Effect of Non-Thermal Atmospheric Cold Plasma on Surface Microbial Inactivation and Quality Properties of Fresh Herbs and Spices
Abstract
1. Introduction
2. Materials and Methods
2.1. Atmospheric Cold Plasma System and Its Application
2.2. Microbiological Analyses
2.2.1. Preparation of Bacterial Strains, Stock Cultures, and Growth
2.2.2. Sample Inoculation
2.2.3. Determination of P. syringae spp., and E. coli 25922 Counts
2.2.4. Determination of Total Mesophilic Aerophilic Bacteria Count
2.3. Physicochemical Analysis
2.3.1. Weight Loss (%), Color, pH, TAE, Anthocyanin, Flavonoid, Chlorophyll, Total Phenol, Antioxidant, Moisture (%), and Aw
x = [a + (1.75 × L*)]/[(5.645 × L*) + (a* −(3.012 × b*)]
2.3.2. Total Phenolic and Antioxidant Content
2.3.3. Total Chlorophyll Content
2.3.4. Total Flavonoid Content
2.3.5. Total Anthocyanin Amount
2.4. Determination of Essential Oil Composition
2.5. Storage Study
2.6. Scanning Electron Microscope (SEM)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Inactivation in Total Mesophilic Aerobic Bacteria (TMAB)
3.2. Inactivation in Pseudomonas syringae spp.
3.3. Inactivation in Escherichia coli 25922
3.4. Assessment of Weight Loss, Aw, pH, TA, and Moisture
3.5. Color Changes
3.6. Assessment of Total Phenol, Antioxidant, Anthocyanin, Chlorophyll, and Flavonoid Content
3.7. Determination of Essential Oil Components
3.8. Storage Study
3.9. Electron Microscopy
4. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). FAOSTAT Statistical Database. Crop Production Database. 2018. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 5 October 2025).
- Schnabel, U.; Niquet, R.; Schlüter, O.; Gniffke, H.; Ehlbeck, J. Decontamination and sensory properties of microbiologically contaminated fresh fruits and vegetables by microwave plasma processed air (PPA). J. Food Process. Preserv. 2015, 39, 653–662. [Google Scholar] [CrossRef]
- Goodburn, C.; Wallace, C.A. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control 2013, 32, 418–427. [Google Scholar] [CrossRef]
- Mayookha, V.P.; Pandiselvam, R.; Kothakota, A.; Ishwarya, S.P.; Khanashyam, A.C.; Kutlu, N.; Rifna, E.; Kumar, M.; Panesar, P.S.; El-Maksoud, A.A.A. Ozone and cold plasma: Emerging oxidation technologies for inactivation of enzymes in fruits, vegetables, and fruit juices. Food Control 2023, 144, 109399. [Google Scholar] [CrossRef]
- Trevisani, M.; Berardinelli, A.; Cevoli, C.; Cecchini, M.; Ragni, L.; Pasquali, F. Effects of sanitizing treatments with atmospheric cold plasma, SDS and lactic acid on verotoxin-producing Escherichia coli and Listeria monocytogenes in red chicory (radicchio). Food Control 2017, 78, 138–143. [Google Scholar] [CrossRef]
- Hertwig, C.; Reineke, K.; Ehlbeck, J.; Erdoğdu, B.; Rauh, C.; Schlüter, O. Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. J. Food Eng. 2015, 167, 12–17. [Google Scholar] [CrossRef]
- El-Eryan, E.E.; Tarabih, M.E. Extending storability of Egyptian Banzahir lime fruits by aqueous ozone technology with edible coating. J. Environ. Sci. Technol. 2020, 13, 9–21. [Google Scholar] [CrossRef]
- Pinto, L.; Baruzzi, F.; Cocolin, L.; Malfeito-Ferreira, M. Emerging technologies to control Brettanomyces spp. in wine: Recent advances and future trends. Trends Food Sci. Technol. 2020, 99, 88–100. [Google Scholar] [CrossRef]
