Recent Advances Towards Selenium Nanoparticles: Synthetic Methods, Functional Mechanisms, and Biological Applications
Abstract
1. Introduction
2. Preparation Methods of SeNPs
2.1. Physical Methods for the Synthesis of SeNPs
2.2. Chemical Methods for the Synthesis of SeNPs
2.3. Biosynthesis Methods for the Synthesis of SeNPs
2.3.1. Microbial Synthesis Method for the Synthesis of SeNPs
2.3.2. Plant Synthesis Method for the Synthesis of SeNPs
2.4. Other Methods for Synthesis SeNPs

2.5. Standardization Challenges in SeNPs Synthesis
3. The Function Mechanisms of SeNPs Activities (Figure 5)
3.1. The Mechanism of Anti-Tumor Function

3.2. The Mechanisms of Antioxidant Function
3.3. The Mechanisms of Anti-Microbial Function

4. Applications in the Biological Field
4.1. Application in Packaging Materials
4.2. Application in Selenium-Rich Functional Foods
4.3. Application in the Fertilizer Field
4.4. Application in Animal Feed
4.5. Application as Drug Carriers

5. Conclusions
6. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, X.; Deng, H.; Lin, X.; Ali, A.S.M.; Viscardi, A.; Guo, Z.; Qiao, L.; He, Y.; Han, J. Selenium nanoparticles: Properties, preparation methods, and therapeutic applications. Chem. Biol. Interact. 2023, 378, 110483. [Google Scholar] [CrossRef]
- Huang, Y.; Su, E.; Ren, J.; Qu, X. The recent biological applications of selenium-based nanomaterials. Nano Today 2021, 38, 101205. [Google Scholar] [CrossRef]
- Huang, Y.H.; Chen, Q.L.; Zeng, H.; Yang, C.; Wang, G.; Zhou, L. A review of selenium (Se) nanoparticles: From synthesis to applications. Part. Part. Syst. Charact. 2023, 40, 2300098. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Cheng, H.; Xia, W. Chitosan-based selenium composites as potent Se supplements: Synthesis, beneficial health effects, and applications in food and agriculture. Trends Food Sci. Technol. 2022, 129, 339–352. [Google Scholar] [CrossRef]
- Chaudhary, S.; Umar, A.; Mehta, S.K. Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications. Prog. Mater Sci. 2016, 83, 270–329. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, K.S. Role of nano-selenium in health and environment. J. Biotechnol. 2021, 325, 152–163. [Google Scholar] [CrossRef]
- Zambonino, M.C.; Quizhpe, E.M.; Mouheb, L.; Rahman, A.; Agathos, S.N.; Dahoumane, S.A. Biogenic selenium nanoparticles in biomedical sciences: Properties, current trends, novel opportunities and emerging challenges in theranostic nanomedicine. Nanomaterials 2023, 13, 424. [Google Scholar] [CrossRef] [PubMed]
- Sentkowska, A.; Pyrzynska, K. The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules 2022, 27, 2486. [Google Scholar] [CrossRef] [PubMed]
- Stepankova, H.; Michalkova, H.; Splichal, Z.; Richtera, L.; Svec, P.; Vaculovic, T.; Pribyl, J.; Kormunda, M.; Rex, S.; Adam, V.; et al. Unveiling the nanotoxicological aspects of Se nanomaterials differing in size and morphology. Bioact. Mater. 2023, 20, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, D.; Liang, X.; Liu, G.; Wen, C.; Liang, L.; Liu, X.; Li, Y.; Xu, X. Synthesis and characterization of selenium nanoparticles stabilized by Grifola frondosa polysaccharides and gallic acid conjugates. Int. J. Biol. Macromol. 2024, 278, 134787. [Google Scholar] [CrossRef]
- Takahashi, K.; Ochi, A.; Mihara, H.; Ogra, Y. Comparison of nutritional availability of biogenic selenium nanoparticles and chemically synthesized selenium nanoparticles. Biol. Trace Elem. Res. 2023, 201, 4861–4869. [Google Scholar] [CrossRef]
- Toprakcioglu, Z.; Wiita, E.G.; Jayaram, A.K.; Gregory, R.C.; Knowles, T.P.J. Selenium silk nanostructured films with antifungal and antibacterial activity. ACS Appl. Mater. Interfaces 2023, 15, 10452–10463. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, J.; Liu, S.; Xiao, P.; Du, C.; Zhan, J.; Chen, Z.; Chen, L.; Li, K.; Huang, W.; et al. Cascade targeting selenium nanoparticles-loaded hydrogel microspheres for multifaceted antioxidant defense in osteoarthritis. Biomaterials 2025, 318, 123195. [Google Scholar] [CrossRef] [PubMed]
- Sam, S.; Aguado, R.J.; Fiol, N.; Bastida, G.; Delgado-Aguilar, M.; Tarrés, Q. Antioxidant coatings with selenium nanoparticles, stabilized by chitosan and nanocellulose, for active paper packaging. Int. J. Biol. Macromol. 2025, 319, 145721. [Google Scholar] [CrossRef]
- Shan, R.; Xu, X.; Yin, Y.; Liang, J.; Yuan, H.; Gao, X.; Zhao, Q.; Song, G. Selenium nanoparticles conjugated with Scutellaris barbata D. Don polysaccharides: Synthesis, optimization, structural characterization and evaluation of anti-hepatoma activity in vitro and in vivo. Int. J. Biol. Macromol. 2025, 319, 145196. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, B.; Wang, J.; Luo, W.; Yang, M.; Xiong, Z.; Huang, G.; Yang, J.; Tang, Z.; Qiao, R.; et al. Translational selenium nanoparticles promotes clinical non-small-cell lung cancer chemotherapy via activating selenoprotein-driven immune manipulation. Adv. Mater. 2025, 37, 2415818. [Google Scholar] [CrossRef]
