Tropane and Pyrrolizidine Alkaloids in Edible Flowers and Flower-Derived Foods: A Food Safety Perspective
Abstract
1. Introduction
2. Contaminants and Hazards in Fresh Edible Flowers
3. Natural Toxins in Flowers and Flower-Based Products: Occurrence and Risks of Pyrrolizidine and Tropane Alkaloids
3.1. Occurrence and Analytical Determination of Pyrrolizidine and Tropane Alkaloids in Edible Flowers
3.2. Occurrence and Analytical Determination of Pyrrolizidine and Tropane Alkaloids in Edible Flower-Based Infusions
3.3. Occurrence and Analytical Determination of Pyrrolizidine and Tropane Alkaloids in Edible Flower-Based Food Supplements and Extracts
3.4. Contamination of Honey, Pollen and Other Bee-Based Products Through Pollinating Insects: Occurrence and Analytical Determination of Pyrrolizidine and Tropane Alkaloids in These Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Purohit, S.R.; Rana, S.S.; Idrishi, R.; Sharma, V.; Ghosh, P. A review on nutritional, bioactive, toxicological properties and preservation of edible flowers. Future Foods 2021, 4, 100078. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. An overview on the market of edible flowers. Food Rev. Int. 2020, 36, 258–275. [Google Scholar] [CrossRef]
- Kelley, K.M.; Behe, B.K.; Biernbaum, J.A.; Poff, K.L. Consumer and professional chef perceptions of three edible-flower species. HortScience 2001, 36, 162–166. [Google Scholar] [CrossRef]
- Kelley, K.M.; Behe, B.K.; Biernbaum, J.A.; Poff, K.L. Consumer preference for edible-flower color, container size, and price. HortScience 2001, 36, 801–804. [Google Scholar] [CrossRef]
- Kelley, K.M.; Behe, B.K.; Biernbaum, J.A.; Poff, K.L. Consumer purchase and use of edible flowers: Results of three studies. HortTechnology 2002, 12, 282–287. [Google Scholar] [CrossRef]
- American Floral Endowment; Floral Marketing Research Fund. Marketing Tactics to Increase Millennial Floral Purchases; Association of Colombian Flowers Export: Alexandria, VA, USA, 2016; pp. 1–81. [Google Scholar]
- Pires, E.D.O., Jr.; Di Gioia, F.; Rouphael, Y.; García-Caparrós, P.; Tzortzakis, N.; Ferreira, I.C.; Barros, L.; Petropoulos, S.A.; Caleja, C. Edible flowers as an emerging horticultural product: A review on sensorial properties, mineral and aroma profile. Trends Food Sci. Technol. 2023, 137, 31–54. [Google Scholar] [CrossRef]
- Matyjaszczyk, E.; Śmiechowska, M. Edible flowers. Benefits and risks pertaining to their consumption. Trends Food Sci. Technol. 2019, 91, 670–674. [Google Scholar] [CrossRef]
- Vella, F.M.; Pignone, D.; Laratta, B. The Mediterranean species Calendula officinalis and Foeniculum vulgare as valuable source of bioactive compounds. Molecules 2024, 29, 3594. [Google Scholar] [CrossRef]
- Moura, J.D.S.; Gemaque, E.D.M.; Bahule, C.E.; Martins, L.H.D.S.; Chisté, R.C.; Lopes, A.S. Bioactive compounds of Jambu (Acmella oleracea (L.) R.K. Jansen) as potential components of biodegradable food packing: A Review. Sustainability 2023, 15, 15231. [Google Scholar] [CrossRef]
- Batiha, G.E.S.; Lukman, H.Y.; Shaheen, H.M.; Wasef, L.; Hafiz, A.A.; Conte-Junior, C.A.; Al-Farga, A.; Chamba, M.V.M.; Lawal, B. A systematic review of phytochemistry, nutritional composition, and pharmacologic application of species of the genus Viola in noncommunicable diseases (NCDs). Evid.-Based Complement. Altern. Med. 2023, 2023, 5406039. [Google Scholar] [CrossRef]
- Wang, H. Beneficial medicinal effects and material applications of rose. Heliyon 2024, 10, e23530. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.K.; Singh, S.; Singh, P. Therapeutic benefits and processing of marigold (Tagetes species): A review. Indian J. Health Care Med. Pharm. Pract. 2024, 5, 148–166. [Google Scholar] [CrossRef]
- RASFF-Food and Feed Safety Alerts. Available online: https://webgate.ec.europa.eu/rasff-window/screen/search (accessed on 10 September 2025).
- Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. Available online: http://data.europa.eu/eli/reg/2005/396/oj (accessed on 15 September 2025).
- Bordoloi, C.; Das, R.; Kumar, S.; Prasad, S.K.; Ghose, S.; Laloo, D. Quality control standardization, nutritional profiling, phytochemical analysis, and investigation into antioxidant and antimicrobial potential of Begonia palmata D. Don. leaves. Vegetos 2024. [Google Scholar] [CrossRef]
- Pereira, P.C.; Parente, C.E.; Carvalho, G.O.; Torres, J.P.; Meire, R.O.; Dorneles, P.R.; Malm, O. A review on pesticides in flower production: A push to reduce human exposure and environmental contamination. Environ. Pollut. 2021, 289, 117817. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60. [Google Scholar] [CrossRef]
- Mahurpawar, M. Effects of heavy metals on human health. Int. J. Res. Granthaalayah 2015, 530, 1–7. [Google Scholar] [CrossRef]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and environmental effects of heavy metals. J. King Saud Univ.–Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R0915 (accessed on 15 September 2025).
- dos Santos, A.M.P.; Silva, E.F.; dos Santos, W.N.L.; da Silva, E.G.; dos Santos, L.O.; Santos, B.R.D.S.; Sauthier, M.C.; dos Santos, W.P. Evaluation of minerals, toxic elements and bioactive compounds in rose petals (Rosa spp.) using chemometric tools and artificial neural networks. Microchem. J. 2018, 138, 98–108. [Google Scholar] [CrossRef]
- Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs. Available online: http://data.europa.eu/eli/reg/2004/852/oj (accessed on 15 September 2025).
