Beetroot Powder as Natural Colorant in Fresh Pork Sausages: Impacts on Consumer Liking, Emotional Responses, and Identification of Purchasing Drivers
Abstract
1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Production of Fresh Sausages
2.3. Instrumental Characterization of Samples
2.4. Consumer Test
2.4.1. Recruitment
2.4.2. Sensory Analysis Procedure
2.5. Data Analysis
2.5.1. Instrumental Data
2.5.2. Overall Liking and Emotional Data
2.5.3. JAR Data
2.5.4. Completion Tasks
2.5.5. Effect of Driver of Purchasing on Liking and Emotions
3. Results and Discussion
3.1. Characterization of Sausages
3.2. Consumers’ Sampling
3.3. General Results
3.4. Emotions Evoked
3.5. JAR
3.6. Sentence Completion
3.7. Influence of Purchasing Drivers on Liking and Emotions
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soquetta, M.B.; Schmaltz, S.; Righes, F.W.; Salvalaggio, R.; Terra, L.M. Effects of pretreatment ultrasound bath and ultrasonic probe, in osmotic dehydration, in the kinetics of oven drying and the physicochemical properties of beet snacks. J. Food Proc. Preserv. 2018, 42, e13393. [Google Scholar] [CrossRef]
- Thiruvengadam, N.; Chung, I.-M.; Samynathan, R.; Chandar, S.R.H.; Venkidasamy, B.; Sarkar, T.; Rebezov, M.; Gorelik, O.; Shariati, M.A.; Simal-Gandara, J. A comprehensive review of beetroot (Beta vulgaris L.) bioactive components in the food and pharmaceutical industries. Crit. Rev. Food Sci. Nutr. 2024, 64, 708–739. [Google Scholar] [CrossRef]
- Vulić, J.J.; Ćebović, T.N.; Čanadanović, V.M.; Ćetković, G.S.; Djilas, S.M.; Čanadanović-Brunet, J.M.; Tumbas, V.T. Antiradical, antimicrobial and cytotoxic activities of commercial beetroot pomace. Food Funct. 2013, 4, 713. [Google Scholar] [CrossRef]
- Chandrasekhar, J.; Sonika, G.; Madhusudhan, M.C.; Raghavarao, K.S.M.S. Differential partitioning of betacyanins and betaxanthins employing aqueous two phase extraction. J. Food Eng. 2015, 144, 156–163. [Google Scholar] [CrossRef]
- Sucu, C.; Turp, G.Y. The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Sci. 2018, 140, 158–166. [Google Scholar] [CrossRef]
- Aksu, M.I.; Erdemir, E.; Turan, E.; Sat, I.G. Effects of red beet extracts on protein and lipid oxidation, colour, microbial, sensory properties and storage stability of Turkish pastırma. J. Stored Prod. Res. 2020, 89, 101721. [Google Scholar] [CrossRef]
- Račkauskienė, I.; Pukalskas, A.; Venskutonis, P.R.; Fiore, A.; Troise, A.D.; Fogliano, V. Effects of beetroot (Beta vulgaris) preparations on the Maillard reaction products in milk and meat-protein model systems. Food Res. Int. 2015, 70, 31–39. [Google Scholar] [CrossRef]
- Kumar, S.; Brooks, M.S.-L. Use of red beet (Beta vulgaris L.) for antimicrobial applications—A critical review. Food Bioproc Technol. 2017, 11, 17–42. [Google Scholar] [CrossRef]
- Melios, S.; Grasso, S.; Bolton, D.; Crofton, E. A comparison of the sensory characteristics of plant-based, nitrite-free, dry-cured and brine-cured bacon rashers with temporal dominance of sensations and partial napping with ultra-flash profiling. LWT 2024, 204, 116323. [Google Scholar] [CrossRef]
- Aykın-Dinçer, E.; Güngör, K.K.; Çağlar, E.; Erbaş, M. The use of beetroot extract and extract powder in sausages as natural food colorant. Int. J. Food Eng. 2017, 17, 75–82. [Google Scholar] [CrossRef]
- Bellucci, E.R.B.; Barreto, T.L.; Rodriguez, J.M.L.; Bis-Souza, C.V.; Barba, F.J.; Barretto, A.C.S. Natural colorants improved the physicochemical and sensorial properties of frozen Brazilian sausage (linguiça) with reduced nitrite. Sci. Agric. 2021, 78, e20190211. [Google Scholar] [CrossRef]
- Fernandes, E. Brazil Fresh Sausage Market AI Impact: Size, Drivers And Challenges. Available online: https://www.linkedin.com/pulse/brazil-fresh-sausage-market-ai-impact-size-drivers-1gvdc/ (accessed on 14 September 2025).