- Fernández, A.; Noriega, E.; Thompson, A. Inactivation of Salmonella enterica serovar typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol. 2013, 33, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Oh, J.K.; Cisneros-Zevallos, L.; Akbulut, M. Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces. J. Food Eng. 2013, 119, 425–432. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Boyd, G.; Sites, J.E.; Uknalis, J.; Fan, X. In-package inhibition of E. coli O157: H7 on bulk Romaine lettuce using cold plasma. Food Microbiol. 2017, 65, 1–6. [Google Scholar] [CrossRef]
- Umair, M.; Jabbar, S.; Ayub, Z.; Muhammad Aadil, R.; Abid, M.; Zhang, J.; Liqing, Z. Recent advances in plasma technology: Influence of atmospheric cold plasma on spore inactivation. Food Rev. Int. 2022, 38 (Suppl. S1), 789–811. [Google Scholar] [CrossRef]
- Moiseev, T.; Misra, N.N.; Patil, S.; Cullen, P.J.; Bourke, P.; Keener, K.M.; Mosnier, J.P. Post-discharge gas composition of a large-gap DBD in humid air by UV–Vis absorption spectroscopy. Plasma Sources Sci. Technol. 2024, 23, 065033. [Google Scholar] [CrossRef]
- Niemira, B.A. Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 2012, 3, 125–142. [Google Scholar] [CrossRef]
- Özdemir, E.; Başaran, P.; Kartal, S.; Akan, T. Cold plasma application to fresh green leafy vegetables: Impact on microbiology and product quality. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4484–4515. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.J.; Song, A.Y.; Min, S.C. Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma. Int. J. Food Microbiol. 2017, 249, 66–71. [Google Scholar] [CrossRef]
- Shelar, A.; Singh, A.V.; Dietrich, P.; Maharjan, R.S.; Thissen, A.; Didwal, P.N.; Shinde, M.; Laux, P.; Luch, A.; Mathe, V.; et al. Emerging cold plasma treatment and machine learning prospects for seed priming: A step towards sustainable food production. RSC Adv. 2022, 12, 10467–10488. [Google Scholar] [CrossRef]
- Rossow, M.; Ludewig, M.; Braun, P.G. Effect of cold atmospheric pressure plasma treatment on inactivation of Campylobacter jejuni on chicken skin and breast fillet. LWT—Food Sci. Technol. 2018, 91, 265–270. [Google Scholar] [CrossRef]
- Miraei Ashtiani, S.-H.; Aghkhani, M.H.; Feizy, J.; Martynenko, A. Cold plasma pretreatment improves the quality and nutritional value of ultrasound-assisted convective drying: The case of goldenberry. Dry Technol. 2022, 40, 1639–1657. [Google Scholar] [CrossRef]
- Critzer, F.J.; Kelly-Wintenberg, K.; South, S.L.; Golden, D.A. Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. J. Food Prot. 2007, 70, 2290–2296. [Google Scholar] [CrossRef]
- Sudarsan, A.; Keener, K.M. Inactivation of Salmonella enterica serovars and Escherichia coli O157: H7 surrogate from baby spinach leaves using high voltage atmospheric cold plasma (HVACP). LWT 2022, 155, 112903. [Google Scholar] [CrossRef]
- Cserhalmi, Z.; Sass-Kiss, A.; Tóth-Markus, M.; Lechner, N. Study of pulsed electric field treated citrus juices. Innov. Food Sci. Emerg. Technol. 2006, 7, 49–54. [Google Scholar] [CrossRef]
- Francis, F.J.; Clydesdale, F.M. Food Colorimetry: Theory and Applications; The AVI Publishing Company: Westport, CT, USA, 1975; p. 477. [Google Scholar]
- Cote, S.; Rodoni, L.; Miceli, E.; Concellón, A.; Civello, P.M.; Vicente, A.R. Effect of radiation intensity on the outcome of postharvest UV-C treatments. Postharvest Biol. Technol. 2013, 83, 83–89. [Google Scholar] [CrossRef]