- Wilczyńska, A.; Kukułowicz, A.; Lewandowska, A. Preliminary assessment of microbial quality of edible flowers. LWT 2021, 150, 111926. [Google Scholar] [CrossRef]
- Wetzel, K.; Lee, J.; Lee, C.S.; Binkley, M. Comparison of microbial diversity of edible flowers and basil grown with organic versus conventional methods. Can. J. Microbiol. 2010, 56, 943–951. [Google Scholar] [CrossRef]
- Colombo, M.L.; Assisi, F.; Della Puppa, T.; Moro, P.; Sesana, F.M.; Bissoli, M.; Davanzo, F. Most commonly plant exposures and intoxications from outdoor toxic plants. J. Pharm. Sci. Res. 2010, 2, 417. [Google Scholar]
- Casado, N.; Morante-Zarcero, S.; Sierra, I. The concerning food safety issue of pyrrolizidine alkaloids: An overview. Trends Food Sci. Technol. 2022, 120, 123–139. [Google Scholar] [CrossRef]
- Moreira, R.; Pereira, D.M.; Valentão, P.; Andrade, P.B. Pyrrolizidine alkaloids: Chemistry, pharmacology, toxicology and food safety. Int. J. Mol. Sci. 2018, 19, 1668. [Google Scholar] [CrossRef]
- Schrenk, D.; Gao, L.; Lin, G.; Mahony, C.; Mulder, P.P.; Peijnenburg, A.; Pfuhler, S.; Rietjens, I.M.; Rutz, L.; Steinhoff, B.; et al. Pyrrolizidine alkaloids in food and phytomedicine: Occurrence, exposure, toxicity, mechanisms, and risk assessment—A review. Food Chem. Toxicol. 2020, 136, 111107. [Google Scholar] [CrossRef]
- Sweta, V.R.; Lakshmi, T. Pharmacological Profile of Tropane Alkaloids. Available online: http://jocpr.com/vol7-iss5-2015/JCPR-2015-7-5-117-119.pdf (accessed on 15 September 2025).
- Romera-Torres, A.; Romero-Gonzalez, R.; Vidal, J.L.M.; Frenich, A.G. Analytical methods, occurrence and trends of tropane alkaloids and calystegines: An update. J. Chromatogr. A 2018, 1564, 1–15. [Google Scholar] [CrossRef]
- Chmit, M.S.; Horn, G.; Dübecke, A.; Beuerle, T. Pyrrolizidine alkaloids in the food chain: Is horizontal transfer of natural products of relevance? Foods 2021, 10, 1827. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.; Wittke, C.; Lederer, I.; Klier, B.; Kleinwächter, M.; Selmar, D. Interspecific transfer of pyrrolizidine alkaloids: An unconsidered source of contaminations of phytopharmaceuticals and plant derived commodities. Food Chem. 2016, 213, 163–168. [Google Scholar] [CrossRef]
- Selmar, D.; Radwan, A.; Hijazin, T.; Abouzeid, S.; Yahyazadeh, M.; Lewerenz, L.; Kleinwächter, M.; Nowak, M. Horizontal natural product transfer: Intriguing insights into a newly discovered phenomenon. J. Agric. Food Chem. 2019, 67, 8740–8745. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.Y. Worldwide occurrence and investigations of contamination of herbal medicines by tropane alkaloids. Toxins 2017, 9, 284. [Google Scholar] [CrossRef]
- Selmar, D.; Wittke, C.; Beck-von Wolffersdorff, I.; Klier, B.; Lewerenz, L.; Kleinwächter, M.; Nowak, M. Transfer of pyrrolizidine alkaloids between living plants: A disregarded source of contaminations. Environ. Pollut. 2019, 248, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Casado, N.; Casado-Hidalgo, G.; González-Gómez, L.; Morante-Zarcero, S.; Sierra, I. Insight into the impact of food processing and culinary preparations on the stability and content of plant alkaloids considered as natural food contaminants. Appl. Sci. 2023, 13, 1704. [Google Scholar] [CrossRef]
- Jeong, W.T.; Lim, H.B. Determination and chemical profiling of toxic pyrrolizidine alkaloids in botanical samples with UPLC–Q-TOFMS. Chromatographia 2019, 82, 1653–1664. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Lai, A.; Zhu, J.; Huang, X.; Hu, G. Multi-response optimization of pyrrolizidine alkaloids removal from Chrysanthemum morifolium by high-pressure extraction. Foods 2022, 11, 3827. [Google Scholar] [CrossRef]
- Sattler, M.; Müller, V.; Bunzel, D.; Kulling, S.E.; Soukup, S.T. Pyrrolizidine alkaloids in borage (Borago officinalis): Comprehensive profiling and development of a validated LC-MS/MS method for quantification. Talanta 2023, 258, 124425. [Google Scholar] [CrossRef] [PubMed]
- Sattler, M.; Huch, M.; Bunzel, D.; Soukup, S.T.; Kulling, S.E. Pyrrolizidine alkaloid contents and profiles in Borago officinalis leaves, flowers and microgreens: Implications for safety. Food Control 2025, 168, 110930. [Google Scholar] [CrossRef]
- Takatsuji, Y.; Kakitani, A.; Nagatomi, Y.; Harayama, K.; Suzuki, K. A novel method for the detection of pyrrolizidine alkaloids in bottled tea and tea leaves by LC-MS/MS. Jpn. J. Food Chem. Saf. 2018, 25, 97–104. [Google Scholar] [CrossRef]
- Cirlini, M.; Cappucci, V.; Galaverna, G.; Dall’Asta, C.; Bruni, R. A sensitive UHPLC-ESI-MS/MS method for the determination of tropane alkaloids in herbal teas and extracts. Food Control 2019, 105, 285–291. [Google Scholar] [CrossRef]
- Kaltner, F.; Stiglbauer, B.; Rychlik, M.; Gareis, M.; Gottschalk, C. Development of a sensitive analytical method for determining 44 pyrrolizidine alkaloids in teas and herbal teas via LC-ESI-MS/MS. Anal. Bioanal. Chem. 2019, 411, 7233–7249. [Google Scholar] [CrossRef]
- Kwon, Y.; Koo, Y.; Jeong, Y. Determination of pyrrolizidine alkaloids in teas using liquid chromatography–tandem mass spectrometry combined with rapid-easy extraction. Foods 2021, 10, 2250. [Google Scholar] [CrossRef]
- Han, H.; Jiang, C.; Wang, C.; Wang, Z.; Chai, Y.; Zhang, X.; Liu, X.; Lu, C.; Chen, H. Development, optimization, validation and application of ultra high performance liquid chromatography tandem mass spectrometry for the analysis of pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides in teas and weeds. Food Control 2022, 132, 108518. [Google Scholar] [CrossRef]