- Ndwandwe, B.K.; Malinga, S.P.; Kayitesi, E.; Dlamini, B.C. Advances in green synthesis of selenium nanoparticles and their application in food packaging. Int. J. Food Sci. Technol. 2021, 56, 2640–2650. [Google Scholar] [CrossRef]
- Ao, B.; Du, Q.Q.; Liu, D.C.; Shi, X.S.; Tu, J.M.; Xia, X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front. Microbiol. 2023, 14, 1229838. [Google Scholar] [CrossRef]
- Song, J.; Yu, S.; Yang, R.; Xiao, J.; Liu, J. Opportunities for the use of selenium nanoparticles in agriculture. NanoImpact 2023, 31, 100478. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.; Martyniuk, C.J.; Partyka, A.; Saleemi, M.K. Dietary use of selenium: A review of the antioxidant and scavenging effects on the poultry male reproductive system. World’s Poult. Sci. J. 2023, 79, 713–729. [Google Scholar] [CrossRef]
- Li, T.Y.; Xu, H.P. Selenium-Containing nanomaterials for cancer treatment. Cell Rep. Phys. Sci. 2020, 1, 100111. [Google Scholar] [CrossRef]
- Wang, Q.; Jaramillo, A.M.; Pavon, J.J.; Webster, T.J. Red selenium nanoparticles and gray selenium nanorods as antibacterial coatings for PEEK medical devices. J. Biomed. Mater. Res. Part B 2016, 104, 1352–1358. [Google Scholar] [CrossRef]
- Wang, H.; Wei, Y.-L.; Liang, X.-Y.; Xu, M.-Z.; Chen, Q.-H.; Zeng, Q.-Z.; Yuan, Y. Novel bilayer Pickering emulsions stabilized by in situ modification of zein via selenium nanoparticles optimization, physicochemical properties and permeation. Food Hydrocolloids 2024, 156, 110323. [Google Scholar] [CrossRef]
- Gu, Q.; Luo, H.; Lin, L.; Zhang, Q.; Yi, W.; Liu, Z.; Yu, X.; Zuo, C.; Qi, J.; Tang, X. Effects of biological nano-selenium on yield, grain quality, aroma, and selenium content of aromatic rice. Agronomy 2024, 14, 1778. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, Y.; Wang, C.; Yue, L.; Li, X.; Cao, X.; White, J.C.; Wang, Z.; Xing, B. Selenium nanomaterials enhance sheath blight resistance and nutritional quality of rice mechanisms of action and human health benefit. ACS Nano 2024, 18, 13084–13097. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Li, C.; Cai, Z.; Hao, Y.; Cao, Y.; Jia, W.; Han, L.; White, J.C.; Ma, C.; Xing, B. Biosynthesized selenium nanoparticles as an effective tool to combat soil metal stresses in rice (Oryza sativa L.). ACS Nano 2024, 18, 19636–19648. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Xiong, Z.; Yu, Y.; Shi, S.; Li, X.; Chen, T. Rapid selenoprotein activation by selenium nanoparticles to suppresses osteoclastogenesis and pathological bone loss. Adv. Mater. 2024, 36, 2401620. [Google Scholar] [CrossRef]
- Rana, T. Nano-selenium on reproduction and immunocompetence: An emerging progress and prospect in the productivity of poultry research. Trop. Anim. Health Prod. 2021, 53, 324. [Google Scholar] [CrossRef]
- Mahmoud, R.; Salama, B.; Safhi, F.A.; Pet, L.; Pet, E.; Ateya, A. Assessing the impacts of different levels of nano-selenium on growth performance, serum metabolites, and gene expression in heat-stressed growing quails. Vet. Sci. 2024, 11, 228. [Google Scholar] [CrossRef]
- Mohammadi, E.; Janmohammadi, H.; Olyayee, M.; Helan, J.A.; Kalanaky, S. Nano selenium improves humoral immunity, growth performance and breast-muscle selenium concentration of broiler chickens. Anim. Prod. Sci. 2020, 60, 1902–1910. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Wong, Y.-S.; Zheng, W.; Zhang, Y.; Cao, W.; Chen, T. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano 2012, 6, 6578–6591. [Google Scholar] [CrossRef]
- Gong, G.; Fu, B.; Ying, C.; Zhu, Z.; He, X.; Li, Y.; Shen, Z.; Xuan, Q.; Huang, Y.; Lin, Y.; et al. Targeted delivery of paclitaxel by functionalized selenium nanoparticles for anticancer therapy through ROS-mediated signaling pathways. RSC Adv. 2018, 8, 39957–39966. [Google Scholar] [CrossRef]
- Haro-Poniatowski, E.; Escobar-Alarcón, L.; Hernández-Pozos, J.L.; Mendoza-Luna, L.G.; Guarin, C.A. Synthesis and characterization of selenium nanoparticles obtained by femtosecond pulsed laser ablation in liquid media. Appl. Phys. A Mater. Sci. Process. 2022, 128, 827. [Google Scholar] [CrossRef]
- Geoffrion, L.D.; Hesabizadeh, T.; Medina-Cruz, D.; Kusper, M.; Taylor, P.; Vernet-Crua, A.; Chen, J.; Ajo, A.; Webster, T.J.; Guisbiers, G. Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega 2020, 5, 2660–2669. [Google Scholar] [CrossRef]
- Yang, Z.; Zuo, Y.; Dai, L.; Zhang, L.; Yu, Y.; Zhou, L. Effect of ultrasonic-induced selenium crystallization behavior during selenium reduction. Ultrason. Sonochem. 2023, 95, 106392. [Google Scholar] [CrossRef] [PubMed]
- Mellinas, C.; Jimenez, A.; Garrigos, M.D.C. Microwave-Assisted greensynthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules 2019, 24, 4048. [Google Scholar] [CrossRef]
- Yu, B.; You, P.; Song, M.; Zhou, Y.; Yu, F.; Zheng, W. A facile and fast synthetic approach to create selenium nanoparticles with diverse shapes and their antioxidation ability. New J. Chem. 2016, 40, 1118–1123. [Google Scholar] [CrossRef]
- Boroumand, S.; Safari, M.; Shaabani, E.; Shirza, M.; Faridi-Majidi, R. Selenium nanoparticles: Synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater. Res. Express 2019, 6, 0850d8. [Google Scholar] [CrossRef]
