soaking Time on Yield, Specific Volume, Solubility, Swelling Power, and Oil Absorption of PS
3.5. EE and LC of Fisetin in PS Pretreated with CaCl2 Solution
3.6. Structural Characterizations of CaCl2-Pretreated Nature Starch, PS, and PS/FIT
3.6.1. FTIR Analysis
3.6.2. XRD Analysis
3.6.3. Thermal Properties
3.7. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PS | porous starch |
| AMG | amyloglucosidase |
| AM | α-amylase |
| FIT | fisetin |
| EE | encapsulation efficiency |
| LC | loading capacity |
References
- Liang, W.; Zhang, Q.; Duan, H.; Zhou, S.; Zhou, Y.; Li, W.; Yan, W. Understanding CaCl2 induces surface gelatinization to promote cold plasma modified maize starch: Structure-effect relations. Carbohydr. Polym. 2023, 320, 121200. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Xu, M.; Tang, W.; Wen, L.; Yang, B. Modification of structural, physicochemical and digestive properties of normal maize starch by thermal treatment. Food Chem. 2020, 309, 125733. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Liu, J.; Xu, X. Preparation, characterization, physicochemical property and potential application of porous starch: A review. Int. J. Biol. Macromol. 2020, 148, 1169–1181. [Google Scholar] [CrossRef]
- Gonzalez, A.; Wang, Y.-J. Enhancing the Formation of Porous Potato Starch by Combining α-Amylase or Glucoamylase Digestion with Acid Hydrolysis. Starch-Stärke 2020, 72, 1900269. [Google Scholar] [CrossRef]
- Han, X.; Wen, H.; Luo, Y.; Yang, J.; Xiao, W.; Ji, X.; Xie, J. Effects of α-amylase and glucoamylase on the characterization and function of maize porous starches. Food Hydrocoll. 2021, 116, 106661. [Google Scholar] [CrossRef]
- Gui, Y.; Zou, F.; Li, J.; Zhu, Y.; Guo, L.; Cui, B. The structural and functional properties of corn starch treated with endogenous malt amylases. Food Hydrocoll. 2021, 117, 106722. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, J.; Peng, G.; Yao, M.; Wen, J.; He, Q.; Li, R.; Zhu, X.; Meng, Z.; Wang, S.; et al. Preparation and characterization of crosslinked kudzu porous starch hemostatic. Colloids Surf. B Biointerfaces 2025, 255, 114871. [Google Scholar] [CrossRef]
- Tanetrungroj, Y.; Prachayawarakorn, J. Effect of dual modification on properties of biodegradable crosslinked-oxidized starch and oxidized-crosslinked starch films. Int. J. Biol. Macromol. 2018, 120, 1240–1246. [Google Scholar] [CrossRef]
- Cao, F.; Lu, S.; Wang, L.; Zheng, M.; Young Quek, S. Modified porous starch for enhanced properties: Synthesis, characterization and applications. Food Chem. 2023, 415, 135765. [Google Scholar] [CrossRef]
- Buléon, A.; Colonna, P.; Planchot, V.; Ball, S. Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 1998, 23, 85–112. [Google Scholar] [CrossRef]
- Vermeylen, R.; Goderis, B.; Reynaers, H.; Delcour, J.A. Amylopectin Molecular Structure Reflected in Macromolecular Organization of Granular Starch. Biomacromolecules 2004, 5, 1775–1786. [Google Scholar] [CrossRef]
- Li, Z.; Wei, C. Morphology, structure, properties and applications of starch ghost: A review. Int. J. Biol. Macromol. 2020, 163, 2084–2096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Dhital, S.; Flanagan, B.M.; Gidley, M.J. Mechanism for Starch Granule Ghost Formation Deduced from Structural and Enzyme Digestion Properties. J. Agric. Food Chem. 2014, 62, 760–771. [Google Scholar] [CrossRef]
- Zhang, H.; He, F.; Wang, T.; Chen, G. Insights into the interaction of CaCl2 and potato starch: Rheological, structural and gel properties. Int. J. Biol. Macromol. 2022, 220, 934–941. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, Q.; Guo, S.; Ge, X.; Shen, H.; Zeng, J.; Gao, H.; Li, W. Investigating the influence of CaCl2 induced surface gelatinization of red adzuki bean starch on its citric acid esterification modification: Structure–property related mechanism. Food Chem. 2024, 436, 137724. [Google Scholar] [CrossRef]