- Xiang, Q.; Fan, L.; Zhang, R.; Ma, Y.; Liu, S.; Bai, Y. Effect of UVC light-emitting diodes on apple juice: Inactivation of Zygosaccharomyces rouxii and determination of quality. Food Control 2020, 111, 107082. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.S.; Chen, F.; Wu, J.H.; Liao, X.J.; Wang, Z.F. Stability and colour characteristics of PEF-treated cyanidin-3-glucoside during storage. Food Chem. 2008, 106, 669–676. [Google Scholar] [CrossRef]
- Xiao, Q.; Bai, X.; He, Y. Rapid screen of the color and water content of fresh-cut potato tuber slices using hyperspectral imaging coupled with multivariate analysis. Foods 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Vijay, P.; Singh, A.; Pandey, R. Determination of titrable acidity (TA). Post-Harvest. Physiol. Fruits Flowers 2010, 44, 1–103. [Google Scholar]
- Toor, R.K.; Savage, G.P. Changes in major antioxidant components of tomatoes during post-harvest storage. Food Chem. 2006, 99, 724–727. [Google Scholar] [CrossRef]
- Capanoglu, E.; Beekwilder, J.; Boyacıoglu, D.; Hall, R.; De Vos, R. Changes in antioxidant and metabolite profiles during production of tomato paste. J. Agric. Food Chem. 2008, 56, 964–973. [Google Scholar] [CrossRef]
- Rajalakshmi, K.; Banu, N. Extraction and estimation of chlorophyll from medicinal plants. Int. J. Sci. Res. 2015, 4, 209–212. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- AOAC. Volatile Oil in Spices. AOAC Official Method 962.17, 17th ed.; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- Babushok, V.I.P.; Linstrom, J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Wemlinger, E.; Pedrow, P.; Barbosa-Cánovas, G.; Garcia-Perez, M. Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce. Food Control 2013, 34, 149–157. [Google Scholar] [CrossRef]
- Dimitrakellis, P.; Giannoglou, M.; Zeniou, A.; Gogolides, E.; Katsaros, G. Food container employing a cold atmospheric plasma source for prolonged preservation of plant and animal origin food products. MethodsX 2021, 8, 101177. [Google Scholar] [CrossRef]
- Giannoglou, M.; Stergiou, P.; Dimitrakellis, P.; Gogolides, E.; Stoforos, N.G.; Katsaros, G. Effect of cold atmospheric plasma processing on quality and shelf-life of ready-to-eat rocket leafy salad. Innov. Food Sci. Emerg. Technol. 2020, 66, 102502. [Google Scholar] [CrossRef]
- Patange, A.; Lu, P.; Boehm, D.; Cullen, P.J.; Bourke, P. Efficacy of cold plasma functionalised water for improving microbiological safety of fresh produce and wash water recycling. Food Microbiol. 2019, 84, 103226. [Google Scholar] [CrossRef] [PubMed]
- Patange, A.; Boehm, D.; Ziuzina, D.; Cullen, P.J.; Gilmore, B.; Bourke, P. High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. Int. J. Food Microbiol. 2019, 293, 137–145. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Amore, G.; Beloeil, P.A.; Boelaert, F.; Fierro, R.G.; Rizzi, V.; Rossi, M.; Stoicescu, A.V. Guidance for reporting 2024 data on zoonoses, foodborne outbreaks and antimicrobial resistance. EFSA 2025, 22, 9239E. [Google Scholar]
- Ziuzina, D.; Misra, N.N.; Han, L.; Cullen, P.J.; Moiseev, T.; Mosnier, J.P.; Keener, K.; Gaston, E.; Vilaró, I.; Bourke, P. Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innov. Food Sci. Emerg. Technol. 2020, 59, 102229. [Google Scholar] [CrossRef]