- El-Megharbel, S.M.; Al-Salmi, F.A.; Al-Harthi, S.; Alsolami, K.; Hamza, R.Z. Chitosan/Selenium nanoparticles attenuate diclofenac sodium-induced testicular toxicity in male rats. Crystals 2021, 11, 1477. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Stoll, S.; Sun, H.B.; Liu, X.N.; Liu, W.; Leng, X.J. Stability and surface properties of selenium nanoparticles coated with chitosan and sodium carboxymethyl cellulose. Carbohydr. Polym. 2022, 278, 118859. [Google Scholar] [CrossRef] [PubMed]
- Song, X.X.; Chen, Y.Y.; Sun, H.B.; Liu, X.N.; Leng, X.J. Physicochemical stability and functional properties of selenium nanoparticles stabilized by chitosan, carrageenan, and gum Arabic. Carbohydr. Polym. 2021, 255, 117379. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Cai, W.; Tan, G. Facile synthesis and optical properties of small selenium nanocrystals and nanorods. Nanoscale Res. Lett. 2017, 12, 401. [Google Scholar] [CrossRef]
- Ge, M.; Zhou, S.; Li, D.; Song, D.; Yang, S.; Xu, M. Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil. J. Hazard. Mater. 2024, 472, 134491. [Google Scholar] [CrossRef]
- Faramarzi, S.; Anzabi, Y.; Jafarizadeh-Malmiri, H. Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae-fabrication and characterization. Arch. Microbiol. 2020, 202, 1203–1209. [Google Scholar] [CrossRef]
- Shi, M.H.; Deng, J.; Min, J.Y.; Zheng, H.Y.; Guo, M.P.; Fan, X.L.; Cheng, S.Y.; Zhang, S.P.; Ma, X.L. Synthesis, characterization, and cytotoxicity analysis of selenium nanoparticles stabilized by Morchella sextelata polysaccharide. Int. J. Biol. Macromol. 2023, 242, 125143. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.H.; Li, M.J.; Zhang, S.S.; Wang, Y.D.; Deng, J.Y.; Wang, Q.; Yi, T.; Dong, X.X.; Cheng, S.Y.; He, Y.; et al. Highly efficient biotransformation and production of selenium nanoparticles and polysaccharides using potential probiotic Bacillus subtilis T5. Metabolites 2022, 12, 1204. [Google Scholar] [CrossRef]
- Li, Z.J.; Wang, Q.Q.; Dai, F.J.; Li, H.F. Reduction of selenite to selenium nanospheres by Se(IV)-resistant Lactobacillus paralimentarius JZ07. Food Chem. 2022, 393, 133385. [Google Scholar] [CrossRef]
- Mohammed, E.J.; Abdelaziz, A.E.M.; Mekky, A.E.; Mahmoud, N.N.; Sharaf, M.; Al-Habibi, M.M.; Khairy, N.M.; Al-Askar, A.A.; Youssef, F.S.; Gaber, M.A.; et al. Biomedical promise of aspergillus flavus-biosynthesized selenium nanoparticles: A green synthesis approach to antiviral, anticancer, anti-Biofilm, and antibacterial applications. Pharmaceuticals 2024, 17, 915. [Google Scholar] [CrossRef]
- Cui, Y.H.; Li, L.L.; Zhou, N.Q.; Liu, J.H.; Huang, Q.; Wang, H.J.; Tian, J.; Yu, H.Q. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme Microb. Technol. 2016, 95, 185–191. [Google Scholar] [CrossRef]
- Alvi, G.B.; Iqbal, M.S.; Ghaith, M.M.S.; Haseeb, A.; Ahmed, B.; Qadir, M.I. Biogenic selenium nanoparticles (SeNPs) from citrus fruit have anti-bacterial activities. Sci. Rep. 2021, 11, 4811. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.F.; Abd-Elraoof, W.A.; Tayel, A.A.; Alzuaibr, F.M.; Abonama, O.M. Antifungal application of biosynthesized selenium nanoparticles with pomegranate peels and nanochitosan as edible coatings for citrus green mold protection. J. Nanobiotechnol. 2022, 20, 182. [Google Scholar] [CrossRef]
- Jeevanantham, V.; Tamilselvi, D.; Rathidevi, K.; Bavaji, S.R. Greener microwave synthesized Se nanospheres for antioxidant, cell viability, and antibacterial effect. J. Mater. Res. 2023, 38, 1909–1918. [Google Scholar] [CrossRef]
- Ji, H.Y.; Lou, X.W.; Jiao, J.S.; Li, Y.; Dai, K.Y.; Jia, X.Y. Preliminary structural characterization of selenium nanoparticle composites modified by astragalus polysaccharide and the cytotoxicity mechanism on liver cancer cells. Molecules 2023, 28, 1561. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, F.; Chen, J.; Liu, X.; Li, R.; Wang, Z.; Cheong, K.-L.; Zhong, S. Selenium nanoparticles stabilized by Sargassum fusiforme polysaccharides: Synthesis, characterization and bioactivity. Int. J. Biol. Macromol. 2024, 269, 132073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Song, Z.T.; Shi, L.J.; Zhou, L.A.; Zhang, J.; Cui, J.L.; Li, Y.H.; Jin, D.Q.; Ohizumi, Y.; Xu, J.; et al. A dandelion polysaccharide and its selenium nanoparticles: Structure features and evaluation of anti-tumor activity in zebrafish models. Carbohydr. Polym. 2021, 270, 118365. [Google Scholar] [CrossRef]
- Sun, J.R.; Li, J.L.; Yao, L.L.; You, F.F.; Yuan, J.F.; Wang, D.H.; Gu, S.B. Synthesis, characterization and antioxidant activity of selenium nanoparticle decorated with polysaccharide from hawthorn. J. Food Meas. Charact. 2023, 17, 6125–6134. [Google Scholar] [CrossRef]
- Ye, X.; Chen, Z.; Zhang, Y.; Mu, J.; Chen, L.; Li, B.; Lin, X. Construction, characterization, and bioactive evaluation of nano-selenium stabilized by green tea nano-aggregates. LWT Food Sci. Technol. 2020, 129, 109475. [Google Scholar] [CrossRef]
