Investigation of Listeria monocytogenes in Food in Northwestern Italy (2020–2024)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Isolation
2.3. Serogrouping
2.4. Sequencing
2.5. Bioinformatics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CC | Clonal complex |
| LIPI | Listeria pathogenicity island |
| Lm | Listeria monocytogenes |
| MLST | Multilocus sequence typing |
| cgMLST | Core-genome MLST |
| MLVA | Multiple-locus variable-number of tandem-repeats analysis |
| NGS | Next generation sequencing |
| PCR | Polymerase chain reaction |
| PFGE | Pulse field gel electrophoresis |
| RFLP | Restriction fragment length polymorphism |
Appendix A
| Serotype | Target Gene (Expected Bandwidth) | Serogroup | |||||
|---|---|---|---|---|---|---|---|
| lmo 1118 (906 bp) | lmo 0737 (691 bp) | ORF 2110 (597 bp) | ORF 2819 (471 bp) | Prs (370 bp) | prfa (274 bp) | ||
| 1/2a, 3a | − | + | − | − | + | + | IIa |
| 1/2b, 3b, 7 | − | − | − | + | + | + | IIb |
| 1/2c, 3c | + | + | − | − | + | + | IIc |
| 4ab, 4b, 4d, 4e | − | − | + | + | + | + | IVb |
| 4a, 4c | − | − | − | − | + | + | IVa |
| Listeria spp. | − | − | − | − | + | − | − |
| LM10 | LM12 | LM14 | LM15 | LM1 | LM21 | LM2 | LM31 | LM32 | LM33 | LM39 | LM3 | LM4 | LM9 | |
| LM10 | 0 | 1279 | 2 | 152 | 1 | 1262 | 2 | 2 | 1 | 1 | 2 | 4 | 2 | 2 |
| LM12 | 1279 | 0 | 1279 | 1280 | 1278 | 1375 | 1279 | 1279 | 1278 | 1278 | 1279 | 1281 | 1279 | 1279 |
| LM14 | 2 | 1279 | 0 | 152 | 1 | 1262 | 2 | 2 | 1 | 1 | 2 | 4 | 2 | 2 |
| LM15 | 152 | 1280 | 152 | 0 | 151 | 1259 | 152 | 152 | 151 | 151 | 152 | 154 | 152 | 152 |
| LM1 | 1 | 1278 | 1 | 151 | 0 | 1261 | 1 | 1 | 0 | 0 | 1 | 3 | 1 | 1 |
| LM21 | 1262 | 1375 | 1262 | 1259 | 1261 | 0 | 1262 | 1262 | 1261 | 1261 | 1262 | 1264 | 1262 | 1262 |
| LM2 | 2 | 1279 | 2 | 152 | 1 | 1262 | 0 | 0 | 1 | 1 | 0 | 2 | 2 | 2 |
| LM31 | 2 | 1279 | 2 | 152 | 1 | 1262 | 0 | 0 | 1 | 1 | 0 | 2 | 2 | 2 |
| LM32 | 1 | 1278 | 1 | 151 | 0 | 1261 | 1 | 1 | 0 | 0 | 1 | 3 | 1 | 1 |
| LM33 | 1 | 1278 | 1 | 151 | 0 | 1261 | 1 | 1 | 0 | 0 | 1 | 3 | 1 | 1 |
| LM39 | 2 | 1279 | 2 | 152 | 1 | 1262 | 0 | 0 | 1 | 1 | 0 | 2 | 2 | 2 |
| LM3 | 4 | 1281 | 4 | 154 | 3 | 1264 | 2 | 2 | 3 | 3 | 2 | 0 | 4 | 4 |
| LM4 | 2 | 1279 | 2 | 152 | 1 | 1262 | 2 | 2 | 1 | 1 | 2 | 4 | 0 | 2 |
| LM9 | 2 | 1279 | 2 | 152 | 1 | 1262 | 2 | 2 | 1 | 1 | 2 | 4 | 2 | 0 |
| min: 0 max: 1375 | ||||||||||||||
References
- Bouznada, K.; Belaouni, H.A.; Saker, R.; Chaabane Chaouch, F.; Meklat, A. Phylogenomic analyses of the Listeriaceae family support species reclassification and proposal of a new family and new genera. Antonie Van Leeuwenhoek 2025, 118, 18. [Google Scholar] [CrossRef]
- Tuytschaever, T.; Raes, K.; Sampers, I. Listeria monocytogenes in Food Businesses: From Persistence Strategies to Intervention/Prevention Strategies—A Review. Comp. Rev. Food Sci. Food Safe 2023, 22, 3910–3950. [Google Scholar] [CrossRef] [PubMed]