- Keuth, O.; Humpf, H.U.; Fürst, P. Determination of pyrrolizidine alkaloids in tea and honey with automated SPE clean-up and ultra-performance liquid chromatography/tandem mass spectrometry. Food Addit. Contam. Part A 2022, 39, 149–157. [Google Scholar] [CrossRef]
- León, N.; Miralles, P.; Yusà, V.; Coscolla, C. A green analytical method for the simultaneous determination of 30 tropane and pyrrolizidine alkaloids and their N-oxides in teas and herbs for infusions by LC-Q-Orbitrap HRMS. J. Chromatogr. A 2022, 1666, 462835. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, X.; Ma, Y.; Yang, F.; He, N.; Yu, L.; Zeng, A. Multi-template imprinted solid-phase microextraction coupled with UPLC-Q-TOF-MS for simultaneous monitoring of ten hepatotoxic pyrrolizidine alkaloids in scented tea. Front. Chem. 2022, 10, 1048467. [Google Scholar] [CrossRef]
- Girard, M.F.C.; Knight, P.; Hopfgartner, G. Vacuum differential mobility spectrometry combined with column-switching liquid chromatography-mass spectrometry for the analysis of pyrrolizidine alkaloids in tea samples. J. Chromatogr. A 2023, 1705, 464174. [Google Scholar] [CrossRef] [PubMed]
- Mateus, A.R.S.; Crisafulli, C.; Vilhena, M.; Barros, S.C.; Pena, A.; Sanches Silva, A. The bright and dark sides of herbal infusions: Assessment of antioxidant capacity and determination of tropane alkaloids. Toxins 2023, 15, 245. [Google Scholar] [CrossRef]
- Peloso, M.; Minkoumba Sonfack, G.; Paduano, S.; De Martino, M.; De Santis, B.; Caprai, E. Pyrrolizidine alkaloids in food on the Italian market. Molecules 2023, 28, 5346. [Google Scholar] [CrossRef]
- Carbonell-Rozas, L.; Dreolin, N.; Foddy, H.; Dall’Asta, C. Enhancing pyrrolizidine alkaloid separation and detection: LC-MS/MS method development and integration of ion mobility spectrometry into the LC-HRMS workflow. J. Chromatogr. A 2025, 1748, 465863. [Google Scholar] [CrossRef]
- Wawroszová, S.; Čumová, M.; Štěpán, R.; Pluháčková, H.; Komendová, R. Development of LC-MS method enabling full chromatographic separation of 36 pyrrolizidine alkaloids in plant-based matrices. Anal. Chim. Acta 2025, 1375, 344577. [Google Scholar] [CrossRef]
- Mulder, P.P.; López, P.; Castelari, M.; Bodi, D.; Ronczka, S.; Preiss-Weigert, A.; These, A. Occurrence of pyrrolizidine alkaloids in animal- and plant-derived food: Results of a survey across Europe. Food Addit. Contam. Part A 2018, 35, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Mulder, P.P.; Peijnenburg, A.; Rietjens, I.M. Risk assessment of intake of pyrrolizidine alkaloids from herbal teas and medicines following realistic exposure scenarios. Food Chem. Toxicol. 2019, 130, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Casado, N.; Fernández-Pintor, B.; Morante-Zarcero, S.; Sierra, I. Quick and green microextraction of pyrrolizidine alkaloids from infusions of mallow, calendula, and Hibiscus flowers using ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry analysis. J. Agric. Food Chem. 2022, 70, 7826–7841. [Google Scholar] [CrossRef]
- González-Gómez, L.; Pereira, J.A.; Morante-Zarcero, S.; Câmara, J.S.; Sierra, I. Green extraction approach based on μSPEed® followed by HPLC-MS/MS for the determination of atropine and scopolamine in tea and herbal tea infusions. Food Chem. 2022, 394, 133512. [Google Scholar] [CrossRef]
- Martinello, M.; Manzinello, C.; Gallina, A.; Mutinelli, F. In-house validation and application of UHPLC-MS/MS method for the quantification of pyrrolizidine and tropane alkaloids in commercial honey bee-collected pollen, teas and herbal infusions purchased on Italian market in 2019–2020 referring to recent European Union regulations. Int. J. Food Sci. Technol. 2022, 57, 7505–7516. [Google Scholar] [CrossRef]
- Fernández-Pintor, B.; Casado, N.; Morante-Zarcero, S.; Sierra, I. Evaluation of the thermal stability and transfer rate of pyrrolizidine alkaloids during the brewing of herbal infusions contaminated with Echium vulgare and Senecio vulgaris weeds. Food Control 2023, 153, 109926. [Google Scholar] [CrossRef]
- González-Gómez, L.; Morante-Zarcero, S.; Pereira, J.A.; Câmara, J.S.; Sierra, I. Evaluation of tropane alkaloids in teas and herbal infusions: Effect of brewing time and temperature on atropine and scopolamine content. Toxins 2023, 15, 362. [Google Scholar] [CrossRef]
- Rizzo, S.; Celano, R.; Piccinelli, A.L.; Russo, M.; Rastrelli, L. Target screening method for the quantitative determination of 118 pyrrolizidine alkaloids in food supplements, herbal infusions, honey and teas by liquid chromatography coupled to quadrupole orbitrap mass spectrometry. Food Chem. 2023, 423, 136306. [Google Scholar] [CrossRef]
- Fernández-Pintor, B.; Morante-Zarcero, S.; Sierra, I. Simultaneous determination of 23 pyrrolizidine and tropane alkaloids in infusions from dry edible flowers using optimized μSPEed® microextraction prior to their analysis by UHPLC-IT-MS/MS. Foods 2024, 13, 1740. [Google Scholar] [CrossRef]
- Kaltner, F.; Gottschalk, C.; de Vries, E.; Mulder, P.P. Transfer of pyrrolizidine and tropane alkaloids from tea and herbal tea to infusions. Food Chem. 2025, 489, 145026. [Google Scholar] [CrossRef] [PubMed]