- El-Batal, A.I.; Mosallam, F.M.; Ghorab, M.M.; Hanora, A.; Gobara, M.; Baraka, A.; Elsayed, M.A.; Pal, K.; Fathy, R.M.; Abd Elkodous, M.; et al. Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int. J. Biol. Macromol. 2020, 156, 1584–1599. [Google Scholar] [CrossRef]
- El-Sayed, E.R.; Abdelhakim, H.K.; Ahmed, A.S. Solid-state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioprocess. Biosyst. Eng. 2020, 43, 797–809. [Google Scholar] [CrossRef]
- Chen, C.; Amona, F.M.; Sha, Z.; Li, J.; Ke, Y.; You, Y.; Yang, L.; Liao, G.; Chen, X.; Pang, Y.; et al. Green synthesis of purple sweet potato-derived selenium nanoparticles accelerates wound healing through pyroptosis regulation. Mater. Today Bio 2025, 35, 102269. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, R.; Xie, B.; Ma, L.; He, Y.; Liu, H.; Chen, T. Ultrasound-Driven selenium nanoparticles realize bone defect repair through activating selenoproteins to regulate PI3K/AKT signaling pathway. ACS Nano 2025, 19, 18256–18269. [Google Scholar] [CrossRef]
- Zeng, Y.; Lyu, S.; Yang, Q.; Du, Z.; Liu, X.; Shang, X.; Xu, M.; Liu, J.; Zhang, T. Preparation, physicochemical characterization, and immunomodulatory activity of ovalbumin peptide–selenium nanoparticles. Food Chem. 2025, 472, 142852. [Google Scholar] [CrossRef]
- Pal, S.; Das, A.; Roy, S.; Chakraborty, N.; Sarkar, T.; Sarkar, K.; Adak, M.K.; Sil, S.K. Nano selenium modulates ripening of Capsicum fruit under postharvest storage: Cellular redox and related physiological characteristics. Food Chem. 2025, 472, 142853. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, S.; Huang, X.; Zhou, T.; Zhang, T.; Xu, Y.; Li, M.; Wang, J.; Wang, S.; Hu, Z.; et al. Inhibition mechanism of pectin-modified nano-selenium on Phytophthora capsici and the improvement of the resistance in pepper. Carbohydr. Polym. 2025, 362, 123676. [Google Scholar] [CrossRef]
- Bao, P.; Chen, S.C.; Xiao, K.Q. Dynamic equilibrium of endogenous selenium nanoparticles in selenite-exposed cancer cells: A deep insight into the interaction between endogenous SeNPs and proteins. Mol. Biosyst. 2015, 11, 3355–3361. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.J.; Qin, Y.; Zhao, Z.H.; Zhang, Y.; Yang, J.H.; Zhai, D.H.; Cui, F.; Luo, C.; Lu, M.X.; Liu, P.P.; et al. Lentinan-functionalized selenium nanoparticles target tumor cell mitochondria via TLR4/TRAF3/MFN1 pathway. Theranostics 2020, 10, 9083–9099. [Google Scholar] [CrossRef]
- Kong, L.; Yuan, Q.; Zhu, H.; Li, Y.; Guo, Q.; Wang, Q.; Bi, X.; Gao, X. The suppression of prostate LNCaP cancer cells growth by selenium nanoparticles through Akt/Mdm2/AR controlled apoptosis. Biomaterials 2011, 32, 6515–6522. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, W.; Li, Y.; Ma, L.; Lin, Z.; Xu, J.; Guo, Y. Preparation and anti-tumor activity of selenium nanoparticles based on a polysaccharide from Paeonia lactiflora. Int. J. Biol. Macromol. 2023, 232, 123261. [Google Scholar] [CrossRef]
- Liu, S.; Li, N.; Lai, H.; Xu, L.; Zeng, Y.; Chen, X.; Huang, H.; Chen, T.; Liu, J.; Wang, J. Selenium nanoparticles enhance NK cell-mediated tumoricidal activity in malignant pleural effusion via the TrxR1-IL-18RAP-pSTAT3 pathway. Adv. Funct. Mater. 2024, 34, 2401264. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, T.; Li, J.; Mai, F.; Li, J.; Chen, Y.; Jing, Y.; Dong, X.; Lin, L.; He, J.; et al. Selenium nanoparticles as new strategy to potentiate gammadelta T cell anti-tumor cytotoxicity through upregulation of tubulin-alpha acetylation. Biomaterials 2019, 222, 119397. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.G.; Hawwa, M.T.; Baraka, D.M.; El-Shora, H.M.; Hamed, A.A. Biogenic selenium nanoparticles and seleniumchitosan-nanoconjugate biosynthesized by Streptomyces parvulus MAR4 with antimicrobial and anticancer potential. BMC Microbiol. 2024, 24, 21. [Google Scholar] [CrossRef] [PubMed]
- Sonkusre, P.; Cameotra, S.S. Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. J. Nanobiotechnol. 2017, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Ha, K.-y.; Dhandapani, S.; Kim, Y.-J. Biologically synthesized black ginger-selenium nanoparticle induces apoptosis and autophagy of AGS gastric cancer cells by suppressing the PI3K/Akt/mTOR signaling pathway. J. Nanobiotechnol. 2022, 20, 441. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Xiao, M.; Zhao, M.; Xu, T.; Guo, M.; Wang, C.; Li, Y.; Zhu, B.; Liu, H. Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. Mater. Sci. Eng. C 2020, 106, 110100. [Google Scholar] [CrossRef]
- Nie, T.; Wu, H.; Wong, K.-H.; Chen, T. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. J. Mater. Chem. B 2016, 4, 2351–2358. [Google Scholar] [CrossRef]
- Jiang, W.; Fu, Y.; Yang, F.; Yang, Y.; Liu, T.; Zheng, W.; Zeng, L.; Chen, T. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy. ACS Appl. Mater. Interfaces 2014, 6, 13738. [Google Scholar] [CrossRef]
- Haddadian, A.; Robattorki, F.F.; Dibah, H.; Soheili, A.; Ghanbarzadeh, E.; Sartipnia, N.; Hajrasouliha, S.; Pasban, K.; Andalibi, R.; Ch, M.H.; et al. Niosomes-loaded selenium nanoparticles as a new approach for enhanced antibacterial, anti-biofilm, and anticancer activities. Sci. Rep. 2022, 12, 21938. [Google Scholar] [CrossRef]