- Schoder, D.; Guldimann, C.; Märtlbauer, E. Asymptomatic Carriage of Listeria monocytogenes by Animals and Humans and Its Impact on the Food Chain. Foods 2022, 11, 3472. [Google Scholar] [CrossRef]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Grudlewska-Buda, K.; Wałecka-Zacharska, E.; Korkus, J.; Gospodarek-Komkowska, E. Adaptive Response of Listeria monocytogenes to the Stress Factors in the Food Processing Environment. Front. Microbiol. 2021, 12, 710085. [Google Scholar] [CrossRef] [PubMed]
- Centorotola, G.; Ziba, M.W.; Cornacchia, A.; Chiaverini, A.; Torresi, M.; Guidi, F.; Cammà, C.; Bowa, B.; Mtonga, S.; Magambwa, P.; et al. Listeria monocytogenes in Ready to Eat Meat Products from Zambia: Phenotypical and Genomic Characterization of Isolates. Front. Microbiol. 2023, 14, 1228726. [Google Scholar] [CrossRef]
- Castrica, M.; Andoni, E.; Intraina, I.; Curone, G.; Copelotti, E.; Massacci, F.R.; Terio, V.; Colombo, S.; Balzaretti, C.M. Prevalence of Listeria monocytogenes and Salmonella spp. in Different Ready to Eat Foods from Large Retailers and Canteens over a 2-Year Period in Northern Italy. Int. J. Environ. Res. Public Health 2021, 18, 10568. [Google Scholar] [CrossRef]
- Di Ciccio, P.; Rubiola, S.; Panebianco, F.; Lomonaco, S.; Allard, M.; Bianchi, D.M.; Civera, T.; Chiesa, F. Biofilm Formation and Genomic Features of Listeria monocytogenes Strains Isolated from Meat and Dairy Industries Located in Piedmont (Italy). Int. J. Food Microbiol. 2022, 378, 109784. [Google Scholar] [CrossRef]
- Romeo, M.; Lasagabaster, A.; Lavilla, M.; Amárita, F. Genetic Diversity, Biofilm Formation, and Antibiotic Resistance in Listeria monocytogenes Isolated from Meat-Processing Plants. Foods 2025, 14, 1580. [Google Scholar] [CrossRef]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria monocytogenes—How This Pathogen Survives in Food-Production Environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar] [CrossRef]
- Quereda, J.J.; Morón-García, A.; Palacios-Gorba, C.; Dessaux, C.; García-del Portillo, F.; Pucciarelli, M.G.; Ortega, A.D. Pathogenicity and Virulence of Listeria monocytogenes: A Trip from Environmental to Medical Microbiology. Virulence 2021, 12, 2509–2545. [Google Scholar] [CrossRef]
- Li, X.; Shi, X.; Song, Y.; Yao, S.; Li, K.; Shi, B.; Sun, J.; Liu, Z.; Zhao, W.; Zhao, C.; et al. Genetic Diversity, Antibiotic Resistance, and Virulence Profiles of Listeria monocytogenes from Retail Meat and Meat Processing. Food Res. Int. 2022, 162, 112040. [Google Scholar] [CrossRef]
- Reis, J.O.; Teixeira, L.A.C.; Cunha-Neto, A.; Castro, V.S.; Figueiredo, E.E.S. Listeria monocytogenes in Beef: A Hidden Risk. Res. Microbiol. 2024, 175, 104215. [Google Scholar] [CrossRef]