- Gao, W.; Liu, P.; Zhu, J.; Hou, H.; Li, X.; Cui, B. Physicochemical properties of corn starch affected by the separation of granule shells. Int. J. Biol. Macromol. 2020, 164, 242–252. [Google Scholar] [CrossRef]
- Zhang, Q.; Duan, H.; Zhou, Y.; Zhou, S.; Ge, X.; Shen, H.; Li, W.; Yan, W. Effect of dry heat treatment on multi-structure, physicochemical properties, and in vitro digestibility of potato starch with controlled surface-removed levels. Food Hydrocoll. 2023, 134, 108062. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Ma, C.; Zhang, N.; Xie, F. Structural Disorganization and Chain Aggregation of High-Amylose Starch in Different Chloride Salt Solutions. ACS Sustain. Chem. Eng. 2020, 8, 4838–4847. [Google Scholar] [CrossRef]
- Almeida, R.L.J.; Santos, N.C.; Morais, J.R.F.; Muniz, C.E.S.; de Queiroz, L.W.P.; Venâncio, M.J.C.; de Souza Neto, O.B.; da Silva, Y.T.F.; Nóbrega, M.M.G.; de Oliveira, B.F.; et al. Modification of cornstarch: Influence of the addition of sodium chloride, carbonate and phosphate combined with a pulsed electric field. Food Chem. 2025, 494, 146266. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C.; Ban, X. Effect of solution on starch structure: New separation approach of amylopectin fraction from gelatinized native corn starch. Carbohydr. Polym. 2024, 329, 121770. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Sui, J.; Liu, P.; Cui, B.; Abd El-Aty, A.M. Synthetic mechanism of octenyl succinic anhydride modified corn starch based on shells separation pretreatment. Int. J. Biol. Macromol. 2021, 172, 483–489. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Zhou, X.; Xing, Y.; Meng, T.; Li, J.; Chang, Q.; Zhao, J.; Jin, Z. Preparation of V-type cold water-swelling starch by ethanolic extrusion. Carbohydr. Polym. 2021, 271, 118400. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.; Chen, Z.; Feng, J.; Chen, R.; Wang, Z.; Chen, J.; Zhang, S. Construction of butyric acid modified porous starch for stabilizing pickering emulsions: Encapsulation of paclitaxel. Food Hydrocoll. 2023, 142, 108858. [Google Scholar] [CrossRef]
- Davoudi, Z.; Azizi, M.H.; Barzegar, M. Porous corn starch obtained from combined cold plasma and enzymatic hydrolysis: Microstructure and physicochemical properties. Int. J. Biol. Macromol. 2022, 223, 790–797. [Google Scholar] [CrossRef]
- He, W.; Tang, J.; Chen, Y.; Liu, G.; Li, Z.; Tu, J.; Li, Y. Effects of Extrusion Treatment on the Physicochemical and Baking Quality of Japonica Rice Batters and Rice Breads. Gels 2025, 11, 86. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Ji, N.; Liu, J.; Xiong, L.; Sun, Q. Morphology and Characteristics of Starch Nanoparticles Self-Assembled via a Rapid Ultrasonication Method for Peppermint Oil Encapsulation. J. Agric. Food Chem. 2017, 65, 8363–8373. [Google Scholar] [CrossRef] [PubMed]
- Jivan, M.J.; Madadlou, A.; Yarmand, M. An attempt to cast light into starch nanocrystals preparation and cross-linking. Food Chem. 2013, 141, 1661–1666. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Jane, J.-L. Morphological Changes of Granules of Different Starches by Surface Gelatinization with Calcium Chloride. Cereal Chem. 2000, 77, 115–120. [Google Scholar] [CrossRef]
- Zavareze, E.d.R.; Storck, C.R.; de Castro, L.A.S.; Schirmer, M.A.; Dias, A.R.G. Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chem. 2010, 121, 358–365. [Google Scholar] [CrossRef]
- Sathyan, S.; Nisha, P. Optimization and Characterization of Porous Starch from Corn Starch and Application Studies in Emulsion Stabilization. Food Bioprocess Technol. 2022, 15, 2084–2099. [Google Scholar] [CrossRef]
- Beirão-da-Costa, S.; Duarte, C.; Bourbon, A.I.; Pinheiro, A.C.; Januário, M.I.N.; Vicente, A.A.; Beirão-da-Costa, M.L.; Delgadillo, I. Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocoll. 2013, 33, 199–206. [Google Scholar] [CrossRef]
