Regional Differentiation of Olive Oil of the Koroneiki Olive Cultivar from the Ionian Islands Based on Key Volatile Compounds and Descriptive Data Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Olive Oil Samples
2.2. Chemicals and Reagents
2.3. Determination of Volatile Compounds in Olive Oil Samples Using HS-SPME/GC-MS
2.3.1. HS-SPME: Sampling, Optimization, and Parametric Conditions
2.3.2. GC-MS Instrumentation and Conditions of Analysis
2.4. Identification of Volatile Compounds and Semi-Quantification
2.5. Descriptive Data Analysis
3. Results
3.1. Volatile Compounds of Olive Oil of the Koroneiki Olive Cultivar from the Ionian Islands
3.2. Regional Differentiation of Olive Oil Samples of the Koroneiki Olive Cultivar from the Ionian Islands
3.2.1. MANOVA
3.2.2. LDA
3.2.3. FA
4. Discussion
5. Conclusions, Limitations, and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owen, R.W.; Haubner, R.; Würtele, G.; Hull, E.; Spiegelhalder, B.; Bartsch, H. Olives and olive oil in cancer prevention. Eur. J. Cancer Prev. 2004, 13, 319–326. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Di Virgilio, F.; Belloni, P.; Bonoli-Carbognin, M.; Lercker, G. Preliminary evaluation of the application of the FTIR spectroscopy to control the geographic origin and quality of virgin olive oils. J. Food Qual. 2007, 30, 424–437. [Google Scholar] [CrossRef]
- Mikrou, T.; Litsa, M.; Papantoni, A.; Kapsokefalou, M.; Gardeli, C.; Mallouchos, A. Effect of Cultivar and Geographical Origin on the Volatile Composition of Greek Monovarietal Extra Virgin Olive Oils. Chemosensors 2023, 11, 80. [Google Scholar] [CrossRef]
- Lorenzo, I.M.; Pavón, J.L.; Laespada, M.E.; Pinto, C.G.; Cordero, B.M.; Henriques, L.R.; Peres, M.F.; Simões, M.P.; Lopes, P.S. Application of headspace-mass spectrometry for differentiating sources of olive oil. Anal. Bioanal. Chem. 2002, 374, 1205–1211. [Google Scholar] [CrossRef]
- Boskou, D. Olive Fruit, Table Olives, and Olive Oil Bioactive Constituents. In Olive and Olive Oil Bioactive Constituents; AOCS Press: Urbana, IL, USA, 2015; pp. 1–30, EC 510/2006. OJ L93 (2006) 12. [Google Scholar]
- Ollivier, D.; Artaud, J.; Pinatel, C.; Durbec, J.P.; Guérère, M. Triacylglycerol and fatty acid compositions of French virgin olive oils. Characterization by chemometrics. J. Agric. Food Chem. 2003, 51, 5723–5731. [Google Scholar] [CrossRef] [PubMed]
- Kosma, I.; Badeka, A.; Vatavali, K.; Kontakos, S.; Kontominas, M. Differentiation of Greek extra virgin olive oils according to cultivar based on volatile compound analysis and fatty acid composition. Eur. J. Lipid Sci. Technol. 2016, 118, 849–861. [Google Scholar] [CrossRef]
- Bucci, R.; Magri, A.D.; Magri, A.L.; Marini, D.; Marini, F. Chemical Authentication of Extra Virgin Olive Oil Varieties by Supervised Chemometric Procedures. J. Agric. Food Chem. 2002, 50, 413–418. [Google Scholar] [CrossRef]