- Bouymajane, A.; Rhazi Filali, F.; Oulghazi, S.; Lafkih, N.; Ed-Dra, A.; Aboulkacem, A.; El Allaoui, A.; Ouhmidou, B.; Moumni, M. Occurrence, Antimicrobial Resistance, Serotyping and Virulence Genes of Listeria monocytogenes Isolated from Foods. Heliyon 2021, 7, e06169. [Google Scholar] [CrossRef]
- European Food Safety Authority. Prolonged Multi-country Outbreak of Listeria monocytogenes ST1607 Linked to Smoked Salmon Products. EFSA J. 2024, 21, 8810E. [Google Scholar] [CrossRef]
- European Food Safety Authority. Prolonged Multi-country Outbreak of Listeria monocytogenes ST173 Linked to Consumption of Fish Products. EFSA J. 2024, 21, 8885E. [Google Scholar] [CrossRef]
- European Food Safety Authority. Prolonged Multi-country Cluster of Listeria monocytogenes ST155 Infections Linked to Ready-to-eat Fish Products. EFSA J. 2023, 20, 8538E. [Google Scholar] [CrossRef]
- Orsi, R.H.; Bakker, H.C.D.; Wiedmann, M. Listeria monocytogenes Lineages: Genomics, Evolution, Ecology, and Phenotypic Characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef]
- Commission Regulation. (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Available online: https://eur-lex.europa.eu/eli/reg/2005/2073/oj/eng (accessed on 22 October 2025).
- European Food Safety Authority. The European Union One Health 2023 Zoonoses Report. EFSA J. 2025, 22, e9106. [Google Scholar] [CrossRef]
- Choi, M.H.; Park, Y.J.; Kim, M.; Seo, Y.H.; Kim, Y.A.; Choi, J.Y.; Yong, D.; Jeong, S.H.; Lee, K. Increasing Incidence of Listeriosis and Infection-Associated Clinical Outcomes. Ann. Lab. Med. 2018, 38, 102–109. [Google Scholar] [CrossRef]
- Luciani, M.; Krasteva, I.; Schirone, M.; D’Onofrio, F.; Iannetti, L.; Torresi, M.; Di Pancrazio, C.; Perletta, F.; Valentinuzzi, S.; Tittarelli, M.; et al. Adaptive Strategies of Listeria monocytogenes: An in-Depth Analysis of the Virulent Strain Involved in an Outbreak in Italy through Quantitative Proteomics. Int. J. Food Microbiol. 2025, 427, 110951. [Google Scholar] [CrossRef]
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a Complete Picture of Its Physiology and Pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef]
- Farber, J.M.; Peterkin, P.I. Listeria monocytogenes, a Food-Borne Pathogen. Microbiol. Rev. 1991, 55, 476–511. [Google Scholar] [CrossRef]
- Lecuit, M. Listeria monocytogenes a Model in Infection Biology. Cell. Microbiol. 2020, 22, e13186. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.L.; Ricke, S.C.; Donaldson, J.R. Establishment of Listeria monocytogenes in the Gastrointestinal Tract. Microorganisms 2019, 7, 75. [Google Scholar] [CrossRef]
- Sibanda, T.; Buys, E.M. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022, 10, 1522. [Google Scholar] [CrossRef]
- Pontello, M.; Guaita, A.; Sala, G.; Cipolla, M.; Gattuso, A.; Sonnessa, M.; Gianfranceschi, M.V. Listeria monocytogenes Serotypes in Human Infections (Italy, 2000–2010). Ann. Dell'istituto Super. Sanità 2012, 48, 146–150. [Google Scholar] [CrossRef]