- Future Market Insights. Beetroot Powder Market Insights—Trends & Forecast 2023–2033. Available online: https://www.futuremarketinsights.com/reports/beetroot-powder-market (accessed on 1 May 2025).
- King, S.C.; Meiselman, H.L. Development of a method to measure consumer emotions associated with foods. Food Qual. Pref. 2010, 21, 168–177. [Google Scholar] [CrossRef]
- Laeger, S.R.; Chheang, S.L.; Roigard, C.M.; Cardello, A.V. Individual differences in food neophobia and private body consciousness influence product-elicited emotional valence and arousal. Food Qual. Prefer. 2022, 99, 104566. [Google Scholar] [CrossRef]
- Nestrud, M.A.; Meiselman, H.L.; King, S.C.; Lesher, L.L.; Cardello, A.V. Development of EsSense25, a shorter version of the EsSense Profile®. Food Qual. Prefer. 2016, 48, 107–117. [Google Scholar] [CrossRef]
- Gambaro, A. Projective techniques to study consumer perception of food. Cur Opin. Food Sci. 2018, 21, 46–50. [Google Scholar] [CrossRef]
- Viana, M.M.; Silva, V.L.S.; Deliza, R.; Trindade, M.A. The use of an online completion test to reveal important attributes in consumer choice: An empirical study on frozen burgers. Food Qual. Prefer. 2016, 52, 255–261. [Google Scholar] [CrossRef]
- Vidal, L.; Ares, G.; Giménez, A. Projective techniques to uncover consumer perception: Application of three methodologies to ready-to-eat salads. Food Qual. Prefer. 2013, 28, 1–7. [Google Scholar] [CrossRef]
- De Souza, A.P.C.; Leães, F.L.; Danieli, G.; Ruaro, E.L.; Righi, E.; Meirelles, R.N.; Sant’Anna, V. Exploring consumers’ perception of stingless bee honey using projective techniques. Brit Food J. 2024, 126, 2999–3014. [Google Scholar] [CrossRef]
- Ares, G.; Barreiro, C.; Deliza, R.; Giménez, A.; Gámbaro, A. Consumers expectations and perception of chocolate milk desserts enriched with antioxidants. J. Sens. Stud. 2010, 25, 243–260. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Sant’Anna, V.; Gurak, P.D.; Marczak, L.D.F.; Tessaro, I.C. Tracking bioactive compounds with colour changes in foods—A review. Dyes Pigment. 2013, 98, 601–608. [Google Scholar] [CrossRef]
- MacFie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Liato, V.; Aïder, M. Geosmin as a source of the earthy-musty smell in fruits, vegetables and water: Origins, impact on foods and water, and review of the removing techniques. Chemosphere 2017, 181, 9–18. [Google Scholar] [CrossRef]
- Shimizu, T.; Fushimi, T.; Ohno, R.; Yasuyuki, F.; Aso, K.; Jacobs, U.M.; Nukeri, O.; Suhara, Y.; Calabrese, V.; Osakabe, N. Verification of the interaction between human bitter taste receptor T2R46 and polyphenols; Computational chemistry approach. Cur Res. Food Sci. 2024, 9, 100914. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Other acceptance scales and just-about-right scales. In Sensory Evaluation of Food: Principles and Practices; Springer: Berlin/Heidelberg, Germany, 2010; pp. 328–340. [Google Scholar]