- Mary, T.A.; Shanthi, K.; Vimala, K.; Soundarapandian, K. PEG functionalized selenium nanoparticles as a carrier of crocin to achieve anticancer synergism. RSC Adv. 2016, 6, 22936–22949. [Google Scholar] [CrossRef]
- Huang, Y.; He, L.; Liu, W.; Fan, C.; Zheng, W.; Wong, Y.-S.; Chen, T. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials 2013, 34, 7106–7116. [Google Scholar] [CrossRef]
- Yao, M.; Deng, Y.; Zhao, Z.; Yang, D.; Wan, G.; Xu, X. Selenium nanoparticles based on Morinda officinalis polysaccharides: Characterization, anti-cancer activities, and immune-enhancing activities evaluation in vitro. Molecules 2023, 28, 2426. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, Q.; Guo, J.; Guo, R.; Fan, X.; Bi, Y. Synthesis and evaluation of grateloupia livida polysaccharides-functionalized selenium nanoparticles. Int. J. Biol. Macromol. 2021, 191, 832–839. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Cheng, H.; Zhan, X.; Xia, W. Synthesis, characterization, and anticancer activity of protamine sulfate stabilized selenium nanoparticles. Food Res. Int. 2023, 164, 112435. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Ding, D.; Zhang, L.; Muehlmann, L.A.; Deng, S.E.; Wang, X.; Li, W.; Zhang, W. Synthesis and antioxidant properties of Lycium barbarum polysaccharides capped selenium nanoparticles using tea extract. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, J.; Liu, C.; Zhang, X.; Zhao, Z.; Xu, J.; Zhang, X.; Zhou, K.; Gao, P.; Li, D. Selenium-containing polysaccharides isolated from Rosa laevigata Michx fruits exhibit excellent anti-oxidant and neuroprotective activity in vitro. Int. J. Biol. Macromol. 2022, 209, 1222–1233. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.N.; Zhang, C.Y.; Zhao, G.H.; Stoll, S.; Ren, F.Z.; Leng, X.J. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J. Nanobiotechnol. 2017, 15, 4. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Dai, W.Z.; Hu, X.L.; Hong, Z.P. Effects of dietary glycine selenium nanoparticles on loin quality, tissue selenium retention, and serum antioxidation in finishing pigs. Anim. Feed Sci. Technol. 2020, 260, 114345. [Google Scholar] [CrossRef]
- Cao, M.; Qian, Y.; Sun, Z.; Liu, S.; Zheng, R.; Zhao, L.; Chen, G. Preparation, characterization, and stability of selenium nanoparticles decorated with Mori Fructus polysaccharide and its protective effects in bisphenol A-induced Sertoli cells. Int. J. Biol. Macromol. 2025, 294, 139463. [Google Scholar] [CrossRef]
- Tao, L.; Guan, C.; Wang, Z.; Wang, Y.; Gesang, Q.; Sheng, J.; Dai, J.; Tian, Y. Selenium nanoparticles derived from Moringa oleifera Lam. polysaccharides: Construction, stability, and in vitro antioxidant activity. Foods 2025, 14, 918. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Bai, X.; Pei, X.; Zhang, Y.; Zhang, X.; Chen, S.; Li, D.; Lv, B.; Wang, X.; Wu, X. Synergistic anti-oxidative/anti-inflammatory treatment for acute lung injury with selenium based chlorogenic acid nanoparticles through modulating Mapk8ip1/MAPK and Itga2b/PI3k-AKT axis. J. Nanobiotechnol. 2025, 23, 37. [Google Scholar] [CrossRef]
- Geng, S.; Zhou, Y.; Ng, G.; Fan, Q.; Cheong, S.; Mazur, F.; Boyer, C.; Chandrawati, R. Selenium nanoparticles as catalysts for nitric oxide generation. Colloids Surf. B 2025, 251, 114592. [Google Scholar] [CrossRef]
- Khan, Z.; Chowdhury, D.; Upadhyaya, H. Application of the composite nanoparticles of selenium and chitosan for ameliorating arsenic stress in rice seedlings. Plant Physiol. Biochem. 2025, 220, 109470. [Google Scholar] [CrossRef] [PubMed]
- Bai, K.; Hong, B.; He, J.; Hong, Z.; Tan, R. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int. J. Nanomed. 2017, 12, 4527–4539. [Google Scholar] [CrossRef] [PubMed]
- Skalickova, S.; Milosavljevic, V.; Cihalova, K.; Horky, P.; Richtera, L.; Adam, V. Selenium nanoparticles as a nutritional supplement. Nutrition 2017, 33, 83–90. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, T.; Che, J.; Yi, J.; Wei, L.; Li, H. Evaluation of the antimicrobial mechanism of biogenic selenium nanoparticles against Pseudomonas fluorescens. Biofouling 2023, 39, 157–170. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Dai, C.; Wang, P.; Fan, S.; Yu, B.; Qu, Y. Antibacterial properties and mechanism of selenium nanoparticles synthesized by Providencia sp. DCX. Environ. Res. 2021, 194, 110630. [Google Scholar] [CrossRef]
- Sahoo, B.; Leena Panigrahi, L.; Jena, S.; Jha, S.; Arakha, M. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Adv. 2023, 13, 11406–11414. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Saravanakumar, K.; Mariadoss, A.V.A.; Hu, X.; Sathiyaseelan, A.; Wang, M.-H. Functionalization of selenium nanoparticles using the methanolic extract of Cirsium setidens and its antibacterial, antioxidant, and cytotoxicity activities. J. Nanostruct. Chem. 2021, 12, 23–32. [Google Scholar] [CrossRef]