- Camejo, A.; Carvalho, F.; Reis, O.; Leitão, E.; Sousa, S.; Cabanes, D. The Arsenal of Virulence Factors Deployed by Listeria monocytogenes to Promote Its Cell Infection Cycle. Virulence 2011, 2, 379–394. [Google Scholar] [CrossRef]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Wałecka-Zacharska, E. Genomic and Pathogenicity Islands of Listeria monocytogenes—Overview of Selected Aspects. Front. Mol. Biosci. 2023, 10, 1161486. [Google Scholar] [CrossRef]
- Song, Y.; Gao, B.; Cai, H.; Qin, X.; Xia, X.; Dong, Q.; Hirata, T.; Li, Z. Comparative Analysis of Virulence in Listeria monocytogenes: Insights from Genomic Variations and in Vitro Cell-Based Studies. Int. J. Food Microbiol. 2025, 435, 111188. [Google Scholar] [CrossRef]
- Vilchis-Rangel, R.E.; Espinoza-Mellado, M.D.R.; Salinas-Jaramillo, I.J.; Martinez-Peña, M.D.; Rodas-Suárez, O.R. Association of Listeria monocytogenes LIPI-1 and LIPI-3 Marker llsX with Invasiveness. Curr. Microbiol. 2019, 76, 637–643. [Google Scholar] [CrossRef]
- Elsayed, M.E.; Abd El-Hamid, M.I.; El-Gedawy, A.; Bendary, M.M.; ELTarabili, R.M.; Alhomrani, M.; Alamri, A.S.; Alghamdi, S.A.; Arnout, M.; Binjawhar, D.N.; et al. New Insights into Listeria monocytogenes Antimicrobial Resistance, Virulence Attributes and Their Prospective Correlation. Antibiotics 2022, 11, 1447. [Google Scholar] [CrossRef]
- Anupama, A.; Pattapulavar, V.; Christopher, J.G. The Past, Present, Future of Listeria monocytogenes: Understanding the Molecular Pathways, Antibiotic Resistance and Public Health Implications. Med. Microecol. 2025, 25, 100127. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Al-Holy, M.A.; Shahbaz, H.M.; Al-Nabulsi, A.A.; Abu Ghoush, M.H.; Osaili, T.M.; Ayyash, M.M.; Holley, R.A. Emergence of Antibiotic Resistance in Listeria monocytogenes Isolated from Food Products: A Comprehensive Review. Comp. Rev. Food Sci. Food Safe 2018, 17, 1277–1292. [Google Scholar] [CrossRef]
- Dos Santos, J.S.; Biduski, B.; Dos Santos, L.R. Listeria monocytogenes: Health Risk and a Challenge for Food Processing Establishments. Arch. Microbiol. 2021, 203, 5907–5919. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rodríguez, F.; Mercanoglu Taban, B. A State-of-Art Review on Multi-Drug Resistant Pathogens in Foods of Animal Origin: Risk Factors and Mitigation Strategies. Front. Microbiol. 2019, 10, 2091. [Google Scholar] [CrossRef] [PubMed]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria monocytogenes in Foods—From Culture Identification to Whole-genome Characteristics. Food Sci. Nutr. 2022, 10, 2825–2854. [Google Scholar] [CrossRef]
- Lakicevic, B.; Jankovic, V.; Pietzka, A.; Ruppitsch, W. Wholegenome Sequencing as the Gold Standard Approach for Control of Listeria monocytogenes in the Food Chain. J. Food Prot. 2023, 86, 100003. [Google Scholar] [CrossRef]
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/60313.html (accessed on 3 November 2025).