- Rodrigues, H.; Cielo, D.P.; Gómez-Corona, C.; Silveira, A.A.S.; Marchesan, T.A.; Galmarini, M.V.; Richards, N.S.P.S. Eating flowers? Exploring attitudes and consumers’ representation of edible flowers. Food Res. Int. 2017, 100, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Dall’Ácua, K.; Sommer, S.F.; Richter, M.F.; Leães, F.L.; Sant’Anna, V. Valorization of a threatened by extinction species: Consumers’ perception, expectation, and sensorial analysis of Araucaria angustifolia seed (pinhão) flour. J. Culin. Sci. Technol. 2024, 22, 323–337. [Google Scholar] [CrossRef]
- Meyners, M.; Hasted, A. Reply to Bi and Kuesten: ANOVA outperforms logistic regression for the analysis of CATA data. Food Qual. Prefer. 2022, 95, 104339. [Google Scholar] [CrossRef]
- Agresti, A. Generalised linear models. In An Introduction to Categorical Data Analysis, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Mitrevski, J.; Pantelić, N.D.; Dodevska, M.S.; Kojić, J.S.; Vulić, J.J.; Zlatanović, S.; Gorjanović, S.; Laličić-Petronijević, J.; Marjanović, S.; Antić, V.V. Effect of Beetroot Powder Incorporation on Functional Properties and Shelf Life of Biscuits. Foods 2023, 12, 322. [Google Scholar] [CrossRef]
- Sharma, G. Digital Color Imaging Handbook; (1.7.2); CRC Press: Boca Raton, FL, USA, 2003; ISBN 0-8493-0900-X. [Google Scholar]
- Rocha, Y.J.P.; Lapa-Guimarães, J.; de Noronha, R.L.F.; Trindade, M.A. Evaluation of consumers’ perception regarding frankfurter sausages with different healthiness attributes. J. Sens. Stud. 2018, 33, e12468. [Google Scholar] [CrossRef]
- Rocha, Y.J.P.; de Noronha, R.L.F.; Trindade, M.A. Understanding the consumer’s perception of traditional frankfurters and frankfurters with healthy attributes through sorting task and hard laddering techniques. Meat Sci. 2019, 149, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Ávila, B.P.; Cardozo, L.O.; Alves, G.D.; Gularte, M.A.; Monks, J.; Elias, M.C. Consumers’ Sensory Perception of Food Attributes: Identifying the Ideal Formulation of Gluten- and Lactose-Free Brownie Using Sensory Methodologies. J. Food Sci. 2019, 84, 3707–3716. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.C.; Regan, A.; Monahan, F.J.; Li, C.; Murrin, C.; Lalor, F.; Wall, P.G.; McConnon, A. Consumer views on “healthier” processed meat. Brit Food J. 2016, 118, 2744–2761. [Google Scholar] [CrossRef]
- Hung, Y.; de Kok, T.M.; Verbeke, W. Consumer attitude and purchase intention towards processed meat products with natural compounds and a reduced level of nitrite. Meat Sci. 2016, 121, 119–126. [Google Scholar] [CrossRef]
- Dean, M.; Lampila, P.; Shepherd, R.; Arvola, A.; Saba, A.; Vassallo, M.; Claupein, E.; Winkelmann, W.; Lähteenmäki, L. Perceived relevance and foods with health-related claims. Food Qual. Prefer. 2012, 24, 129–135. [Google Scholar] [CrossRef]
- De Barcellos, M.D.; Aguiar, L.K.; Ferreira, G.C.; Vieira, L.M. Willingness to try innovative food products: A comparison between British and Brazilian consumers. Braz. Admin Ver. 2009, 6, 50–61. [Google Scholar] [CrossRef]
- Strijbos, C.; Schluck, M.; Bisschop, J.; Bui, T.; de Jong, I.; van Leeuwen, M.; von Tottleben, M.; van Breda, S.G. Consumer awareness and credibility factors of health claims on innovative meat products in a cross-sectional population study in the Netherlands. Food Qual. Prefer. 2016, 54, 13–22. [Google Scholar] [CrossRef]