- Pasqualone, A.; Di Renzo, V.; Blanco, A.; Summo, C.; Caponio, F.; Montemuro, C. Characterization of virgin olive oil from Leucocarpa cultivar by chemical and DNA analysis. Food Res. Int. 2012, 47, 188–193. [Google Scholar] [CrossRef]
- Zeiner, M.; Stefan, I.; Cindric, L.J. Determination of trace elements in olive oil by ICP-AES and ETA-AAS: A pilot study on the geographical characterization. Microchem. J. 2005, 81, 171–176. [Google Scholar] [CrossRef]
- Camin, F.; Larcher, R.; Perini, M.; Bontempo, L.; Bertoldi, D.; Gagliamo, G.; Nicolini, G.; Versini, G. Characterisation of authentic Italian extra-virgin olive oils by stable isotope ratios of C, O and H and mineral composition. Food Chem. 2010, 118, 901–909. [Google Scholar] [CrossRef]
- Pouliarekou, E.; Badeka, A.; Tasioula-Margari, M.; Kontakos, S.; Longobardi, F.; Kontominas, M.G. Characterization and classification of Western Greek olive oils according to cultivar and geographical origin based on volatile compounds. J. Chromatogr. A 2011, 1218, 7534–7542. [Google Scholar] [CrossRef]
- Eriotou, E.; Karabagias, I.K.; Maina, S.; Koulougliotis, D.; Kopsahelis, N. Geographical origin discrimination of “Ntopia” olive oil cultivar from Ionian islands using volatile compounds analysis and computational statistics. Eur. Food Res. Technol. 2021, 247, 3083–3098. [Google Scholar] [CrossRef]
- Luykx, D.M.A.; van Ruth, S.M. An overview of analytical methods for determining the geographical origin of food products. Food Chem. 2008, 107, 897–911. [Google Scholar] [CrossRef]
- Casale, M.; Oliveri, P.; Casolino, C.; Sinelli, N.; Zunin, P.; Armanino, C.; Forina, M.; Lanteri, S. Characterisation of PDO olive oil Chianti Classico by non-selective (UV–visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques. Anal. Chim. Acta 2012, 712, 56–63. [Google Scholar] [CrossRef]
- Kopsahelis, N.; Karabagias, I.K.; Papapostolou, H.; Eriotou, E. Cultivar authentication of olive oil from Ionian islands using volatile compounds and chemometric analyses. Food Meas. 2024, 18, 4402–4416. [Google Scholar] [CrossRef]
- Campestre, C.; Angelini, G.; Gasbarri, C.; Angerosa, F. The Compounds Responsible for the Sensory Profile in Monovarietal Virgin Olive Oils. Molecules 2017, 22, 1833. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Talarico, I.R.; Bartella, L.; Rocio-Bautista, P.; Di Donna, L.; Molina-Diaz, A.; Garcia-Reyes, J.F. Paper spray mass spectrometry profiling of olive oil unsaponifiable fraction for commercial categories classification. Talanta 2024, 267, 125152. [Google Scholar] [CrossRef]