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the Major Listeria monocytogenes Serovars by Multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [PubMed]
- D’agostino, M.; Wagner, M.; Vazquez-Boland, J.A.; Kuchta, T.; Karpiskova, R.; Hoorfar, J.; Novella, S.; Scortti, M.; Ellison, J.; Murray, A.; et al. A Validated PCR-Based Method to Detect Listeria monocytogenes Using Raw Milk as a Food Model—Towards an International Standard. J. Food Prot. 2004, 67, 1646–1655. [Google Scholar] [CrossRef]
- Romano, A.; Carrella, S.; Rezza, S.; Nia, Y.; Hennekinne, J.A.; Bianchi, D.M.; Martucci, F.; Zuccon, F.; Gulino, M.; Di Mari, C.; et al. First Report of Food Poisoning Due to Staphylococcal Enterotoxin Type B in Döner Kebab (Italy). Pathogens 2023, 12, 1139. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and Precise Alignment of Raw Reads against Redundant Databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef]
- Scheutz, F.; Nielsen, C.H.; Von Mentzer, A. Construction of the ETECFinder Database for the Characterization of Enterotoxigenic Escherichia coli (ETEC) and Revision of the VirulenceFinder Web Tool at the CGE Website. J. Clin. Microbiol. 2024, 62, e00570-23. [Google Scholar] [CrossRef] [PubMed]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef]
- Malberg Tetzschner, A.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020, 58, e01269-20. [Google Scholar] [CrossRef]
- Gill, A.; Dussault, F.; McMahon, T.; Petronella, N.; Wang, X.; Cebelinski, E.; Scheutz, F.; Weedmark, K.; Blais, B.; Carrillo, C. Characterization of Atypical Shiga Toxin Gene Sequences and Description of Stx2j, a New Subtype. J. Clin. Microbiol. 2022, 60, e02229-21. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, R.L.; Prasad, A.; Feldgarden, M.; Gonzalez-Escalona, N.; Kapsak, C.; Klimke, W.; Melton-Celsa, A.; Smith, P.; Souvorov, A.; Truong, J.; et al. Identification and Characterization of Ten Escherichia coli Strains Encoding Novel Shiga Toxin 2 Subtypes, Stx2n as Well as Stx2j, Stx2m, and Stx2o, in the United States. Microorganisms 2023, 11, 2561. [Google Scholar] [CrossRef]
- Posit Software. Posit Team RStudio: Integrated Development Environment for R 2025; PBC: Boston, MA, USA, 2025; Available online: http://www.posit.co/ (accessed on 24 July 2025).
- Genpat (Italian National Reference Centre for WGS of Microbial Pathogens). Available online: https://genpat.izs.it/cmdbuild/ui/#custompages/welcomePage (accessed on 22 July 2025).
- Zhou, Z.; Alikhan, N.-F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of Core Genomic Relationships among 100,000 Bacterial Pathogens. Genome Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Serra, F.; Bork, P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol. Biol. Evol. 2016, 33, 1635–1638. [Google Scholar] [CrossRef]
- Herfort, B.; Lautenbach, S.; Porto De Albuquerque, J.; Anderson, J.; Zipf, A. The Evolution of Humanitarian Mapping within the OpenStreetMap Community. Sci. Rep. 2021, 11, 3037. [Google Scholar] [CrossRef]
- Zhang, P.; Ji, L.; Wu, X.; Chen, L.; Yan, W.; Dong, F. Prevalence, Genotypic Characteristics, and Antibiotic Resistance of Listeria monocytogenes from Retail Foods in Huzhou, China. J. Food Prot. 2024, 87, 100307. [Google Scholar] [CrossRef]