- Hamed, A.A.; Hawwa, M.T.; Baraka, D.M.; El-Shora, H.M.; El-Sayyad, G.S.; Al-Hazmi, N.E.; Hassan, M.G. Understanding antimicrobial activity of biogenic selenium nanoparticles and selenium/chitosan nano-incorporates via studying their inhibition activity against key metabolic enzymes. Int. J. Biol. Macromol. 2025, 298, 140073. [Google Scholar] [CrossRef]
- Hoseinnejad, M.; Jafari, S.M.; Katouzian, I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit. Rev. Microbiol. 2017, 44, 161–181. [Google Scholar] [CrossRef]
- Ndwandwe, B.K.; Malinga, S.P.; Kayitesi, E.; Dlamini, B.C. Selenium nanoparticles–enhanced potato starch film for active food packaging application. Int. J. Food Sci. Technol. 2022, 57, 6512–6521. [Google Scholar] [CrossRef]
- Vera, P.; Canellas, E.; Nerin, C. New antioxidant multilayer packaging with nanoselenium to enhance the shelf-life of market food products. Nanomaterials 2018, 8, 837. [Google Scholar] [CrossRef] [PubMed]
- Jamróz, E.; Kopel, P.; Juszczak, L.; Kawecka, A.; Bytesnikova, Z.; Milosavljevic, V.; Kucharek, M.; Makarewic, M.; Adam, V. Development and characterisation of furcellaran-gelatin films containing SeNPs and AgNPs that have antimicrobial activity. Food Hydrocolloids 2018, 83, 9–16. [Google Scholar] [CrossRef]
- Jamróz, E.; Kopel, P.; Juszczak, L.; Kawecka, A.; Bytesnikova, Z.; Milosavljevic, V.; Makarewicz, M. Development of furcellaran-gelatin films with Se-AgNPs as an active packaging system for extension of mini kiwi shelf life. Food Packag. Shelf Life 2019, 21, 100339. [Google Scholar] [CrossRef]
- Huong, Q.T.T.; Nam, N.T.H.; Duy, B.T.; An, H.; Hai, N.D.; Ngan, H.T.K.; Ngan, L.T.; Nhi, T.L.; Linh, D.T.Y.; Khanh, T.N.; et al. Structurally natural chitosan films decorated with Andrographis paniculata extract and selenium nanoparticles: Properties and strawberry preservation. Food Biosci. 2023, 53, 102647. [Google Scholar] [CrossRef]
- Rao, S.; Xiao, X.; Wang, Y.; Xiong, Y.; Cheng, H.; Li, L.; Cheng, S. Comparative study of the effects of selenium nanoparticles and selenite on selenium content and nutrient quality in soybean sprouts. Folia Hortic. 2022, 34, 223–234. [Google Scholar] [CrossRef]
- Chen, J.; Feng, T.; Wang, B.; He, R.; Xu, Y.; Gao, P.; Zhang, Z.H.; Zhang, L.; Fu, J.; Liu, Z.; et al. Enhancing organic selenium content and antioxidant activities of soy sauce using nano-selenium during soybean soaking. Front. Nutr. 2022, 9, 970206. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Domokos-Szabolcsy, É.; Abdalla, N.A.; Alshaal, T.A.; Shalaby, T.A.; Sztrik, A.; Prokisch, J.; Fári, M. Selenium and nano-selenium in agroecosystems. Environ. Chem. Lett. 2014, 12, 495–510. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.-J.; Sun, X.-D.; Zhang, M.; Duan, J.-L.; Xiao, F.; Lin, Y.; Zhu, F.-P.; Kong, X.-P.; Ding, Z.; et al. Incorporation of selenium derived from nanoparticles into plant proteins in vivo. ACS Nano 2023, 17, 15847–15856. [Google Scholar] [CrossRef]
- Liu, J.; Qi, W.Y.; Chen, H.; Song, C.; Li, Q.; Wang, S.G. Selenium nanoparticles as an innovative selenium fertilizer exert less disturbance to soil microorganisms. Front. Microbiol. 2021, 12, 746046. [Google Scholar] [CrossRef] [PubMed]
- Lidon, F.C.; Oliveira, K.; Ribeiro, M.M.; Pelica, J.; Pataco, I.; Ramalho, J.C.; Leitão, A.E.; Almeida, A.S.; Campos, P.S.; Ribeiro-Barros, A.I.; et al. Selenium biofortification of rice grains and implications on macronutrients quality. J. Cereal Sci. 2018, 81, 22–29. [Google Scholar] [CrossRef]
- Xiong, Y.; Tian, X.; Qiu, T.; Cong, X.; Zheng, X.; Chen, S.; You, A.; Cheng, S.; Wu, M.; Xu, D. Effects of SeNPs fertilizer on Se and microelement contents, eating and cooking qualities, and volatile organic compounds in rice grains. Sustainability 2023, 15, 553. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.; Li, W.; Gong, Z.; Jia, C.; Li, P. Effect of foliar application of the selenium-rich nutrient solution on the selenium accumulation in grains of Foxtail millet (Zhangzagu 10). Environ. Sci. Pollut. Res. Int. 2022, 29, 5569–5576. [Google Scholar] [CrossRef]
- Hussein, H.-A.A.; Darwesh, O.M.; Mekki, B.B. Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatal. Agric. Biotechnol. 2019, 18, 101080. [Google Scholar] [CrossRef]
- Morales-Espinoza, M.C.; Cadenas-Pliego, G.; Perez-Alvarez, M.; Hernandez-Fuentes, A.D.; Cabrera de la Fuente, M.; Benavides-Mendoza, A.; Valdes-Reyna, J.; Juarez-Maldonado, A. Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. Molecules 2019, 24, 3030. [Google Scholar] [CrossRef]
- Huang, S.; Yu, K.; Xiao, Q.; Song, B.; Yuan, W.; Long, X.; Cai, D.; Xiong, X.; Zheng, W. Effect of bio-nano-selenium on yield, nutritional quality and selenium content of radish. J. Food Compos. Anal. 2023, 115, 104927. [Google Scholar] [CrossRef]
- Saleh, A.A.; Ebeid, T.A. Feeding sodium selenite and nano-selenium stimulates growth and oxidation resistance in broilers. S. Afr. J. Anim. Sci. 2019, 49, 176–183. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Arif, M.; Taha, A.E.; Noreldin, A.E. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol 2019, 79, 120–134. [Google Scholar] [CrossRef]