- Zhu, J.; Zhong, L.; Chen, W.; Song, Y.; Qian, Z.; Cao, X.; Huang, Q.; Zhang, B.; Chen, H.; Chen, W. Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: A novel and simple colon targeted drug delivery system. Food Hydrocoll. 2019, 95, 562–570. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Yang, F.; Wu, W.; Wu, M.; Li, Y.; Zhang, X. Loading paclitaxel into porous starch in the form of nanoparticles to improve its dissolution and bioavailability. Int. J. Biol. Macromol. 2019, 138, 207–214. [Google Scholar] [CrossRef]
- Xie, Y.; Li, M.-N.; Chen, H.-Q.; Zhang, B. Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch. Food Chem. 2019, 274, 351–359. [Google Scholar] [CrossRef]
- Zhang, L.; Zhong, L.; Wang, P.; Zhan, L.; Yangzong, Y.; He, T.; Liu, Y.; Mao, D.; Ye, X.; Cui, Z.; et al. Structural and Functional Properties of Porous Corn Starch Obtained by Treating Raw Starch with AmyM. Foods 2023, 12, 3157. [Google Scholar] [CrossRef]
- Zhao, A.-Q.; Yu, L.; Yang, M.; Wang, C.-J.; Wang, M.-M.; Bai, X. Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocoll. 2018, 83, 465–472. [Google Scholar] [CrossRef]
- Gao, F.; Li, D.; Bi, C.-h.; Mao, Z.-h.; Adhikari, B. Preparation and characterization of starch crosslinked with sodium trimetaphosphate and hydrolyzed by enzymes. Carbohydr. Polym. 2014, 103, 310–318. [Google Scholar] [CrossRef]
- Guo, L.; Li, J.; Gui, Y.; Zhu, Y.; Yu, B.; Tan, C.; Fang, Y.; Cui, B. Porous starches modified with double enzymes: Structure and adsorption properties. Int. J. Biol. Macromol. 2020, 164, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Sarvarian, P.; Samadi, P.; Gholipour, E.; khodadadi, M.; Pourakbari, R.; Akbarzadelale, P.; Shamsasenjan, K. Fisetin-loaded grape-derived nanoparticles improve anticancer efficacy in MOLT-4 cells. Biochem. Biophys. Res. Commun. 2023, 658, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Bothiraja, C.; Yojana, B.D.; Pawar, A.P.; Shaikh, K.S.; Thorat, U.H. Fisetin-loaded nanocochleates: Formulation, characterisation, in vitro anticancer testing, bioavailability and biodistribution study. Expert Opin. Drug Deliv. 2014, 11, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.S.; Grossmann, M.V.E.; Shirai, M.A.; Lazaretti, M.M.; Yamashita, F.; Muller, C.M.O.; Mali, S. Improving action of citric acid as compatibiliser in starch/polyester blown films. Ind. Crops Prod. 2014, 52, 305–312. [Google Scholar] [CrossRef]
- Luo, F.-x.; Huang, Q.; Fu, X.; Zhang, L.-x.; Yu, S.-j. Preparation and characterisation of crosslinked waxy potato starch. Food Chem. 2009, 115, 563–568. [Google Scholar] [CrossRef]
- Ge, X.; Shen, H.; Su, C.; Zhang, B.; Zhang, Q.; Jiang, H.; Li, W. The improving effects of cold plasma on multi-scale structure, physicochemical and digestive properties of dry heated red adzuki bean starch. Food Chem. 2021, 349, 129159. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.-H.; Donner, E.; Yada, R.Y.; Liu, Q. The synergistic effects of amylose and phosphorus on rheological, thermal and nutritional properties of potato starch and gel. Food Chem. 2012, 133, 1214–1221. [Google Scholar] [CrossRef]
- Lv, X.; Guo, C.; Ma, Y.; Liu, B. Effect of citric acid esterification on the structure and physicochemical properties of tigernut starch. Int. J. Biol. Macromol. 2022, 222, 2833–2842. [Google Scholar] [CrossRef]
- Shen, H.; Ge, X.; Zhang, B.; Su, C.; Li, W. Understanding the multi-scale structure, physicochemical properties and in vitro digestibility of citrate naked barley starch induced by non-thermal plasma. Food Funct. 2021, 12, 8169–8180. [Google Scholar] [CrossRef]
- Dura, A.; Błaszczak, W.; Rosell, C.M. Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydr. Polym. 2014, 101, 837–845. [Google Scholar] [CrossRef]