- IUPAC. Compendium of Chemical Terminology, 2nd ed.; (The “Gold Book”); McNaught, A.D., Wilkinson, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1997; ISBN 0-9678550-9-8. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; González-Viñas, M.A.; de la Fuente, E.; Pérez-Coello, M.S. Influence of storage conditions on chemical composition and sensory properties of citrus honey. J. Agric. Food Chem. 2008, 56, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Hahs-Vaughn, D.L. Applied Multivariate Statistical Concepts, 1st ed.; Routledge: Abingdon-on-Thames, UK, 2016. [Google Scholar] [CrossRef]
- Theodosi, S.; Kosma, I.S.; Badeka, A.V. Quality characteristics of Koroneiki olive oil from Zakynthos island (Greece) and differentiation depending on the altitude level. Eur. Food Res. Technol. 2021, 247, 1235–1248. [Google Scholar] [CrossRef]
- Berlioz, B.; Cordella, C.; Cavalli, J.-F.; Lizzani-Cuvelier, L.; Loiseau, A.-M.; Fernandez, X. Comparison of the amounts of volatile compounds in French protected designation of origin virgin olive oils. J. Agric. Food Chem. 2006, 54, 10092–10101. [Google Scholar] [CrossRef] [PubMed]
- da Costa, J.R.O.; Dal Bosco, S.M.; Ramos, R.C.d.S.; Machado, I.C.K.; Garavaglia, J.; Villasclaras, S.S. Determination of volatile compounds responsible for sensory characteristics from Brazilian extra virgin olive oil using HS-SPME/GC-MS direct method. J. Food Sci. 2020, 85, 3764–3775. [Google Scholar] [CrossRef]
- Tomé-Rodríguez, S.; Ledesma-Escobar, C.A.; Penco-Valenzuela, J.M.; Priego-Capote, F. Cultivar influence on the volatile components of olive oil formed in the lipoxygenase pathway. LWT 2021, 147, 111485. [Google Scholar] [CrossRef]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R. Virgin olive oil odour notes: Their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chem. 2000, 68, 283–287. [Google Scholar] [CrossRef]
- Kosma, I.; Vatavali, K.; Kontakos, S.; Kontominas, M.; Kiritsakis, A.; Badeka, A. Geographical Differentiation of Greek Extra Virgin Olive Oil from Late-Harvested Koroneiki Cultivar Fruits. J. Am. Oil Chem. Soc. 2017, 94, 1373–1384. [Google Scholar] [CrossRef]
- Kesen, S.; Kelebek, H.; Selli, S. Characterization of the volatile, phenolic and antioxidant properties of monovarietal olive oil obtained from cv. Halhali. J. Am. Oil Chem. Soc. 2013, 90, 1685–1696. [Google Scholar] [CrossRef]
- Caporaso, N. Virgin olive oils: Environmental conditions, agronomical factors and processing technology affecting the chemistry of flavor profile. J. Food Chem. Nanotechnol. 2016, 2, 21–31. [Google Scholar] [CrossRef]
- Dourou, A.-M.; Brizzolara, S.; Famiani, F.; Tonuttia, P. Changes in volatile organic composition of olive oil extracted from cv. ‘Leccino’ fruit subjected to ethylene treatments at different ripening stages. J. Sci. Food Agric. 2021, 101, 3981–3986. [Google Scholar] [CrossRef]