- Shah, U.; Ranieri, P.; Zhou, Y.; Schauer, C.L.; Miller, V.; Fridman, G.; Sekhon, J.K. Effects of cold plasma treatments on spot-inoculated Escherichia coli O157: H7 and quality of baby kale (Brassica oleracea) leaves. Innov. Food Sci. Emerg. Technol. 2019, 57, 102104. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Niemira, B.A.; Sites, J.E.; Boyd, G.; Lacombe, A. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157: H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. Int. J. Food Microbiol. 2016, 237, 114–120. [Google Scholar] [CrossRef]
- Harikrishna, S.; Anil, P.P.; Shams, R.; Dash, K.K. Cold plasma as an emerging nonthermal technology for food processing: A comprehensive review. J. Agric. Food Res. 2023, 14, 100747. [Google Scholar] [CrossRef]
- Flores-López, M.L.; Vieira, J.M.; Rocha, C.M.; Lagarón, J.M.; Cerqueira, M.A.; Jasso de Rodríguez, D.; Vicente, A.A. Postharvest Quality Improvement of Tomato (Solanum lycopersicum L.) Fruit Using a Nanomultilayer Coating Containing Aloe vera. Foods 2023, 13, 83. [Google Scholar] [CrossRef]
- Song, A.Y.; Oh, Y.J.; Kim, J.E.; Song, K.B.; Oh, D.H.; Min, S.C. Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Sci. Biotechnol. 2015, 24, 1717–1724. [Google Scholar] [CrossRef]
- Wang, Q.; Pal, R.K.; Yen, H.-W.; Naik, S.P.; Orzeszko, M.K.; Mazzeo, A.; Salvi, D. Cold plasma from flexible and conformable paper-based electrodes for fresh produce sanitation: Evaluation of microbial inactivation and quality changes. Food Control 2022, 137, 108915. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Wan, Z.; Keener, K.M. Effects of cold plasma on food quality: A review. Foods 2018, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.N.; Keener, K.M.; Bourke, P.; Mosnier, J.P.; Cullen, P.J. In-package atmospheric pressure cold plasma treatment of cherry tomatoes. J. Biosci. Bioeng. 2014, 118, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Sobhan, A.; Sher, M.; Muthukumarappan, K.; Zhou, R.; Wei, L. Cold plasma treatment for E. coli inactivation and characterization for fresh food safety. J. Agric. Food Res. 2024, 18, 101403. [Google Scholar] [CrossRef]
- Pohl, P.; Dzimitrowicz, A.; Cyganowski, P.; Jamroz, P. Do we need cold plasma treated fruit and vegetable juices? A case study of positive and negative changes occurred in these daily beverages. Food Chem. 2022, 375, 131831. [Google Scholar] [CrossRef]
- Xiang, Q.; Liu, X.; Li, J.; Liu, S.; Zhang, H.; Bai, Y. Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice. Food Chem. 2018, 254, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Mahnot, N.K.; Mahanta, C.L.; Keener, K.M.; Misra, N.N. Strategy to achieve a 5-log Salmonella inactivation in tender coconut water using high voltage atmospheric cold plasma (HVACP). Food Chem. 2019, 284, 303–311. [Google Scholar] [CrossRef]
- Cui, H.; Ma, C.; Lin, L. Synergetic antibacterial efficacy of H7 biofilms on lettuce. Food Control 2016, 66, 8–16. [Google Scholar] [CrossRef]
- Klockow, P.A.; Keener, K.M. Quality and safety assessment of packaged spinach treated with a novel atmospheric, non-equilibrium plasma system. In Proceedings of the 2008 ASABE Annual International Meeting, Providence, RI, USA, 29 June–2 July 2008. [Google Scholar] [CrossRef]
- Oner, M.E.; Subasi, B.G.; Ozkan, G.; Esatbeyoglu, T.; Capanoglu, E. Efficacy of cold plasma technology on the constituents of plant-based food products: Principles, current applications, and future potentials. Food Res. Int. 2023, 172, 113079. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef]