- De Ruvo, A. SPREAD: Spatiotemporal Pathogen Relationships and Epidemiological Analysis Dashboard. Vet. Ital. 2024, 60, 1. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Herman, L.; Koutsoumanis, K.; et al. Listeria monocytogenes Contamination of Ready-to-eat Foods and the Risk for Human Health in the EU. EFSA J. 2018, 16, e05134. [Google Scholar] [CrossRef]
- Gianfranceschi, M.; Gattuso, A.; Fiore, A.; D’ottavio, M.C.; Casale, M.; Palumbo, A.; Aureli, P. Survival of Listeria monocytogenes in Uncooked Italian Dry Sausage (Salami). J. Food Prot. 2006, 69, 1533–1538. [Google Scholar] [CrossRef]
- Gianfranceschi, M.V.; D’Ottavio, M.C.; Gattuso, A.; Bella, A.; Aureli, P. Distribution of Serotypes and Pulsotypes of Listeria monocytogenes from Human, Food and Environmental Isolates (Italy 2002–2005). Food Microbiol. 2009, 26, 520–526. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, S.; Ye, Q.; Gu, Q.; Zhang, Y.; Ye, Q.; Lin, R.; Liang, X.; Liu, Z.; Bai, J.; et al. A Novel Multiplex PCR Based Method for the Detection of Listeria monocytogenes Clonal Complex 8. Int. J. Food Microbiol. 2024, 409, 110475. [Google Scholar] [CrossRef]
- Maury, M.M.; Tsai, Y.-H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes Hypervirulence by Harnessing Its Biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef]
- Félix, B.; Feurer, C.; Maillet, A.; Guillier, L.; Boscher, E.; Kerouanton, A.; Denis, M.; Roussel, S. Population Genetic Structure of Listeria monocytogenes Strains Isolated from the Pig and Pork Production Chain in France. Front. Microbiol. 2018, 9, 684. [Google Scholar] [CrossRef] [PubMed]
- Acciari, V.A.; Torresi, M.; Iannetti, L.; Scattolini, S.; Pomilio, F.; Decastelli, L.; Colmegna, S.; Muliari, R.; Bossù, T.; Proroga, Y.; et al. Listeria monocytogenes in Smoked Salmon and Other Smoked Fish at Retail in Italy: Frequency of Contamination and Strain Characterization in Products from Different Manufacturers. J. Food Prot. 2017, 80, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Pintado, C.M.B.S.; Oliveira, A.; Pampulha, M.E.; Ferreira, M.A.S.S. Prevalence and Characterization of Listeria monocytogenes Isolated from Soft Cheese. Food Microbiol. 2005, 22, 79–85. [Google Scholar] [CrossRef]
- Carminati, D.; Perrone, A.; Giraffa, G.; Neviani, E.; Mucchetti, G. Characterization of Listeria monocytogenes Strains Isolated from Gorgonzola Cheese Rinds. Food Microbiol. 2004, 21, 801–807. [Google Scholar] [CrossRef]
- Falardeau, J.; Trmčić, A.; Wang, S. The Occurrence, Growth, and Biocontrol of Listeria monocytogenes in Fresh and Surface-ripened Soft and Semisoft Cheeses. Comp. Rev. Food. Sci. Food Safe 2021, 20, 4019–4048. [Google Scholar] [CrossRef]
- Camellini, S.; Iseppi, R.; Condò, C.; Messi, P. Ready-to-Eat Sandwiches as Source of Pathogens Endowed with Antibiotic Resistance and Other Virulence Factors. Appl. Sci. 2021, 11, 7177. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. Multi-country Outbreak of Listeria monocytogenes Serogroup IVb, Multi-locus Sequence Type 6, Infections Probably Linked to Frozen Corn. EFSA Support. Publ. 2018, 15, EN-1402. [Google Scholar] [CrossRef]
- Kuch, A.; Goc, A.; Belkiewicz, K.; Filipello, V.; Ronkiewicz, P.; Gołębiewska, A.; Wróbel, I.; Kiedrowska, M.; Waśko, I.; Hryniewicz, W.; et al. Molecular Diversity and Antimicrobial Susceptibility of Listeria monocytogenes Isolates from Invasive Infections in Poland (1997–2013). Sci. Rep. 2018, 8, 14562. [Google Scholar] [CrossRef]