- Chmit, M.S.; Wahrig, B.; Beuerle, T. Quantitative and qualitative analysis of pyrrolizidine alkaloids in liqueurs, elixirs and herbal juices. Fitoterapia 2019, 136, 104172. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Xiong, F.; Xie, Y.; Xiong, A.; Wang, Z.; Yang, L. Rapid identification and determination of pyrrolizidine alkaloids in herbal and food samples via direct analysis in real-time mass spectrometry. Food Chem. 2021, 334, 127472. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Choi, E.Y.; Kim, J.; Lee, C.; Kang, J.; Cho, S.; Ko, K.Y. LC-ESI-MS/MS simultaneous analysis method coupled with cation-exchange solid-phase extraction for determination of pyrrolizidine alkaloids on five kinds of herbal medicines. J. AOAC Int. 2021, 104, 1514–1525. [Google Scholar] [CrossRef]
- Berzina, Z.; Pavlenko, R.; Bartkiene, E.; Bartkevics, V. Mycotoxins and pyrrolizidine alkaloids in herbal dietary supplements. Food Addit. Contam. Part B 2024, 17, 180–192. [Google Scholar] [CrossRef]
- Fernández-Pintor, B.; Gañán, J.; Pérez-Quintanilla, D.; Morante-Zarcero, S.; Sierra, I. Spherical C18-functionalized ordered mesoporous silica packed on micro-solid phase extraction cartridges for simultaneous determination of twenty-three alkaloids in flower extract supplements. Adv. Sample Prep. 2025, 14, 100174. [Google Scholar] [CrossRef]
- Abeysiri, G.R.P.I.; Dharmadasa, R.M.; Abeysinghe, D.C.; Samarasinghe, K. Screening of phytochemical, physico-chemical and bioactivity of different parts of Acmella oleraceae Murr. (Asteraceae), a natural remedy for toothache. Ind. Crops Prod. 2013, 50, 852–856. [Google Scholar] [CrossRef]
- Lalthanpuii, P.B.; Lalawmpuii, R.; Vanlaldinpuia, K.; Lalchhandama, K. Phytochemical investigations on the medicinal plant Acmella oleracea cultivated in Mizoram, India. Sci. Vis. 2016, 16, 177–183. [Google Scholar]
- Sanap, N.; Khan, T. Phytochemical screening, antibacterial, antioxidant and anti-inflammatory activity of Acmella oleracea flowers. Indian Drugs 2023, 60, 13657. [Google Scholar] [CrossRef]
- Tiaravista, A.G.; Putri, L.W.; Nurrochmad, A.; Widyarini, S.; Fakhrudin, N. Evaluation of the antithrombotic activity of Acmella oleracea L. flower ethanol extract. J. Fundam. Appl. Pharm. Sci. 2023, 4, 24. [Google Scholar] [CrossRef]
- Uthpala, T.G.G.; Munasinghe, H.H.; Peiris, L.D.C.; Navaratne, S.B. Evaluation of antimicrobial potential and phytochemicals in Acmella oleracea flower pod extracts subjected to different drying techniques. J. Food Process. Preserv. 2021, 45, e15570. [Google Scholar] [CrossRef]
- Ghosh, P.; Rana, S.S. Physicochemical, nutritional, bioactive compounds and fatty acid profiling of pumpkin flower (Cucurbita maxima), as a potential functional food. SN Appl. Sci. 2021, 3, 216. [Google Scholar] [CrossRef]
- Kaltner, F.; Rychlik, M.; Gareis, M.; Gottschalk, C. Influence of storage on the stability of toxic pyrrolizidine alkaloids and their N-oxides in peppermint tea, hay, and honey. J. Agric. Food Chem. 2018, 66, 5221–5228. [Google Scholar] [CrossRef]
- Celano, R.; Piccinelli, A.L.; Campone, L.; Russo, M.; Rastrelli, L. Determination of selected pyrrolizidine alkaloids in honey by dispersive liquid–liquid microextraction and ultrahigh-performance liquid chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2019, 67, 8689–8699. [Google Scholar] [CrossRef]
- Sixto, A.; Niell, S.; Heinzen, H. Straightforward determination of pyrrolizidine alkaloids in honey through simplified methanol extraction (QuPPE) and LC-MS/MS modes. ACS Omega 2019, 4, 22632–22637. [Google Scholar] [CrossRef]
- Wang, T.; Frandsen, H.L.; Christiansson, N.R.; Rosendal, S.E.; Pedersen, M.; Smedsgaard, J. Pyrrolizidine alkaloids in honey: Quantification with and without standards. Food Control 2019, 98, 227–237. [Google Scholar] [CrossRef]
- Gottschalk, C.; Kaltner, F.; Zimmermann, M.; Korten, R.; Morris, O.; Schwaiger, K.; Gareis, M. Spread of Jacobaea vulgaris and occurrence of pyrrolizidine alkaloids in regionally produced honeys from Northern Germany: Inter- and intra-site variations and risk assessment for special consumer groups. Toxins 2020, 12, 441. [Google Scholar] [CrossRef]
- He, Y.; Zhu, L.; Ma, J.; Wong, L.; Zhao, Z.; Ye, Y.; Fu, P.P.; Lin, G. Comprehensive investigation and risk study on pyrrolizidine alkaloid contamination in Chinese retail honey. Environ. Pollut. 2020, 267, 115542. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.; Fernandes, F.; Valentão, P.; Pereira, D.M.; Andrade, P.B. Echium plantagineum L. honey: Search of pyrrolizidine alkaloids and polyphenols, anti-inflammatory potential and cytotoxicity. Food Chem. 2020, 328, 127169. [Google Scholar] [CrossRef]
- Romera-Torres, A.; Romero-González, R.; Vidal, J.L.M.; Frenich, A.G. Comprehensive tropane alkaloids analysis and retrospective screening of contaminants in honey samples using liquid chromatography-high resolution mass spectrometry (Orbitrap). Food Res. Int. 2020, 133, 109130. [Google Scholar] [CrossRef]
- Thompson, T.S.; van den Heever, J.P.; Limanowka, R.E. Hyoscyamine and scopolamine in honey by HILIC–ESI-MS/MS. Chromatographia 2020, 83, 683–689. [Google Scholar] [CrossRef]
- Bandini, T.B.; Spisso, B.F. Development and validation of an LC-HRMS method for the determination of pyrrolizidine alkaloids and quinolones in honey employing a simple alkaline sample dilution. J. Food Meas. Charact. 2021, 15, 4758–4770. [Google Scholar] [CrossRef]
- Valese, A.C.; Daguer, H.; Muller, C.M.O.; Molognoni, L.; da Luz, C.F.P.; de Barcellos Falkenberg, D.; Gonzaga, L.V.; Brugnerotto, P.; Gorniak, S.L.; Barreto, F.; et al. Quantification of pyrrolizidine alkaloids in Senecio brasiliensis, beehive pollen, and honey by LC-MS/MS. J. Environ. Sci. Health Part B 2021, 56, 685–694. [Google Scholar] [CrossRef]