- Kamphorst, R.C.M.; de Moraes, K.; de Moraes, B.K.B.; Sant’Anna, V. Exploring Brazilian consumer’s profile and perceived innovations toward sustainable cues on chocolate front-of-package labeling. J. Culin. Sci. Technol. 2025, in press. [CrossRef]
- Pereira, L.S.; de Moraes, B.K.B.; Borba, E.M.; Roldan, B.B.; Padilha, R.L.; Sant’Anna, V. Consumers’ segmentation influences acceptance and preferences of cheeses with sanitary inspection and artisanal seals. Foods 2023, 12, 3805. [Google Scholar] [CrossRef]
- Moskowitz, H. Food and drink: Thoughts on base size in sensory and consumer research. Edelweiss Appl. Sci Technol. 2020, 4, 37–40. [Google Scholar] [CrossRef]
- Zandanotto, C.; Bagatini, L.; de Moraes, B.K.B.; Sant’Anna, V. Consumers’ neophobic profile influences sensory and perception responses to the addition of banana peel into cake formulation. J. Culin. Sci. Technol. 2025, in press. [CrossRef]
- Jaeger, S.R.; Dupas de Matos, A.; Oduro, A.F.; Hort, J. Sensory characteristics of plant-based milk alternatives: Product characterisation by consumers and drivers of liking. Food Res. Int. 2024, 180, 114093. [Google Scholar] [CrossRef] [PubMed]
- Di Vita, G.; Blanc, S.; Brun, F.; Bracco, S.; D’Amico, M. Quality attributes and harmful components of cured meats: Exploring the attitudes of Italian consumers towards healthier cooked ham. Meat Sci. 2019, 155, 8–15. [Google Scholar] [CrossRef]
- Sabbe, S.; Verbeke, W.; Deliza, R.; Matta, V.; Van Damme, P. Effect of a health claim and personal characteristics on consumer acceptance of fruit juices with different concentrations of açaí (Euterpe oleracea Mart.). Appetite 2009, 53, 84–92. [Google Scholar] [CrossRef]
- Fryer, J.A.; Dupas de Matos, A.; Hort, J.; Tomasino, E. Consumer responses to smoke-impacted pinot noir wine and the influence of label concepts on perception. Food Res. Int. 2025, 203, 115881. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.P.; Wansink, B.; Kim, J.; Park, S.-B. Better moods for better eating? How mood influences food choice. J. Cons. Psychol. 2014, 24, 320–335. [Google Scholar] [CrossRef]
- De Brito, I.S.; Filho, E.R.T.; de Mattos, R.B.E.; Pagani, M.M.; Pimentel, T.C.; da Cruz, A.G.; Mársico, E.T.; Martins, C.P.C.; Esmerino, E.A. Exploring preferences and emotional responses of a dairy-based hybrid product: Insights from consumer-centric development using different health-oriented clusters. Food Qual. Prefer. 2025, 128, 105537. [Google Scholar] [CrossRef]
- Hough, G.; Wakeling, I.; Mucci, A.; Chambers IV, E.; Gallardo, I.M.; Alves, L.R. Number of consumers necessary for sensory acceptability tests. Food Qual. Prefer. 2006, 17, 522–526. [Google Scholar] [CrossRef]





| Control | F1 | F2 | F3 | |
|---|---|---|---|---|
| Moisture (%) | 93.86 ± 1.53 a | 90.50 ± 1.33 a | 88.18 ± 2.24 b | 87.96 ± 0.87 b | 
| Aw | 0.992 ± 0.002 a | 0.992 ± 0.001 a | 0.991 ± 0.001 ab | 0.988 ± 0.003 b | 
| pH | 5.66 ± 0.03 a | 5.46 ± 0.04 b | 5.41 ± 0.04 b | 5.39 ± 0.05 b | 
| L* | 54.72 ± 0.23 a | 50.67 ± 3.02 a | 43.84 ± 1.05 b | 40.23 ± 2.45 b | 
| a* | 1.77 ± 0.26 c | 3.47 ± 0.62 b | 4.59 ± 0.40 ab | 6.12 ± 0.15 a | 
| b* | 0.55 ± 0.11 a | 0.71 ± 0.07 a | 0.67 ± 0.05 a | 0.53 ± 0.05 a | 
| ΔE | 4.40 | 11.24 | 15.13 | |