- Morvan, A.; Moubareck, C.; Leclercq, A.; Hervé-Bazin, M.; Bremont, S.; Lecuit, M.; Courvalin, P.; Le Monnier, A. Antimicrobial Resistance of Listeria monocytogenes Strains Isolated from Humans in France. Antimicrob. Agents Chemother. 2010, 54, 2728–2731. [Google Scholar] [CrossRef]
- Rippa, A.; Bilei, S.; Peruzy, M.F.; Marrocco, M.G.; Leggeri, P.; Bossù, T.; Murru, N. Antimicrobial Resistance of Listeria monocytogenes Strains Isolated in Food and Food-Processing Environments in Italy. Antibiotics 2024, 13, 525. [Google Scholar] [CrossRef]
- Fillgrove, K.L.; Pakhomova, S.; Schaab, M.R.; Newcomer, M.E.; Armstrong, R.N. Structure and Mechanism of the Genomically Encoded Fosfomycin Resistance Protein, FosX, from Listeria monocytogenes. Biochemistry 2007, 46, 8110–8120. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, S.; Huys, G.; Yde, M.; D’Haene, K.; Tardy, F.; Vrints, M.; Swings, J.; Collard, J.-M. Detection and Characterization of Tet(M) in Tetracycline-Resistant Listeria Strains from Human and Food-Processing Origins in Belgium and France. J. Med. Microbiol. 2005, 54, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewski, P.; Zakrzewski, A.J.; Zadernowska, A.; Chajęcka-Wierzchowska, W. Antimicrobial Resistance and Virulence Characterization of Listeria monocytogenes Strains Isolated from Food and Food Processing Environments. Pathogens 2022, 11, 1099. [Google Scholar] [CrossRef]
- Roberts, M.C. Environmental Macrolide–Lincosamide–Streptogramin and Tetracycline Resistant Bacteria. Front. Microbio. 2011, 2, 40. [Google Scholar] [CrossRef]
- Vázquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Domínguez-Bernal, G.; Goebel, W.; González-Zorn, B.; Wehland, J.; Kreft, J. Listeria Pathogenesis and Molecular Virulence Determinants. Clin. Microbiol. Rev. 2001, 14, 584–640. [Google Scholar] [CrossRef]
- Anwar, T.M.; Pan, H.; Chai, W.; Ed-Dra, A.; Fang, W.; Li, Y.; Yue, M. Genetic Diversity, Virulence Factors, and Antimicrobial Resistance of Listeria monocytogenes from Food, Livestock, and Clinical Samples between 2002 and 2019 in China. Int. J. Food Microbiol. 2022, 366, 109572. [Google Scholar] [CrossRef]
- De Las Heras, A.; Cain, R.J.; Bielecka, M.K.; Vázquez-Boland, J.A. Regulation of Listeria Virulence: PrfA Master and Commander. Curr. Opin. Microbiol. 2011, 14, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, M.M.; Brouwer, M.C.; Vázquez-Boland, J.A.; Van De Beek, D. Human Listeriosis. Clin. Microbiol. Rev. 2023, 36, e00060-19. [Google Scholar] [CrossRef] [PubMed]
- Pillich, H.; Puri, M.; Chakraborty, T. ActA of Listeria monocytogenes and Its Manifold Activities as an Important Listerial Virulence Factor. In The Actin Cytoskeleton and Bacterial Infection; Mannherz, H.G., Ed.; Current Topics in Microbiology and Immunology; Springer International Publishing: Cham, Switzerland, 2016; Volume 399, pp. 113–132. ISBN 978-3-319-50046-1. [Google Scholar]
- Cabanes, D.; Sousa, S.; Cebriá, A.; Lecuit, M.; García-del Portillo, F.; Cossart, P. Gp96 Is a Receptor for a Novel Listeria monocytogenes Virulence Factor, Vip, a Surface Protein. EMBO J. 2005, 24, 2827–2838. [Google Scholar] [CrossRef]
- Van Der Veen, S.; Abee, T. Contribution of Listeria monocytogenes RecA to Acid and Bile Survival and Invasion of Human Intestinal Caco-2 Cells. Int. J. Med. Microbiol. 2011, 301, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Ireton, K.; Mortuza, R.; Gyanwali, G.C.; Gianfelice, A.; Hussain, M. Role of Internalin Proteins in the Pathogenesis of Listeria monocytogenes. Mol. Microbiol. 2021, 116, 1407–1419. [Google Scholar] [CrossRef]