- Friedle, C.; Kapp, T.; Wallner, K.; Alkattea, R.; Vetter, W. High abundance of pyrrolizidine alkaloids in bee pollen collected in July 2019 from Southern Germany. Environ. Monit. Assess. 2022, 194, 250. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, Y.; Li, J.; Shao, B.; Zhang, J. Screening for plant toxins in honey and herbal beverage by ultrahigh-performance liquid chromatography-ion mobility-quadrupole time of flight mass spectrometry. Am. J. Anal. Chem. 2022, 13, 108–134. [Google Scholar] [CrossRef]
- Jansons, M.; Fedorenko, D.; Pavlenko, R.; Berzina, Z.; Bartkevics, V. Nanoflow liquid chromatography mass spectrometry method for quantitative analysis and target ion screening of pyrrolizidine alkaloids in honey, tea, herbal tinctures, and milk. J. Chromatogr. A 2022, 1676, 463269. [Google Scholar] [CrossRef]
- Kowalczyk, E.; Kwiatek, K. Simultaneous determination of pyrrolizidine and tropane alkaloids in honey by liquid chromatography–mass spectrometry. J. Vet. Res. 2022, 66, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Gu, Y.; Jeong, Y. Evaluation of pyrrolizidine alkaloids in Korean commercial honeys and bee pollens. Food Sci. Technol. Res. 2022, 28, 123–132. [Google Scholar] [CrossRef]
- Schlappack, T.; Weidacher, N.; Huck, C.W.; Bonn, G.K.; Rainer, M. Effective solid phase extraction of toxic pyrrolizidine alkaloids from honey with reusable organosilyl-sulfonated halloysite nanotubes. Separations 2022, 9, 270. [Google Scholar] [CrossRef]
- Schlappack, T.; Rainer, M.; Weinberger, N.; Bonn, G.K. Sulfonated halloysite nanotubes as a novel cation exchange material for solid phase extraction of toxic pyrrolizidine alkaloids. Anal. Methods 2022, 14, 2689–2697. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Fan, D.; Cheng, J. Development and validation of an UHPLC–MS/MS method for the determination of 32 pyrrolizidine alkaloids in Chinese wild honey. J. AOAC Int. 2023, 106, 56–64. [Google Scholar] [CrossRef]
- Casado, N.; Morante-Zarcero, S.; Sierra, I. Miniaturized analytical strategy based on μ-SPEed for monitoring the occurrence of pyrrolizidine and tropane alkaloids in honey. J. Agric. Food Chem. 2023, 72, 819–832. [Google Scholar] [CrossRef]
- Fernández-Pintor, B.; Paniagua, G.; Gañán, J.; Morante-Zarcero, S.; Garcinuño, R.M.; Fernández, P.; Sierra, I. Determination of atropine and scopolamine in honey using a miniaturized polymer-based solid-phase extraction protocol prior to the analysis by HPLC-MS/MS. Polymer 2024, 298, 126904. [Google Scholar] [CrossRef]
- Hungerford, N.L.; Zawawi, N.; Zhu, T.E.; Carter, S.J.; Melksham, K.J.; Fletcher, M.T. Analysis of pyrrolizidine alkaloids in stingless bee honey and identification of a botanical source as Ageratum conyzoides. Toxins 2024, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Seraglio, S.K.T.; Brugnerotto, P.; Deolindo, C.T.P.; Blainski, E.; Dortzbach, D.; de Oliveira Santana, B.; Hoff, R.B.; Gonzaga, L.V.; Costa, A.C.O. LC–MS/MS analysis of pyrrolizidine alkaloids in bee bread and commercial pollen from Brazil. Eur. Food Res. Technol. 2024, 250, 2757–2765. [Google Scholar] [CrossRef]
- Akyıldız, İ.E.; Uzunöner, D.; Daştan, T.; Raday, S.; Acar, S.; Yetimoğlu, E.K.; Damarlı, E. Novel online-SPE configured UHPLC-MS/MS analysis to demystify the pyrrolizidine alkaloid contents of honey and bee pollen samples. Food Chem. 2025, 493, 145879. [Google Scholar] [CrossRef] [PubMed]
- Caprai, E.; Fazio, A.D.; Zanardi, E.; Varra, M.O.; Ghidini, S.; Romeo, G.A.; Sonfack, G.M.; Prizio, I.; Bonan, S. Food safety concerns regarding pyrrolizidine alkaloid contamination in tea and honey from Italy: Exposure levels and health risk implications. Food Control 2025, 176, 111388. [Google Scholar] [CrossRef]
- Lin, R.; Peng, J.; Zhu, Y.; Dong, S.; Jiang, X.; Shen, D.; Li, J.; Zhu, P.; Mao, J.; Wang, N.; et al. Quantitative analysis of pyrrolizidine alkaloids in food matrices and plant-derived samples using UHPLC–MS/MS. Foods 2025, 14, 1147. [Google Scholar] [CrossRef]


| Subject | Notification Type and Date | Notified by | Countries Concerned | Risk and Action Taken |
|---|---|---|---|---|
| Pesticides | ||||
| Ethylene oxide in organic chamomile flowers from Egypt | Alert 20 December 2024 | Germany | Austria, Bulgaria, Canada, Czech Republic Egypt, Finland, Germany, INFOSAN, Italy, Poland, Slovakia, Spain, Sri Lanka, Switzerland, United Kingdom | Potentially serious Withdrawal from the market, informing authorities, informing recipient(s) and detained by operator. |
| Unauthorised substance prometryn in organic whole silver linden flowers (Tilia argentea) from Bulgaria | Alert 3 September 2024 | Austria | Austria, Bulgaria, Germany, INFOSAN, Italy, Japan, Romania, Switzerland | Serious Informing recipient(s), withdrawal from recipient(s), destruction and monitoring of the withdrawal |
| Unauthorized substance chlorpyrifos ethil in hibiscus flower from Nigeria | Information for attention 23 March 2023 | Italy | Italy, Nigeria, Serbia | Potentially serious Informing authorities and withdrawal from recipient(s) |
| Unauthorized substance chlorpyrifos in organic daisy flower from Albania | Information notification follow-up 10 March 2023 | France | Albania, France, Germany, Spain | Potentially serious Withdrawal from the market and recall from costumers |
| Unauthorized substance chlorpyrifos and thiophanate methyl in chamomile flower | Information for attention 9 March 2023 | France | Egypt, France, Germany, INFOSAN | Potentially serious Recall from consumer and withdrawal from recipient(s) |