- Grzegorzewski, F.; Rohn, S.; Kroh, L.W.; Geyer, M.; Schlüter, O. Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low-pressure oxy- gen plasma. Food Chem. 2010, 122, 1145–1152. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Tiwari, U.; Ezhilarasi, P.N.; Rajauria, G. Application of cold plasma on food matrices: A review on current and future prospects. J. Food Process. Preserv. 2021, 45, e15070. [Google Scholar] [CrossRef]
- Jurić, S.; Jurić, M.; Król-Kilińska, Z.; Vlahovicek-Kahlina, K.; Vinceković, M.; Dragović-Uzelac, V.; Donsì, F. Sources, stability, encapsulation, and application of natural pigments in foods. Food Rev. Int. 2022, 38, 1735–1790. [Google Scholar] [CrossRef]
- Durek, J.; Fröhling, A.; Bußler, S.; Hase, A.; Ehlbeck, J.; Schlüter, O.K. Pilot-scale generation of plasma processed air and its influence on microbial count, microbial diversity, and selected quality parameters of dried herbs. Innov. Food Sci. Emerg. Technol. 2022, 75, 102890. [Google Scholar] [CrossRef]
- Emanuel, C.E.; Ellison, B.; Banks, C.E. Spice up your life: Screening the illegal components of ‘Spice’ herbal products. Anal. Methods 2010, 2, 614–616. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Understanding the role of plasma technology in food industry. Food Bioprocess Technol. 2016, 5, 734–750. [Google Scholar] [CrossRef]
- Xi, J.; Wang, Y.; Zhou, X.; Wei, S.; Zhang, D. Cold plasma pretreatment technology for enhancing the extraction of bioactive ingredients from plant materials: A review. Ind. Crops Prod. 2024, 209, 117963. [Google Scholar] [CrossRef]
- Conde-Hernández, L.A.; Espinosa-Victoria, J.R.; Trejo, A.; Guerrero-Beltrán, J.Á. CO2-supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis). J. Food Eng. 2017, 200, 81–86. [Google Scholar] [CrossRef]
- Ebadi, M.T.; Abbasi, S.; Harouni, A.; Sefidkon, F. Effect of cold plasma on essential oil content and composition of lemon verbena. Food Sci. Nutr. 2019, 7, 1166–1171. [Google Scholar] [CrossRef] [PubMed]
- Kodama, S.; Thawatchaipracha, B.; Sekiguchi, H. Enhancement of essential oil extraction for steam distillation by DBD surface treatment. Plasma Process. Polym. 2014, 11, 126–132. [Google Scholar] [CrossRef]
- Bußler, S.; Ehlbeck, J.; Schlüter, O.K. Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innov. Food Sci. Emerg. Technol. 2017, 40, 78–86. [Google Scholar] [CrossRef]
- Surowsky, B.; Fischer, A.; Schlueter, O.; Knorr, D. Cold plasma effects on enzyme activity in a model food system. Innov. Food Sci. Emerg. Technol. 2013, 19, 146–152. [Google Scholar] [CrossRef]
- Keshavarzi, M.; Najafi, G.; Ahmadi Gavlighi, H.; Seyfi, P.; Ghomi, H. Enhancement of polyphenolic content extraction rate with maximal antioxidant activity from green tea leaves by cold plasma. J. Food Sci. 2020, 85, 3415–3422. [Google Scholar] [CrossRef]
- Bao, Y.; Reddivari, L.; Huang, J.Y. Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. LWT 2020, 133, 109970. [Google Scholar] [CrossRef]
- Karunanithi, S.; Guha, P.; Srivastav, P.P. Cold plasma-assisted microwave pretreatment on essential oil extraction from betel leaves: Process optimization and its quality. Food Bioprocess Technol. 2023, 16, 603–626. [Google Scholar] [CrossRef]
- Murakonda, S.; Dwivedi, M. Combined use of pulse ultrasound–assisted extraction with atmospheric cold plasma: Extraction and characterization of bioactive compounds from wood apple shell (Limonia acidissima). Biomass Convers. Biorefinery 2022, 14, 28233–28251. [Google Scholar] [CrossRef]