- Sheiha, A.M.; Abdelnour, S.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Metwally, K.A.; Ajarem, J.S.; Maodaa, S.N.; Allam, A.A.; El-Saadony, M.T. Effects of dietary biological or chemical-synthesized nano-selenium supplementation on growing rabbits exposed to thermal stress. Animals 2020, 10, 430. [Google Scholar] [CrossRef]
- Debata, N.R.; Sethy, K.; Swain, R.K.; Mishra, S.K.; Panda, N.; Maity, S. Supplementation of nano-selenium (SeNPs) improved growth, immunity, antioxidant enzyme activity, and selenium retention in broiler chicken during summer season. Trop. Anim. Health Prod. 2023, 55, 260. [Google Scholar] [CrossRef]
- Yang, Y.; An, Y.; Zhang, S.; Huang, M.; Ye, X.; Zhao, Z.; Liu, W. Biogenic selenium nanoparticles synthesized using alginate oligosaccharides attenuate heat stress-induced impairment of breast meat quality via regulating oxidative stress, metabolome and ferroptosis in broilers. Antioxidants 2023, 12, 2032. [Google Scholar] [CrossRef]
- Kalčec, N.; Peranić, N.; Mamić, I.; Beus, M.; Hall, C.R.; Smith, T.A.; Sani, M.A.; Turčić, P.; Separovic, F.; Vinković Vrček, I. Selenium nanoparticles as potential drug-delivery systems for the treatment of parkinson’s disease. ACS Appl. Nano Mater. 2023, 6, 17581–17592. [Google Scholar] [CrossRef]
- Mai, L.; Liu, J.; Wu, H.; Wang, H.; Lin, Z.; Rao, S.; Sun, W.; Tan, A.; Lin, Y.; Chen, B. Enhanced inhibition of neuronal ferroptosis and regulation of microglial polarization with multifunctional traditional Chinese medicine active ingredients-based selenium nanoparticles for treating spinal cord injury. Mater. Today Bio 2025, 32, 101758. [Google Scholar] [CrossRef]
- Yang, H.; Cai, Z.; Zhang, Y.; Huang, Z. Mannose decorated selenium nanoparticles loading calpain inhibitory peptide targeted to macrophage andamelioratedatherosclerosis. J. Am. Coll. Cardiol. 2018, 72, 67–68. [Google Scholar] [CrossRef]
- Kang, X.J.; Wang, H.Y.; Peng, H.G.; Chen, B.F.; Zhang, W.Y.; Wu, A.H.; Xu, Q.; Huang, Y.Z. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol. Sin. 2017, 38, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Rojekar, S.; Abadi, L.F.; Pai, R.; Prajapati, M.K.; Kulkarni, S.; Vavia, P.R. Mannose-Anchored nano-selenium loaded nanostructured lipid carriers of etravirine for delivery to HIV reservoirs. AAPS PharmSciTech 2022, 23, 230. [Google Scholar] [CrossRef]
- Liu, J.; Mai, L.; Tan, A.; Du, Y.; Luo, J.; Xu, S.; Rao, S.; Chen, S.; Su, G.; Chen, T.; et al. Self-Enhancing drug pair-driven selenium nanotherapeutics reverses microglial pyroptosis through NLRP3/caspase-1 pathway and neuronal apoptosis for treatment of spinal cord injury. Adv. Funct. Mater. 2025, 35, 2503505. [Google Scholar] [CrossRef]
- Hu, F.; Sun, D.S.; Wang, K.L.; Shang, D.Y. Nanomedicine of plant origin for the treatment of metabolic disorders. Front. Bioeng. Biotechnol. 2021, 9, 811917. [Google Scholar] [CrossRef]
- Bi, J.; Wang, H.; Luo, H.; Qian, C.; Zhou, J.; Li, X.; Qi, X.; Shen, S.; Cao, J. Self-healing hydrogels loaded with selenium nanoparticles/chitosan/cellulose nanofibers as carriers of mesenchymal stem cells for diabetic wound healing. Int. J. Biol. Macromol. 2025, 322, 146905. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, C.; Song, J.; Fan, X. Pilot study of toxicological safety evaluation in acute and 28-day studies of selenium nanoparticles decorated by polysaccharides from Sargassum fusiforme in Kunming mice. J. Food Sci. 2022, 87, 4264–4279. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraj, C.; Radhakrishnan, S.; Ramachandran, R.; Ramesh, T.; Kim, B.-S.; Yun, S.-I. In vitro toxicological assessment and biosensing potential of bioinspired chitosan nanoparticles, selenium nanoparticles, chitosan/selenium nanocomposites, silver nanoparticles and chitosan/silver nanocomposites. Chemosphere 2022, 301, 134790. [Google Scholar] [CrossRef] [PubMed]



| Synthesis Methods | Synthesis Condition | Size (nm) | Shape | Cancer/ Normal Cell Lines | Anticarcinogenic Action | Reference |
|---|---|---|---|---|---|---|
| Biosynthesis method | Streptomyces parvulus MAR4, Na2SeO4, chitosan | ~476 | Spherical | HepG2, Caki-1 (HTB-46)/WI-38 | Nanoconjugates with a large number of positive charges can interact electrostatically with negatively charged cell membranes, leading to cellular damage. | [71] |
| Biosynthesis method | Bacillus licheniformis JS2, Na2SeO3 | ~110 | Spherical | PC-3 | ROS generation and mitochondrial damage, the activation of TNF and IRF1 genes. | [72] |
| Biosynthesis method | Kaempferia parviflora (black ginger) root extract, Na2SeO3 | ~214 | Spherical | AGS cells/HaCaT | PI3K/Akt/mTOR pathway | [73] |
| Chemical method | Vc, Na2SeO3, hyaluronic acid, Doxorubicin | ~78 | Spherical | HeLa | The induction of apoptosis in HeLa cells via the Bcl-2 signaling pathway. This process involves downregulating the expression of the Ki67 protein, and the caspase-3 apoptosis-related signaling pathway is activated to further promote cell apoptosis. | [74] |