| Pathogens | ||||
| Salmonella spp. in organic red clover flowers from Albania, via Croatia | Alert 30 May 2025 | Germany | Albania, Croatia, Germany, INFOSAN | Informing authorities, physical treatment and detained by operator |
| Salmonella spp. in lavender flowers from France | Alert 2 May 2025 | Germany | France, Germany | Informing authorities and detained by operator |
| Salmonella Typhimurium in organic linden flower infusion from Bulgaria, via Austria | Information notification for follow-up 17 February 2021 | Finland | Austria, Bulgaria, Finland, Germany, Italy, Poland, Switzerland | Not serious Withdrawal from the market |
| Alkaloids | ||||
| Chamomile flowers above the maximum level of pyrrolizidine alkaloids | Alert 12 December 2025 | Switzerland | Egypt, Germany, INFOSAN, Switzerland | Recall from consumer |
| Sample Type | N° of PAs/TAs | Sample Preparation | Analysis | LOD/LOQ | Recoveries (%) | Range of PAs/TAs Found | Ref. |
|---|---|---|---|---|---|---|---|
| Fresh edible flowers | |||||||
| Borage (aerial parts) | 9 PAs | SLE with MeOH 70% | UHPLC-Q-TOF/MS ESI positive Column: C18 (40 °C) | 0.2–2/0.6–6 ng/mL | - | - | [38] |
| Chrysanthemum morifolium flowers | 1 PA | HPE with acetic acid | HPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 | - | - | - | [39] |
| Borage (flowers and aerial parts) | 18 PAs | SLE with H2SO4 (0.05 M) two times and adjusted the pH to 6–7 followed by SPE-C18 | UHPLC-QTrap-MS/MS ESI positive (MRM mode) Column: C18 (25 °C) | -/25–50 μg/kg | 85–112% | - | [40] |
| Borage flowers | 17 PAs | SLE with 0.2% FA and 10% MeOH in H2O | UHPLC-QTrap-MS/MS ESI positive (MRM mode) Column: C18 (25 °C) | -/25–50 μg/kg | 13–118% | 77–88,602 µg/kg | [41] |
| Dry edible flower infusions | |||||||
| Chamomile | 27 PAs | QuEChERS (clean-up with PSA and ENVI-Carb sorbents) | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | 0.03–0.48/0.10–1.61 μg/kg | 88–107% | 2.6–212 μg/kg | [42] |
| Different flower species | 4 TAs | SLE with ACN:H2O (3:2 v/v) with 0.2% FA | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | <25/<25 μg/kg | 83–105% | 25–69 μg/kg | [43] |
| Chamomile | 44 PAs | SLE with H2SO4 (0.05 M) followed by SPE-SCX | HPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (30 °C) | 0.1–7.0/0.1–27.9 µg/kg | 52–152% | 4.1–13.2 μg/kg | [44] |
| Lavender, chamomile, chrysanthemum and hibiscus | 21 PAs | SLE with 50% MeOH solution with 0.05 M H2SO4 followed by SPE-MCX | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | 0.1–3/0.3–9 µg/kg | 86–101% | 0.002–0.22 mg/kg | [45] |
| Chrysanthemum | 14 PAs | SLE with H2SO4 (0.1 M) followed by SPE-MCX. | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: HSS T3 (40 °C) | 0.001–0.4/1–5 µg/kg | 68–110% | <LOQ-5.2 µg/kg | [46] |
| Rose hip and chamomile | 17 PAs | SLE with 2% FA and adjusted the pH to 10 with 25% ammonia solution followed by automated SPE. | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: BEH C18 (40 °C) | >2.0/>5.0 µg/kg | 62–147% | 28–221 µg/kg | [47] |
| Chamomile | 28 PAs and 2 TAs | QuEChERS (clean-up with MgSO4, PSA, C18 and GCB sorbents) | LC-Q-Orbitrap-HRMS H-ESI positive (MRM mode) Column: C18 (30 °C) | PAs: -/5 µg/kg TAs: -/5 µg/kg | PAs: 87–111% TAs: 90–111% | - | [48] |
| Scented teas (mixture of tea with flowers) | 10 PAs | SLE with 10% ammonium hydroxide, addition of MeOH:dichloromethane (1:1), evaporation and reconstitution in MeOH: H2O (1:1), pH adjusted to neutral with FA, followed by SPME-MIP | UHPLC-Q-TOF-MS ESI positive (MRM mode) Column: HSS T3 (35 °C) | 0.08–0.54/0.26–1.77 µg/L | 91–108% | 10.8–139.6 μg/kg | [49] |
| Chamomile | 14 PAs | SLE with H2SO4 (0.05 M) followed by SPE-MCX | UHPLC-TQ-MS/MS SIM mode Column: XB-C18 (25 °C) | - | - | - | [50] |
| Chamomile and Echinacea angustifolia | 4 TAs | QuEChERS (clean-up with PSA and MgSO4) | UHPLC-TOF-MS ESI positive Column: C18 (20 °C) | 2.5–10/5–15 µg/kg | 82–104% | - | [51] |
| Chamomile | 35 PAs | SLE with H2SO4 (0.05 M) followed by SPE-MCX | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C8 | 0.5/1–5 µg/kg | 70–106% | 5–268 µg/kg | [52] |
| Chamomile | 35 PAs | SLE with H2SO4 (0.05 M) in H2O:MeOH (1:1 v/v) followed by SPE-MCX | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C8 (40 °C) | 0.1–1.0/0.6–3.0 µg/kg | 87–103% | 7.7 µg/kg | [53] |
| Chamomile | 36 PAs | SLE with H2O:MeOH 0.2% FA (1:1 v/v) | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | <2/2–10 µg/kg | 43–108% | 34.6–697.2 µg/kg | [54] |
| Liquid edible flower infusions | |||||||
| Chamomile | 38 PAs | Infusion with boiling water followed by SPE-C18 | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (50 °C) | 0.2–3.8/- μg/kg | 30–122% | LOQ-18.79 μg/L | [55] |
| Borage, coltsfoot, comfrey, climbing groundsel, sun hemp | 70 PAs | Infusion with boiling water | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (50 °C) | 0.01–0.02/0.05 μg/L | 73–107% | 30.7–1120 μg/L | [56] |
| Edible flower | 21 PAs | Infusion with boiling water followed by µSPEed-C18 purification | UHPLC-IT-MS/MS ESI positive (MRM mode) Column: C18 (25 °C) | 0.1–0.3/0.3–1.0 µg/L | 79–97% | 23–41 µg/L | [57] |
| Chamomile | 2 TAs | Infusion with boiling water followed by µSPEed-PS/DVB purification | HPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (30 °C) | 0.02–0.05/0.06–0.15 ng/mL | 94–106% | 0.08–0.18 ng/mL | [58] |