| Cooking loss (%) | 15.29 ± 0.70 a | 13.07 ± 0.41 b | 10.19 ± 1.21 c | 8.23 ± 0.75 c | 
| Emotion | Control | F1 | F2 | F3 | p-Values | 
|---|---|---|---|---|---|
| Active | 0.0879 b | 0.1538 ab | 0.1868 ab | 0.2198 a | 0.0140 | 
| Adventurous | 0.1868 | 0.1319 | 0.1868 | 0.1209 | 0.3102 | 
| Calm | 0.2088 | 0.2527 | 0.2418 | 0.2198 | 0.8358 | 
| Enthusiastic | 0.1429 | 0.1648 | 0.1538 | 0.1758 | 0.8907 | 
| Free | 0.1209 | 0.1868 | 0.1538 | 0.1868 | 0.2886 | 
| Good-natured | 0.0879 b | 0.1978 a | 0.0879 b | 0.1099 ab | 0.0087 | 
| Interested | 0.2637 | 0.3516 | 0.2967 | 0.3736 | 0.2115 | 
| Joyful | 0.0989 a | 0.2637 a | 0.2637 a | 0.3736 a | 0.0000 | 
| Loving | 0.0769 | 0.0989 | 0.0769 | 0.0659 | 0.6912 | 
| Satisfied | 0.3956 | 0.4066 | 0.4835 | 0.4725 | 0.4098 | 
| Secure | 0.1868 | 0.2857 | 0.2747 | 0.2747 | 0.2302 | 
| Understanding | 0.1319 b | 0.2747 a | 0.1319 b | 0.2308 ab | 0.0039 | 
| Aggressive | 0.0989 a | 0.0220 b | 0.0110 b | 0.0659 ab | 0.0064 | 
| Bored | 0.0879 | 0.0330 | 0.0440 | 0.0769 | 0.2530 | 
| Disgusted | 0.3407 a | 0.1209 b | 0.1429 b | 0.1648 b | 0.0002 | 
| Good | 0.3077 c | 0.6154 a | 0.5495 ab | 0.4286 bc | 0.0000 | 
| Guilty | 0.1648 a | 0.0549 b | 0.0330 b | 0.0989 ab | 0.0004 | 
| Happy | 0.1538 b | 0.3956 a | 0.3297 a | 0.2857 ab | 0.0001 | 
| Mild | 0.2637 | 0.3736 | 0.3956 | 0.2418 | 0.0239 | 
| Nostalgic | 0.1099 | 0.1648 | 0.1978 | 0.1209 | 0.1260 | 
| Pleasant | 0.2747 b | 0.4396 a | 0.4615 a | 0.4615 a | 0.0049 | 
| Tame | 0.2527 a | 0.0549 b | 0.0769 b | 0.0330 b | 0.0000 | 
| Warm | 0.0769 | 0.1648 | 0.1319 | 0.1538 | 0.1193 | 
| Wild | 0.1648 | 0.0879 | 0.1429 | 0.1099 | 0.1949 | 
| Worried | 0.2527 a | 0.0879 b | 0.0549 b | 0.0330 b | 0.0000 | 
| Attribute | Level | Mean | Mean Drop | p-Value | 
|---|---|---|---|---|
| Color | Too little | 6.1 | 1.4 | <0.0001 * | 
| JAR | 7.6 | |||
| Too much | 7.1 | 0.5 | 0.266 | |
| Flavor | Too little | 5.8 | 1.8 | <0.0001 * | 
| JAR | 7.5 | |||
| Too much | 6.9 | 0.6 | 0.058 | |
| Bitterness | Too little | 6.2 | 1.1 | <0.0001 * | 
| JAR | 7.3 | |||
| Too much | 6.6 | 0.7 | 0.061 | 
| Category | Example | n | f (%) | 
|---|---|---|---|
| Health | “It is healthier”; “The product is healthier” | 47 | 51.6 | 
| Natural/without chemicals | “It is more natural”; “there is no chemical preservatives” | 22 | 24.2 | 
| Hedonism | “Looks good”; “looks delicious”; “it is tastier” | 9 | 9.9 | 
| Interesting/different | “It is interesting”; “It is different” | 7 | 7.7 | 
| Did not answer | 6 | 6.6 | 
| Emotions | Cluster | Samples | Cluster*Samples | |||
|---|---|---|---|---|---|---|
| Deviance | p-Value | Deviance | p-Value | Deviance | p-Value | |
| Active | 6.3715 | 0.0116 * | 6.8956 | 0.0753 | 7.8487 | 0.0492 * | 
| Adventurous | 1.9337 | 0.1644 | 2.5939 | 0.4586 | 1.5246 | 0.6766 | 
| Calm | 4.4522 | 0.0348 * | 0.6273 | 0.8901 | 5.3298 | 0.1492 | 
| Enthusiastic | 7.2186 | 0.0072 * | 0.4190 | 0.9363 | 3.1256 | 0.3727 | 
| Free | 2.7569 | 0.0983 | 2.0774 | 0.5561 | 3.1039 | 0.3759 | 
| Good-natured | 7.1606 | 0.0075 * | 6.6401 | 0.0842 | 2.9843 | 0.3940 | 
| Interested | 1.3336 | 0.2482 | 3.1920 | 0.3630 | 3.0084 | 0.3903 | 