- Bajoub, A.; Sánchez-Ortiz, A.; Ajal, E.A.; Ouazzani, N.; Fernández-Gutiérrez, A.; Beltrán, G.; Carrasco-Pancorbo, A. First comprehensive characterization of volatile profile of north Moroccan olive oils: A geographic discriminant approach. Food Res. Int. 2015, 76, 410–417. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Giambanelli, E.; Cane, A.; Mulinacci, N.; Zanoni, B. Volatile profile of two-phase olive pomace (Alperujo) by HS-SPME GC-MS as a key to defining volatile markers of sensory defects caused by biological phenomena in virgin olive oil. J. Agric. Food Chem. 2021, 69, 5155–5166. [Google Scholar] [CrossRef]
- Ben Brahim, S.; Amanpour, A.; Chtourou, F.; Kelebek, H.; Selli, S.; Bouaziz, M. Gas chromatography-mass spectrometry-olfactometry to control the aroma fingerprint of extra virgin olive oil from three Tunisian cultivars at three harvest times. J. Agric. Food Chem. 2018, 66, 2851–2861. [Google Scholar] [CrossRef] [PubMed]




| Standard Alkanes | Retention Time (min) |
|---|---|
| C8 | 16.20 |
| C9 | 20.99 |
| C10 | 25.66 |
| C11 | 29.84 |
| C12 | 33.96 |
| C13 | 38.01 |
| C14 | 41.00 |
| C15 | 43.55 |
| C16 | 45.50 |
| C17 | 47.30 |
| C18 | 49.10 |
| C19 | 51.05 |
| C20 | 53.52 |
| Retention Time (RT, min) | Volatile Compounds (μg/L) | LRI a | Zakynthos (Avg ± SD) | Kerkyra (Avg ± SD) | Kefalonia (Avg ± SD) | Leukada (Avg ± SD) | Wilks’ Lambda | F | p |
|---|---|---|---|---|---|---|---|---|---|
| Alcohols | |||||||||
| 5.70 | Ethanol | <800 | Nd | Nd | 5.09 ± 3.27 | 2.48 ± 2.03 | 0.390 | 22.459 | <0.001 |
| 8.13 | 1-Propanol | <800 | Nd | Nd | 7.11 ± 13.40 | Nd | 0.814 | 3.278 | 0.030 |
| 16.99 | 2-Hexanol | 816 | Nd | 0.89 ± 0.95 | Nd | Nd | 0.578 | 10.480 | <0.001 |
| 21.87 | (Z)-3-Hexen-1-ol | 920 | 11.38 ± 12.54 | Nd | 13.80 ± 11.62 | Nd | 0.696 | 6.246 | 0.001 |
| Sum of alcohols (Avg) | 11.38 | 0.89 | 26.00 | 2.48 | |||||
| Aldehydes | |||||||||
| 12.09 | 3-Methyl butanal | <800 | Nd | Nd | Nd | 0.14 ± 0.13 | 0.481 | 15.451 | <0.001 |
| 14.00 | Pentanal | <800 | 2.43 ± 1.82 | 2.89 ± 2.40 | 2.67 ± 1.99 | 2.61 ± 2.27 | 0.992 | 0.111 | 0.953 |
| 19.15 | Hexanal | 862 | 8.07 ± 2.68 | 7.66 ± 3.09 | 8.74 ± 3.41 | 7.41 ± 4.86 | 0.979 | 0.305 | 0.822 |
| 21.86 | (E)-2-Hexenal | 919 | Nd | 29.48 ± 40.82 | Nd | 16.64 ± 23.13 | 0.730 | 5.313 | 0.003 |
| 24.16 | Heptanal | 968 | 1.54 ± 1.54 | Nd | Nd | Nd | 0.597 | 9.682 | <0.001 |
| 33.30 | Nonanal | 1184 | 9.48 ± 5.02 | 5.15 ± 3.79 | 4.19 ± 5.08 | 8.02 ± 6.85 | 0.820 | 3.141 | 0.035 |
| Sum of aldehydes (Avg) | 21.52 | 45.18 | 15.60 | 34.82 | |||||
| Benzene derivatives | |||||||||
| 17.71 | Toluene | 831 | Nd | 1.17 ± 1.06 | Nd | 2.06 ± 2.32 | 0.600 | 9.950 | <0.001 |
| 39.47 | 1,3-Bis(1,1-dimethylethyl)benzene | 1349 | 4.84 ± 1.35 | 3.50 ± 2.18 | 4.17 ± 3.06 | 5.73 ± 2.46 | 0.897 | 1.645 | 0.193 |
| Sum of benzene derivatives (Avg) | 4.84 | 4.67 | 4.17 | 7.79 | |||||
| Esters | |||||||||