| Chamomile and different flower species | 20 PAs and 2 TAs | Infusion with boiling water followed by SPE-C18 | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | PAs: 0.04–0.08/0.07–0.14 µg/L TAs: 0.003–0.004/0.005–0.007 µg/L | PAs: 88.3–116.0% TAs: 93.6–114.0% | PAs: LOD–2.82 µg/L TAs: LOD–2.4 µg/L | [59] |
| Chamomile | 21 PAs | Infusion with boiling water followed by µSPEed-C18 purification | UHPLC-IT-MS/MS ESI positive (MRM mode) Column: C18 (25 °C) | -/- | 76–101% | - | [60] |
| Echinacea purpurea | 2 TAs | Infusion with boiling water followed by µSPEed-PS/DVB purification | HPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (30 °C) | 0.02–0.05/0.06–0.18 ng/mL | 73–114% | - | [61] |
| Different flower species | 118 PAs | Infusion with boiling water followed by SALLE | UHPLC-Q-Orbitrap-HRMS/MS ESI positive (HRMS mode) Column: Polar C18 (40 °C) | LOD: 0.6–30 µg/kg | 69–113% | 0.87–127.15 µg/kg | [62] |
| Edible flower | 21 PAs | Infusion with boiling water followed by µSPEed-C18 purification | UHPLC-IT-MS/MS ESI positive (MRM mode) Column: C18 (30 °C) | 0.03–0.07/0.09–0.2 µg/L | 87–97% | 0.16–0.2 µg/L | [63] |
| Herb infusion containing hibiscus | 62 PAs and 2 TAs | Infusion with boiling water followed by SPE-Strata X | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (50 °C) | PAs: 0.01–0.05/0.05 ng/mL TAs: 0.01–0.05/0.05 ng/mL | PAs: 73–126 % TAs: 73–126 % | - | [64] |
| Food supplements | |||||||
| Herbal supplements containing flowers | 38 PAs | SLE with H2SO4 (0.05 M) followed by SPE-C18 | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (50 °C) | 0.3–2.3/- μg/kg | 45–98% | 7.2–4674 µg/kg | [55] |
| Extract and tablets containing different flower species | 4 TAs | SLE with ACN:H2O (3:2 v/v) with 0.2% FA | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | <25/<25 μg/kg | 83–105% | - | [43] |
| Liqueurs, elixirs and herbal juices containing different flower species | 30 PAs | LLE with H2SO4 (0.05 M) and purification by SPE-SCX. | HPLC-MS/MS ESI positive (MRM mode) Column: C18 (25 °C) | - | - | 0.21–3121 μg/kg | [65] |
| Gynura japonica food supplement | 6 PAs | SLE with 1% FA followed by LLE with dichloromethane. | DART-IT-MS Positive ion mode | 0.55–0.85/1.83–2.82 ng/mL | 89–112% | 2130–234,300 μg/kg | [66] |
| Chyrantemum morifolium food supplement | 28 PAs | SLE with 50% MeOH with 0.05 M H2SO4 followed by SPE-MCX | HPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | 0.03–2.1/0.1–6.5 µg/kg | 67–151% | - | [67] |
| Food supplements including different flower species | 118 | SLE with H2SO4 (0.05 M) followed by SALLE | UHPLC-Orbitrap- MS/MS ESI positive (HRMS mode) Column: C18 (40 °C) | 0.6–30/- µg/kg | 69–113% | - | [62] |
| Food supplements including different flower species | 29 PAs and 2 TAs | QuEChERS (without clean-up step) | HPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | PAs: -/0.5–10 ng/g TAs: -/1 ng/g | PAs: 86–104% TAs:90–93% | PAs: 0.62–1097 μg/kg TAs: 1.5–1.8 μg/kg | [68] |
| Flower-based extracts | 21 PAs and 2 TAs | Evaporation and reconstitution in H2O followed by µSPEed (synthesized SM-C18 cartridges) | UHPLC-IT-MS/MS ESI positive (MRM mode) Column: C18 | PAs: 0.2–0.6/0.6–2 ng/g TAs: 0.3 ng/g-1–1.1 ng/g | PAs: 91–97% TAs:93–94% | PAs: - TAs: 14.8–20.8 μg/kg | [69] |
| Sample Type | N° of PAs/TAs | Sample Preparation | Analysis | LOD/LOQ | Recoveries (%) | Range of PAs Found | Ref. |
|---|---|---|---|---|---|---|---|
| Honey and related products | |||||||
| Honey | 25 PAs | LLE with H2SO4 (0.05 M) followed by SPE-SCX | HPLC-TQ-MS/MS ESI positive (MRM mode) Column: polar-reversed phase (30 °C) | 0.01–1.60/0.03–5.40 µg/kg | 49–121% | - | [76] |
| Honey and pollen | 38 PAs | LLE with H2SO4 (0.05 M) followed by SPE-C18 | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (50 °C) | 0.2–0.6/- μg/kg | 72–122% | 48–1911 μg/kg | [55] |
| Honey | 9 PAs | Dilution with acidified water (0.25 M acetic acid), addition of zinc and pH adjusted to 9.5 followed by DLLME with chloroform and isopropyl alcohol | UHPLC-QTrap-MS/MS ESI positive (MRM mode) Column: C18 (30 °C) | -/0.03–0.06 µg/kg | 63–103% | 0.2–17.5 μg/kg | [77] |
| Honey | 7 PAs | QuPPe (without clean-up step) | HPLC-QTrap-MS/MS ESI positive (MRM mode) Column: C18 | -/8–18 µg/kg | 50–100% | 43–75 μg/kg | [78] |
| Honey | 12 PAs | LLE with H2SO4 (0.05 M) followed by SPE-MCX | HPLC-QTOF-MS/MS ESI positive (HRMS mode) Column: C18 (40 °C) | 0.2–0.6/0.5–1.3 µg/kg | 79–104% | 1.4–14.2 μg/kg | [79] |
| Honey | 25 PAs | LLE with H2SO4 (0.05 M) followed by SPE-SCX | HPLC-TQ-MS/MS ESI positive (MRM mode) Column: reversed phase (phenyl)-polar (40 °C) | 0.01–0.19/0.03–0.59 µg/kg | 82–121% | 2.4–446 μg/kg | [80] |
| Honey | 17 PAs | LLE with 0.05 M H2SO4: MeOH (85:15, v/v) followed by SPE-MCX | HPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 | - | - | 0.2–281.1 μg/kg | [81] |
| Honey | 2 PAs | LLE with H2SO4 (0.05 M) followed by SPE-SCX | HPLC-DAD λ: 223 nm Column: C18 | - | - | - | [82] |
| Honey | 11 TAs | SLE with MeOH/H2O/FA 75/25/0.4 and clean-up with MgSO4 and GBC | HPLC-HRMS HESI positive and negative (Full scan) Column: ACE HILIC-A (25 °C) | -/20–40 µg/kg | 71–120% | 27 µg/kg | [83] |
| Honey | 2 TAs | SALLE | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: HILIC core–shell (40 °C) | 0.002–0.003/0.01 µg/kg | 87–106% | 0.012 µg/kg | [84] |
| Honey | 26 PAs | LLE with 6.5 mmol/L NH4OH | UHPLC-IM- QTOF-MS/MS ESI positive (HRMS mode) Column: C18 (50 °C) | 1–7/10–20 µg/kg | 75–120% | 0–141.8 μg/kg | [85] |
| Honey and pollen | 8 PAs | LLE with 70% MeOH in H2O acidified with 2% FA | HPLC-QTrap-MS/MS ESI positive (MRM mode) Column: C18 (30 °C) | - | - | 0–623 µg/kg (honey) 24.9–221 mg/kg (pollen) | [86] |