| Chemical method | Glucose, Na2SeO3 | ~280 | Spherical | HepG2, MCF7, A549, Neuro-2a, A375/HK-2 | Caspase-8 (Fas/TNF—mediated), caspase-9 (mitochondria mediated) and caspase-3 are dose-dependent, and activated by SeNPs, leading to apoptosis of HepG2 cells. The decline of mitochondrial membrane potential (ΔΨm). | [75] |
| Biosynthesis method | Vc, Na2SeO3, Gracilaria lemaneiformis polysaccharide | ~100 | Spherical | U87 and C6 | The dose-dependent activation of caspase-3, caspase-8, and caspase-9 indicates that both the death receptor-mediated and mitochondria-mediated pathways play roles in SeNPs-induced apoptosis. MAPKs and AKT signal pathways. | [76] |
| Biosynthesis method | Trifolium cherleri aerial parts, Na2SeO3, niosome | ~178 | Spherical | MCF-7, T47D and MDAMB231/HFF | Niosome-loaded SeNPs are capable of upregulating the expression levels of apoptosis-related genes, including Bax, caspase-3, and caspase-9. Conversely, the expression of the antiapoptotic gene Bcl-2 is downregulated. | [77] |
| Chemical method | PEG200, Na2SeO3, crocin | ~31 | Spherical | A549 | SeNPs demonstrated increased cytotoxic effects on A549 cells by inducing apoptosis through a mitochondria-mediated pathway. Additionally, these nanoparticles effectively inhibited tumor growth in an in vivo nude mice model. | [78] |
| Chemical method | Vc, Na2SeO3, transferrin, chitosan | ~130 | Spherical | A375, HepG2 and MCF-7/HUVEC | The internalization of SeNPs induces excessive production of intracellular ROS, thereby activating the p53 and MAPK signaling pathways, which subsequently promote cell apoptosis. In in vivo studies using a nude mice model, SeNPs have been shown to significantly inhibit tumor growth by inducing apoptosis mediated through the p53 pathway. | [79] |
| Biosynthesis method | Morinda officinalis polysaccharide, Vc, Na2SeO3 | ~67 | Spherical | HepG2, MCF-7, AGS, PC9 and HCT8 | Inducing cell circle G0/G1 phase arrest. | [80] |
| Chemical method | Grateloupia livida polysaccharides, Vc, Na2SeO3 | ~116 | Spherical | A549 | S phase cell cycle arrest regulated the anti-proliferation effect of SeNPs. The decrease in mitochondrial membrane potential induced A549 cell apoptosis. | [81] |
| Biosynthesis method | Protamine sulfate, Vc, Na2SeO3 | ~130 | Spherical | HepG2 | The proliferation of HepG2 cells was inhibited by blocking S phase, up-regulating ROS level, and inducing apoptosis. | [82] |
| Synthesis Methods | Synthesis Condition | Size (nm) | Shape | Antioxidant Action | Reference |
|---|---|---|---|---|---|
| Biosynthesis method | Mori fructus, polysaccharides, Na2SeO3, Vc, | ~80 | Spherical | Reducing ROS levels and enhancing antioxidant enzyme activity. | [87] |
| Biosynthesis method | Moringa oleifera Lam, Na2SeO3, Vc, | ~166 | Spherical | SeNPs could upregulate the activity of antioxidant enzymes in HepG2 cells, suppress H2O2-induced ROS generation, and alleviate oxidative damage to cell membranes. | [88] |
| Chemical method | Hyaluronic acid, Na2SeO3, Vc | ~82 | Spherical | The direct elimination of ROS and effective alleviation of oxidative stress through selenite-induced selenoprotein synthesis have been accomplished, along with optimization of mitochondrial-related oxidative phosphorylation pathways. | [13] |
| Chemical method | Chlorogenic acid, human serum albumin, Na2SeO3, Vc | ~35 | Spherical | SeNPs have scavenged multiple ROS and downregulated the expression of Mapk8ip1 (MAPK pathway) and Itga2b (PI3K-Akt pathway). | [89] |
| Chemical method | Polyvinyl alcohol or chitosan, Na2SeO3, Vc | ~83 ~63 | Spherical | SeNPs have catalyzed NO generation and consumed ROS. | [90] |
| Chemical method | Selenium dioxide, chitosan, Vc | ~50 | Spherical | The direct scavenging of ROS and upregulation of antioxidant enzyme activities have been achieved, thereby alleviating oxidative damage caused by arsenic stress. | [91] |
| Chemical method | Chitosan, Na2SeO3, Vc | ~95 | Spherical | Enhanced selenium retention and glutathione peroxidase levels have been achieved, along with reduced lipid peroxidation. | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, L.; Li, L.; Sun, X.; Cheng, S.; He, J. Recent Advances Towards Selenium Nanoparticles: Synthetic Methods, Functional Mechanisms, and Biological Applications. Foods 2025, 14, 3640. https://doi.org/10.3390/foods14213640
Geng L, Li L, Sun X, Cheng S, He J. Recent Advances Towards Selenium Nanoparticles: Synthetic Methods, Functional Mechanisms, and Biological Applications. Foods. 2025; 14(21):3640. https://doi.org/10.3390/foods14213640
Chicago/Turabian StyleGeng, Lulu, Linling Li, Xuening Sun, Shuiyuan Cheng, and Jiangling He. 2025. "Recent Advances Towards Selenium Nanoparticles: Synthetic Methods, Functional Mechanisms, and Biological Applications" Foods 14, no. 21: 3640. https://doi.org/10.3390/foods14213640
APA StyleGeng, L., Li, L., Sun, X., Cheng, S., & He, J. (2025). Recent Advances Towards Selenium Nanoparticles: Synthetic Methods, Functional Mechanisms, and Biological Applications. Foods, 14(21), 3640. https://doi.org/10.3390/foods14213640