| 28.82 | (Z)-3-Hexen-1-ol, acetate | 1076 | 8.03 ± 6.97 | 6.12 ± 6.78 | 11.02 ± 9.10 | 7.63 ± 7.93 | 0.946 | 0.826 | 0.487 |
| Sum of esters and derivatives (Avg) | 8.03 | 6.12 | 11.02 | 7.63 | |||||
| Hydrocarbons | |||||||||
| 7.28 | (Z), 1,3-Pentadiene | <800 | Nd | 0.73 ± 0.81 | Nd | Nd | 0.592 | 9.864 | <0.001 |
| 7.30 | 1,4-Pentadiene | <800 | Nd | 0.79 ± 0.92 | Nd | Nd | 0.613 | 9.053 | <0.001 |
| 20.15 | 2,4-Dimethylheptane | 882 | 2.21 ± 0.98 | 1.88 ± 0.64 | 1.05 ± 0.99 | Nd | 0.518 | 13.361 | <0.001 |
| 22.24 | 4-Methyloctane | 927 | 1.45 ± 1.28 | Nd | Nd | Nd | 0.537 | 12.372 | <0.001 |
| 26.21 | 3-Ethyl-1,5-octadiene | 1013 | Nd | 0.58 ± 0.56 | Nd | Nd | 0.527 | 12.887 | <0.001 |
| 28.49 | 2,2,4,6,6-Pentamethylheptane | 1068 | 5.06 ± 1.31 | 2.39 ± 2.84 | 7.88 ± 3.04 | 7.71 ± 2.56 | 0.541 | 12.168 | <0.001 |
| 28.67 | Decane | 1072 | 6.89 ± 1.24 | 6.69 ± 1.76 | 4.53 ± 1.36 | 4.43 ± 1.13 | 0.579 | 10.443 | <0.001 |
| 29.46 | 2,5-dimethylnonane | 1091 | 0.68 ± 0.69 | 0.96 ± 0.90 | Nd | Nd | 0.675 | 6.916 | 0.001 |
| 29.65 | 4-Methyl decane | 1095 | 1.35 ± 1.49 | 1.97 ± 1.30 | Nd | 1.59 ± 0.92 | 0.695 | 6.289 | 0.001 |
| 37.30 | Dodecane | 1283 | 5.17 ± 1.43 | 3.85 ± 2.59 | 1.87 ± 1.42 | 2.93 ± 0.91 | 0.610 | 9.158 | <0.001 |
| Sum of hydrocarbons (Avg) | 22.81 | 19.84 | 15.33 | 16.66 | |||||
| Ketones | |||||||||
| 28.01 | 6-Methyl 5-hepten-2-one | 1056 | 6.49 ± 7.67 | 0.65 ± 0.72 | 0.60 ± 0.92 | Nd | 0.708 | 5.898 | 0.002 |
| Sum of ketones (Avg) | 6.49 | 0.65 | 0.60 | Nd | |||||
| Terpenoids | |||||||||
| 30.46 | 1-Methyl-4-(prop-1-en-2-yl)cyclohex-1-ene (dl-Limonene) | 1115 | Nd | 0.41 ± 0.46 | Nd | Nd | 0.598 | 9.627 | <0.001 |
| Sum of terpenoids (Avg) | Nd | 0.41 | Nd | Nd |
| Discriminant Functions | ||||
|---|---|---|---|---|
| Function | Eigenvalue | % of Variance | Cumulative % | Canonical Correlation |
| 1 | 15.272 a | 60.2 | 60.2 | 0.969 |
| 2 | 6.341 a | 25.0 | 85.2 | 0.929 |
| 3 | 3.750 a | 14.8 | 100 | 0.889 |
| Discriminant Functions | ||||
|---|---|---|---|---|
| Test of Function(s) | Wilks’ Lambda | Chi-square | df | Sig. (p) |
| 1 through 2 | 0.002 | 212.427 | 63 | 0.000 |
| 2 through 3 | 0.029 | 118.980 | 40 | 0.000 |
| 3 | 0.211 | 52.200 | 19 | 0.000 |
| Volatile Compounds | Discriminant Function | ||
|---|---|---|---|
| 1 | 2 | 3 | |
| 3-Ethyl-1,5-octadiene | 0.238 * | 0.073 | 0.028 |
| 2-Hexanol | 0.214 * | 0.066 | 0.025 |
| 2,2,4,6,6-Pentamethylheptane | −0.212 * | 0.137 | −0.106 |
| (Z)-1,3-Pentadiene | 0.208 * | 0.064 | 0.025 |
| dl-Limonene | 0.205 * | 0.063 | 0.024 |
| 1,4-Pentadiene | 0.199 * | 0.061 | 0.024 |
| (Ε)-2-Hexenal | 0.123 * | 0.115 | 0.122 |
| 4-Methyloctane | −0.060 | −0.348 * | 0.104 |
| 2,4-Dimethylheptane | 0.112 | −0.337 * | −0.076 |
| Heptanal | −0.053 | −0.308 * | 0.092 |
| Decane | 0.120 | −0.271 * | 0.106 |
| Dodecane | 0.042 | −0.267 * | 0.206 |