| Pollen | 44 PAs | SLE with H2SO4 (0.05 M) followed by a second extraction followed by SPE-C18 | UHPLC-MS/MS ESI positive (dMRM mode) Column: C18 (50 °C) | 0.09–3.6/0.26–7.9 µg/kg | 63–120% | 0.48–48,400 ng/g | [87] |
| Honey | 7 PAs | QuEChERS (clean-up with PSA) | UHPLC-IM- QTOF-MS/MS ESI positive (HDMSE mode) Column: C18 (50 °C) | -/1–20 µg/kg | 61–120% | - | [88] |
| Honey | 30 PAs | QuEChERS (without clean-up step) | Nano-LC-Orbitrap-MS/MS ESI positive (HRMS mode) Capillary column: C18 (50 °C) | -/0.027–11 µg/kg | - | 0.14–74 μg/kg | [89] |
| Honey | 17 PAs | SLE with FA in water (2% v/v) and adjusted the pH to 10 with 25% ammonia solution followed by automated SPE | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | >0.5 µg/kg/>1.5 µg/kg | 62–147% | 1.2–103 µg/kg | [47] |
| Honey | 17 PAs and 2 TAs | SLE with H2SO4 (0.05 M) and zinc powder followed by SPE-MCX | HPLC-Q-MS ESI positive (SIM mode) Column: C18 (30 °C) | PAs: 0.05–0.17/0.17–0.58 µg/kg TAs: 0.11–0.15/0.36–0.49 µg/kg | PAs: 81–106% TAs: 89–102% | PAs: 2.2–147 µg/kg TAs: - | [90] |
| Honey and pollen | 30 PAs | SLE with H2SO4 (0.05 M) in MeOH followed by SPE-MCX | LC-MS/MS ESI positive (MRM mode) Column C18 (40 °C) | - | - | 0.9–72.6 µg/kg | [91] |
| Pollen | 20 PAs and 2 TAs | SLE with H2SO4 (0.1 M) and zinc powder followed by QuEChERS (clean-up with PSA and MgSO4) | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | PAs: 0.04–0.08/0.07–0.14 µg/L TAs: 0.003–0.004/0.005–0.007 µg/L | PAs: 73.1–106.4% TAs: 78.0–91.2% | PAs: LOD-271 µg/kg TAs: LOD–10.9 µg/kg | [59] |
| Honey | 4 PAs | Dilution with water followed by SPE-HNT-SO3H | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (40 °C) | 3.2–4.8/6.7–12.3 µg/L | 55–92% | - | [92] |
| Honey | 4 PAs | LLE with FA (0.05 M) followed by SPE with alkyl-sulfonated halloysite nanotube sorbents (HNT-PhSO3H or HNT-MPTMS-SO3H) | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (50 °C) | 0.6–1.2/1.9–3.6 µg/L | 78–101% | - | [93] |
| Honey | 32 PAs | SLE with H2SO4 (0.05 M) followed by SPE-MCX | UHPLC-MS/MS ESI positive (MRM mode) Column: C18 (30 °C) | 0.06–0.25/0.22–0.82 µg/kg | 66–91% | 2.2–207.0 µg/kg | [94] |
| Honey and pollen | 35 PAs | Honey: SLE with H2SO4 (0.1 M) followed by QuEChERS (without clean-up step) Pollen: SLE with H2SO4 (0.05 M) followed by SPE-MCX | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C8 | 0.5/1–5 µg/kg | 70–106% | 1–121.1 µg/kg (honey) 6–10,168 µg/kg (pollen) | [52] |
| Honey and pollen | 118 PAs | Honey: dilution with water followed by SALLE Pollen: SLE with H2SO4 (0.05 M) followed by SALLE | UHPLC-Q-Orbitrap- MS/MS ESI positive (HRMS mode) Column: Polar C18 (40 °C) | LOD: 0.6–30 µg/kg | 69–113% | 0–37.3 μg/kg | [62] |
| Honey | 21 PAs and 2 TAs | SLE with H2SO4 (0.05 M) followed by µSPEed-PS/DVB | UHPLC-IT-MS/MS ESI positive (MRM mode) Column: C18 (30 °C) | PAs: 0.12–0.3/0.4–1.0 µg/kg TAs: | PAs: 72–100% TAs: 81–97% | PAs: 24–159 µg/kg TAs: 3.7–18.6 µg/kg | [95] |
| Honey | 2 TAs | SPE (methacrylic acid synthesized polymer) | HPLC-TQ-MS/MS ESI positive (MRM mode) Column: C18 (30 °C) | 0.19–0.56/0.625–1.875 ng/g | 71–95% | 1.4–7.2 μg/kg | [96] |
| Honey | 30 PAs | SLE with H2SO4 (0.05 M) followed by SPE-SCX | UHPLC-MS/MS ESI positive (MRM mode) Column C18 (50 °C) | - | - | 0.6–85 μg/kg | [97] |
| Brazilian bee bread and pollen | 8 PAs | SLE with MeOH:H2O (70:30 v/v) acidified with 2% of FA followed by a dilution 1:1 with mobile phase | LC-MS/MS ESI positive (MRM mode) Column: C18 (30 °C) | 0.1–1.0/0.2–1.5 µg/kg | - | 268–263,849 μg/kg | [98] |
| Honey and pollen | 28 PAs | Honey: SLE with EDTA buffer (oH 2.4) followed by online-SPE Pollen: SLE with EDTA buffer (oH 2.4) and acetonitrile followed by LLE with hexane. Finally, the extracts were purified with online-SPE | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C8 (45 °C) | 0.5–0.5/0.25–1.0 µg/kg | 82–117% | Honey: 0.28–117.38 μg/kg Pollen LOQ-14,534 μg/kg | [99] |
| Honey | 35 PAs | QuEChERS (without clean-up step) | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C8 | -/1.0 µg/kg | 70–120% | 1–50 µg/kg | [100] |
| Honey | 35 PAs | SLE with H2SO4 (0.05 M) in H2O:MeOH (1:1 v/v) followed by SPE-MCX | UHPLC-TQ-MS/MS ESI positive (MRM mode) Column: C8 (40 °C) | 0.6–3.0/0.6–3.0 µg/kg | 50–77% | 2.7 µg/kg | [53] |
| Honey | 24 PAs | SLE with 2% FA followed by SPE-MCX | UHPLC-QTrap-MS/MS ESI positive (MRM mode) Column: HSS T3 (40 °C) | 0.015–0.3/0.05–1.00 µg/kg | 65–103% | 3.2–20.5 µg/kg | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Pintor, B.; Zarcero, S.M.; Sierra, I. Tropane and Pyrrolizidine Alkaloids in Edible Flowers and Flower-Derived Foods: A Food Safety Perspective. Foods 2025, 14, 3695. https://doi.org/10.3390/foods14213695
Fernández-Pintor B, Zarcero SM, Sierra I. Tropane and Pyrrolizidine Alkaloids in Edible Flowers and Flower-Derived Foods: A Food Safety Perspective. Foods. 2025; 14(21):3695. https://doi.org/10.3390/foods14213695
Chicago/Turabian StyleFernández-Pintor, Begoña, Sonia Morante Zarcero, and Isabel Sierra. 2025. "Tropane and Pyrrolizidine Alkaloids in Edible Flowers and Flower-Derived Foods: A Food Safety Perspective" Foods 14, no. 21: 3695. https://doi.org/10.3390/foods14213695
APA StyleFernández-Pintor, B., Zarcero, S. M., & Sierra, I. (2025). Tropane and Pyrrolizidine Alkaloids in Edible Flowers and Flower-Derived Foods: A Food Safety Perspective. Foods, 14(21), 3695. https://doi.org/10.3390/foods14213695