- Olier, M.; Pierre, F.; Rousseaux, S.; Lemaître, J.-P.; Rousset, A.; Piveteau, P.; Guzzo, J. Expression of Truncated Internalin A Is Involved in Impaired Internalization of Some Listeria monocytogenes Isolates Carried Asymptomatically by Humans. Infect. Immun. 2003, 71, 1217–1224. [Google Scholar] [CrossRef]
- Lecuit, M.; Vandormael-Pournin, S.; Lefort, J.; Huerre, M.; Gounon, P.; Dupuy, C.; Babinet, C.; Cossart, P. A Transgenic Model for Listeriosis: Role of Internalin in Crossing the Intestinal Barrier. Science 2001, 292, 1722–1725. [Google Scholar] [CrossRef]
- Pentecost, M.; Otto, G.; Theriot, J.A.; Amieva, M.R. Listeria monocytogenes Invades the Epithelial Junctions at Sites of Cell Extrusion. PLoS Pathog. 2006, 2, e3. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Derré, I.; Msadek, T.; Gaillot, O.; Berche, P. CtsR Controls Class III Heat Shock Gene Expression in the Human Pathogen Listeria monocytogenes. Mol. Microbiol. 2000, 35, 800–811. [Google Scholar] [CrossRef] [PubMed]
- Birk, M.S.; Ahmed-Begrich, R.; Tran, S.; Elsholz, A.K.W.; Frese, C.K.; Charpentier, E. Time-Resolved Proteome Analysis of Listeria monocytogenes during Infection Reveals the Role of the AAA+ Chaperone ClpC for Host Cell Adaptation. mSystems 2021, 6. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, N.K.; El-Hamid, M.I.A.; Awad, N.F.S.; El-Tarabili, R.M.; Elazab, S.T.; Mosbah, R.A.; Elmanakhly, A.R.; Alhomrani, M.; Alamri, A.S.; Algarzae, N.K.; et al. Exploring the Dynamic Relationship between Antimicrobial Resistance, Virulence Fitness, and Host Responses in Listeria monocytogenes Infections. Sci. Rep. 2025, 15, 32644. [Google Scholar] [CrossRef]
- Mariscotti, J.F.; Quereda, J.J. Contribution of Sortase A to the Regulation of Listeria monocytogenes LPXTG Surface Proteins. Int. Microbiol. 2012, 15, 43–51. [Google Scholar] [CrossRef]
- Kumar, S.; Parvathi, A.; George, J.; Krohne, G.; Karunasagar, I.; Karunasagar, I. A Study on the Effects of Some Laboratory-Derived Genetic Mutations on Biofilm Formation by Listeria monocytogenes. World J. Microbiol. Biotechnol. 2009, 25, 527–531. [Google Scholar] [CrossRef]
- Yao, H.; Kang, M.; Wang, Y.; Feng, Y.; Kong, S.; Cai, X.; Ling, Z.; Chen, S.; Jiao, X.; Yin, Y. An Essential Role for Hfq Involved in Biofilm Formation and Virulence in Serotype 4b Listeria monocytogenes. Microbiol. Res. 2018, 215, 148–154. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitti, M.; Tavecchia, M.; Romano, A.; Carrella, S.; Previto, G.; Bianchi, D.M. Investigation of Listeria monocytogenes in Food in Northwestern Italy (2020–2024). Foods 2025, 14, 3788. https://doi.org/10.3390/foods14213788
Pitti M, Tavecchia M, Romano A, Carrella S, Previto G, Bianchi DM. Investigation of Listeria monocytogenes in Food in Northwestern Italy (2020–2024). Foods. 2025; 14(21):3788. https://doi.org/10.3390/foods14213788
Chicago/Turabian StylePitti, Monica, Matteo Tavecchia, Angelo Romano, Simona Carrella, Giovanna Previto, and Daniela Manila Bianchi. 2025. "Investigation of Listeria monocytogenes in Food in Northwestern Italy (2020–2024)" Foods 14, no. 21: 3788. https://doi.org/10.3390/foods14213788
APA StylePitti, M., Tavecchia, M., Romano, A., Carrella, S., Previto, G., & Bianchi, D. M. (2025). Investigation of Listeria monocytogenes in Food in Northwestern Italy (2020–2024). Foods, 14(21), 3788. https://doi.org/10.3390/foods14213788