| 6-Methyl-5-hepten-2-one | −0.034 | −0.246 * | 0.054 |
| 2,5-Dimethylnonane | 0.140 | −0.156 * | 0.084 |
| Ethanol | −0.166 | 0.304 | −0.386 * |
| 3-Methylbutanal | −0.105 | 0.247 | 0.373 * |
| Toluene | 0.052 | 0.221 | 0.290 * |
| 4-Methyldecane | 0.099 | −0.040 | 0.272 * |
| (Z)-3-Hexen-1-ol | −0.097 | −0.128 | −0.224 * |
| 1-Propanol | −0.043 | 0.069 | −0.213 * |
| Nonanal | −0.041 | −0.122 | 0.162 * |
| Volatile Compounds | Components | |||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| Dodecane | 0.783 * | −0.129 | 0.263 | 0.302 | 0.233 | |
| Nonanal | 0.726 | |||||
| Decane | 0.657 | 0.103 | 0.170 | 0.284 | 0.395 | 0.319 |
| Heptanal | 0.595 | 0.254 | −0.372 | 0.190 | ||
| 2,4-Dimethylheptane | 0.558 | 0.374 | 0.470 | 0.122 | ||
| dl-Limonene | −0.517 | 0.411 | 0.333 | 0.159 | 0.285 | |
| 4-Methyloctane | 0.489 | −0.175 | 0.120 | 0.206 | −0.317 | 0.314 |
| 1,4-Pentadiene | −0.109 | 0.936 * | 0.150 | |||
| (E)-2-Hexenal | 0.774 | −0.242 | ||||
| 3-Ethyl-1,5-octadiene | −0.239 | 0.758 | 0.212 | 0.148 | 0.178 | 0.150 |
| 2-Hexanol | 0.163 | 0.671 | 0.543 | |||
| 2,2,4,6,6-Pentamethylheptane | −0.400 | −0.745 * | −0.118 | |||
| (Z)-3-Hexen-1-ol | 0.223 | −0.178 | −0.593 | 0.439 | −0.220 | 0.128 |
| 2,5-Dimethylnonane | 0.390 | 0.161 | 0.515 | 0.223 | 0.292 | 0.185 |
| 6-Methyl-5-hepten-2-one | 0.278 | −0.306 | 0.450 | 0.184 | −0.208 | 0.184 |
| 4-Methyldecane | 0.279 | 0.156 | 0.359 | −0.238 | 0.293 | 0.353 |
| 3-Methylbutanal | −0.133 | −0.841 * | ||||
| Toluene | −0.169 | 0.348 | −0.675 | 0.154 | ||
| (Z)-1,3-Pentadiene | 0.136 | 0.883 * | 0.102 | |||
| 1-Propanol | 0.114 | −0.884 * | ||||
| Ethanol | −0.382 | −0.199 | −0.342 | −0.605 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopsahelis, N.; Karabagias, I.K.; Eriotou, E. Regional Differentiation of Olive Oil of the Koroneiki Olive Cultivar from the Ionian Islands Based on Key Volatile Compounds and Descriptive Data Analysis. Foods 2025, 14, 4026. https://doi.org/10.3390/foods14234026
Kopsahelis N, Karabagias IK, Eriotou E. Regional Differentiation of Olive Oil of the Koroneiki Olive Cultivar from the Ionian Islands Based on Key Volatile Compounds and Descriptive Data Analysis. Foods. 2025; 14(23):4026. https://doi.org/10.3390/foods14234026
Chicago/Turabian StyleKopsahelis, Nikolaos, Ioannis K. Karabagias, and Effimia Eriotou. 2025. "Regional Differentiation of Olive Oil of the Koroneiki Olive Cultivar from the Ionian Islands Based on Key Volatile Compounds and Descriptive Data Analysis" Foods 14, no. 23: 4026. https://doi.org/10.3390/foods14234026
APA StyleKopsahelis, N., Karabagias, I. K., & Eriotou, E. (2025). Regional Differentiation of Olive Oil of the Koroneiki Olive Cultivar from the Ionian Islands Based on Key Volatile Compounds and Descriptive Data Analysis. Foods, 14(23), 4026. https://doi.org/10.3390/foods14234026