| Joyful | 0.2346 | 0.6281 | 20.3901 | 0.0001 * | 3.8927 | 0.2732 | 
| Loving | 6.8595 | 0.0088 * | 0.7087 | 0.8711 | 0.9936 | 0.8028 | 
| Satisfied | 3.7188 | 0.0538 | 2.2561 | 0.5210 | 6.3770 | 0.0946 | 
| Secure | 5.8196 | 0.0159 * | 3.2387 | 0.3563 | 1.6466 | 0.6487 | 
| Understanding | 2.8946 | 0.0888 | 9.2214 | 0.0265 * | 1.0644 | 0.7854 | 
| Aggressive | 0.2828 | 0.5949 | 10.1603 | 0.0173 * | 1.2795 | 0.7341 | 
| Bored | 0.1498 | 0.6987 | 3.3871 | 0.3357 | 1.9565 | 0.5815 | 
| Disgusted | 5.0073 | 0.0252 * | 16.7026 | 0.0008 * | 5.1507 | 0.1619 | 
| Good | 0.9125 | 0.3394 | 20.6233 | 0.0001 * | 0.8181 | 0.8551 | 
| Guilty | 2.0256 | 0.1547 | 11.4815 | 0.0092 * | 6.1388 | 0.1050 | 
| Happy | 2.9387 | 0.0864 | 14.7117 | 0.0021 * | 1.5322 | 0.6749 | 
| Mild | 0.3521 | 0.5529 | 7.5445 | 0.0564 | 0.9481 | 0.8138 | 
| Nostalgic | 0.0430 | 0.8357 | 3.5415 | 0.3154 | 2.9486 | 0.3996 | 
| Pleasant | 2.0317 | 0.1541 | 9.5850 | 0.0224 * | 1.8315 | 0.60811 | 
| Tame | 0.5742 | 0.4486 | 26.3102 | <0.0001 * | 1.6869 | 0.6399 | 
| Warm | 0.4923 | 0.4829 | 3.9460 | 0.2674 | 0.5739 | 0.9024 | 
| Wild | 2.2606 | 0.1327 | 2.9400 | 0.4010 | 2.5048 | 0.4744 | 
| Worried | 0.0586 | 0.8087 | 25.7125 | <0.0001 | 8.1436 | 0.0431 | 
| Health-Oriented | Others | ||||||
|---|---|---|---|---|---|---|---|
| Attribute | Level | Mean | Mean Drop | p-Value | Mean | Mean Drop | p-Value | 
| Color | Too little | 6.6 | 1.0 | 0.000 * | 5.8 | 1.8 | <0.0001 * | 
| JAR | 7.6 | 7.5 | |||||
| Too much | 7.5 | 0.2 | 0.870 | 5.7 | 1.9 | n/a | |
| Flavor | Too little | 6.0 | 1.8 | <0.0001 * | 5.6 | 1.6 | <0.0001 * | 
| JAR | 7.8 | 7.2 | |||||
| Too much | 7.0 | 0.8 | <0.0001 * | 6.6 | 0.6 | 0.503 | |
| Bitterness | Too little | 6.5 | 1.1 | <0.0001 * | 6.0 | 0.9 | 0.049 * | 
| JAR | 7.6 | 6.9 | |||||
| Too much | 6.8 | 0.9 | <0.0001 * | 6.4 | 0.4 | 0.669 | |
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willig, R.; Perez, K.J.; Hickert, L.R.; Tavares Filho, E.R.; Cruz, A.G.d.; Sant’Anna, V. Beetroot Powder as Natural Colorant in Fresh Pork Sausages: Impacts on Consumer Liking, Emotional Responses, and Identification of Purchasing Drivers. Foods 2025, 14, 3715. https://doi.org/10.3390/foods14213715
Willig R, Perez KJ, Hickert LR, Tavares Filho ER, Cruz AGd, Sant’Anna V. Beetroot Powder as Natural Colorant in Fresh Pork Sausages: Impacts on Consumer Liking, Emotional Responses, and Identification of Purchasing Drivers. Foods. 2025; 14(21):3715. https://doi.org/10.3390/foods14213715
Chicago/Turabian StyleWillig, Rafaela, Karla Joseane Perez, Lilian Raquel Hickert, Elson Rogerio Tavares Filho, Adriano Gomes da Cruz, and Voltaire Sant’Anna. 2025. "Beetroot Powder as Natural Colorant in Fresh Pork Sausages: Impacts on Consumer Liking, Emotional Responses, and Identification of Purchasing Drivers" Foods 14, no. 21: 3715. https://doi.org/10.3390/foods14213715
APA StyleWillig, R., Perez, K. J., Hickert, L. R., Tavares Filho, E. R., Cruz, A. G. d., & Sant’Anna, V. (2025). Beetroot Powder as Natural Colorant in Fresh Pork Sausages: Impacts on Consumer Liking, Emotional Responses, and Identification of Purchasing Drivers. Foods, 14(21), 3715. https://doi.org/10.3390/foods14213715
 
        


 
       