- Talaat, S.M.; Elnaggar, Y.S.R.; El-Ganainy, S.O.; Gowayed, M.A.; Abdel-Bary, A.; Abdallah, O.Y. Novel bio-inspired lipid nanoparticles for improving the anti-tumoral efficacy of fisetin against breast cancer. Int. J. Pharm. 2022, 628, 122184. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Yu, Y.; Chen, W.; Liu, Y.; Yu, H. Nanoformulations of quercetin and cellulose nanofibers as healthcare supplements with sustained antioxidant activity. Carbohydr. Polym. 2019, 207, 160–168. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Q.; Ma, S.; Zhou, X. Effect of quercetin on the in vitro Tartary buckwheat starch digestibility. Int. J. Biol. Macromol. 2021, 183, 818–830. [Google Scholar] [CrossRef] [PubMed]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch—Composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Cai, C.; Wei, C. In situ observation of crystallinity disruption patterns during starch gelatinization. Carbohydr. Polym. 2013, 92, 469–478. [Google Scholar] [CrossRef]
- Yu, S.X.; Mu, T.H.; Zhang, M.; Zhao, Z.K. Effects of inorganic salts on the structural and physicochemical properties of high hydrostatic pressure-gelatinized sweet potato starch. Starch-Starke 2016, 68, 980–988. [Google Scholar] [CrossRef]
- Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Zhang, J.-q.; Jiang, K.-m.; An, K.; Ren, S.-H.; Xie, X.-g.; Jin, Y.; Lin, J. Novel water-soluble fisetin/cyclodextrins inclusion complexes: Preparation, characterization, molecular docking and bioavailability. Carbohydr. Res. 2015, 418, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Hao, Z.; Hu, Y.; Li, C.; Wang, Y.; Gu, Z.; Zhang, Q.; Xiao, Y.; Liu, Y.; Liu, K.; et al. Changes in morphological and structural characteristics of high amylose maize starch in alkaline solution at different temperatures. Int. J. Biol. Macromol. 2023, 244, 125397. [Google Scholar] [CrossRef]
- Farrag, Y.; Ide, W.; Montero, B.; Rico, M.; Rodríguez-Llamazares, S.; Barral, L.; Bouza, R. Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. Int. J. Biol. Macromol. 2018, 114, 426–433. [Google Scholar] [CrossRef]
- Aceituno-Medina, M.; Mendoza, S.; Rodríguez, B.A.; Lagaron, J.M.; López-Rubio, A. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. J. Funct. Foods 2015, 12, 332–341. [Google Scholar] [CrossRef]
- Davoudi, Z.; Azizi, M.H.; Barzegar, M.; Bernkop-Schnürch, A. Porous Starch-inulin Loaded Quercetin Microcapsules: Characterization, Antioxidant Activity, in-vitro Release, and Storage Stability. J. Pharm. Sci. 2024, 113, 1228–1238. [Google Scholar] [CrossRef] [PubMed]








| Sample | FTIR | XRD | DSC | ||||
|---|---|---|---|---|---|---|---|
| 1047/1022 cm−1 | Type | RC (%) | To (°C) | Tp (°C) | Tc (°C) | ΔHgel (J/g) | |
| NS | 1.054 ± 0.004 c | A | 32.16 ± 0.05 d | 64.80 ± 0.32 b | 71.68 ± 0.38 a | 76.29 ± 0.46 b | 1.83 ± 0.04 a |
| 40NS | 1.103 ± 0.004 a | A | 30.53 ± 0.05 f | 62.42 ± 0.41 c | 69.33 ± 0.20 c | 73.94 ± 0.67 c | 0.46 ± 0.03 b |
| NPS | 1.085 ± 0.007 b | A | 33.05 ± 0.05 c | 66.93 ± 0.38 a | 70.19 ± 0.27 b | 78.63 ± 0.33 a | 0.22 ± 0.02 c |
| 40PS | 1.046 ± 0.002 d | A | 31.80 ± 0.05 e | 67.11 ± 0.22 a | 71.68 ± 0.26 a | 76.29 ± 0.35 b | 0.16 ± 0.02 d |
| NPS/FIT | 1.060 ± 0.006 c | A | 35.00 ± 0.05 b | / | / | / | / |
| 40PS/FIT | 1.044 ± 0.003 d | A | 35.00 ± 0.05 b | / | / | / | / |
| FIT | 1.033 ± 0.007 e | / | 74.01 ± 0.05 a | / | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, N.; Wang, Y.; Zhang, J.; Wu, Z.; Cheng, M.; Shen, H.; Wang, D.; Cui, B. Effect of CaCl2-Induced Surface Gelatinization on Enzymatic Porous Starch. Foods 2025, 14, 4221. https://doi.org/10.3390/foods14244221
Sun N, Wang Y, Zhang J, Wu Z, Cheng M, Shen H, Wang D, Cui B. Effect of CaCl2-Induced Surface Gelatinization on Enzymatic Porous Starch. Foods. 2025; 14(24):4221. https://doi.org/10.3390/foods14244221
Chicago/Turabian StyleSun, Nianxia, Yakun Wang, Jie Zhang, Zesheng Wu, Mengting Cheng, Hui Shen, Dianlei Wang, and Bo Cui. 2025. "Effect of CaCl2-Induced Surface Gelatinization on Enzymatic Porous Starch" Foods 14, no. 24: 4221. https://doi.org/10.3390/foods14244221
APA StyleSun, N., Wang, Y., Zhang, J., Wu, Z., Cheng, M., Shen, H., Wang, D., & Cui, B. (2025). Effect of CaCl2-Induced Surface Gelatinization on Enzymatic Porous Starch. Foods, 14(24), 4221. https://doi.org/10.3390/foods14244221