- Ahmadian, S.; Kenari, R.E.; Amiri, Z.R.; Sohbatzadeh, F.; Khodaparast, M.H.H. Effect of ultrasound-assisted cold plasma pretreatment on cell wall polysaccharides distribution and extraction of phenolic compounds from hyssop (Hyssopus officinalis L.). Int. J. Biol. Macromol. 2023, 233, 123557. [Google Scholar] [CrossRef] [PubMed]
- Birania, S.; Attkan, A.K.; Kumar, S.; Kumar, N.; Singh, V.K. Cold plasma in food processing and preservation: A review. J. Food Process Eng. 2022, 45, e14110. [Google Scholar] [CrossRef]
- Melotti, L.; Martinello, T.; Perazzi, A.; Martines, E.; Zuin, M.; Modenese, D.; Cordaro, L.; Ferro, S.; Maccatrozzo, L.; Iacopetti, I.; et al. Could cold plasma act synergistically with allogeneic mesenchymal stem cells to improve wound skin regeneration in a large size animal model? Res. Vet. Sci. 2021, 136, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S. Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends Food Sci. Technol. 2020, 102, 30–36. [Google Scholar] [CrossRef]







| Analysis | Plasma Treatment Time (min) | Samples | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Rosemary | Bay Leaf | Dill | Basil | Thyme | Parsley | Mint | Stevia | ||
| Moisture % | 0 (Control) | 79.68 ± 0.09 a | 44.69 ± 2.11 b | 85.61 ± 0.37 a | 78.37 ± 0.13 a | 77.05 ± 0.58 a | 84.59 ± 0.32 a | 84.98 ± 0.22 a | 79.77 ± 0.63 a |
| 1 | 74.45 ± 0.45 b | 46.97 ± 2.69 a | 86.02 ± 0.16 a | 77.68 ± 0.21 a | 73.81 ± 0.18 b | 85.62 ± 0.35 a | 84.39 ± 0.68 a | 80.01 ± 0.18 a | |
| 3 | 75.62 ± 0.31 b | 45.39 ± 1.78 b | 85.47 ± 0.69 a | 78.21 ± 0.40 a | 75.19 ± 0.28 b | 86.05 ± 1.17 a | 83.84 ± 0.08 a | 79.52 ± 0.48 a | |
| aw | 0 (Control) | 90.5 ± 0.71 a | 94.5 ± 2.12 a | 94.0 ± 1.41 a | 97.0 ± 1.41 a | 92.0 ± 1.41 a | 95.0 ± 0.00 a | 97.5 ± 0.71 a | 92.0 ± 1.41 a |
| 1 | 91.5 ± 0.71 a | 95.5 ± 0.71 a | 94.0 ± 0.00 a | 96.0 ± 1.41 a | 91.5 ± 0.71 a | 94.0 ± 1.41 a | 96.5 ± 0.71 a | 92.5 ± 0.71 a | |
| 3 | 89.5 ± 0.71 a | 96.5 ± 0.71 a | 92.5 ± 0.71 a | 96.5 ± 0.71 a | 92.5 ± 0.71 a | 95.0 ± 1.41 a | 97.0 ± 0.00 a | 93.5 ± 0.71 a | |
| pH | 0 (Control) | 6.26 ± 0.03 a | 6.84 ± 0.03 a | 6.09 ± 0.02 a | 6.19 ± 0.02 a | 6.48 ± 0.09 a | 6.31 ± 0.03 a | 5.48 ± 0.08 a | 6.06 ± 0.01 a |
| 1 | 6.20 ± 0.07 ab | 6.72 ± 0.03 b | 5.99 ± 0.01 b | 6.13 ± 0.01 a | 6.24 ± 0.11 b | 6.13 ± 0.05 b | 5.47 ± 0.03 b | 5.98 ± 0.01 b | |
| 3 | 6.06 ± 0.08 b | 6.60 ± 0.01 c | 5.82 ± 0.07 c | 6.01 ± 0.07 b | 5.90 ± 0.03 c | 6.04 ± 0.03 c | 5.21 ± 0.02 b | 5.78 ± 0.02 c | |
| Total Acidity | 0 (Control) | 1.60 ± 0.08 ab | 1.57 ± 0.04 ab | 1.06 ± 0.05 a | 1.17 ± 0.0 a | 2.13 ± 0.16 a | 0.74 ± 0.09 b | 0.99 ± 0.05 a | 1.35 ± 0.05 a |
| 1 | 1.89 ± 0.04 a | 1.43 ± 0.63 b | 0.92 ± 0.02 a | 0.96 ± 0.04 b | 2.06 ± 0.05 a | 1.08 ± 0.02 a | 0.91 ± 0.11 a | 1.16 ± 0.09 a | |
| 3 | 1.48 ± 0.13 b | 1.65 ± 0.21 a | 0.91 ± 0.11 a | 1.04 ± 0.03 ab | 2.16 ± 0.03 a | 0.88 ± 0.03 ab | 1.12 ± 0.09 a | 1.39 ± 0.07 a | |
| TPC (mg GAE/g) | 0 (Control) | 322.82 ± 15.02 a | 404.60 ± 18.59 a | 219.04 ± 16.11 a | 521.10 ± 10.93 a | 523.85 ± 13.03 a | 574.02 ± 21.45 a | 380.89 ± 17.75 a | 644.12 ± 24.15 a |
| 1 | 308.04 ± 6.27 a | 413.88 ± 15.00 a | 213.88 ± 9.30 a | 531.07 ± 5.19 a | 542.06 ± 10.72 a | 579.18 ± 11.34 a | 386.73 ± 18.15 a | 679.18 ± 14.89 a | |
| 3 | 314.23 ± 8.99 a | 416.63 ± 18.17 a | 233.47 ± 10.38 a | 548.25 ± 32.59 a | 598.08 ± 16.67 a | 582.27 ± 11.89 a | 383.30 ± 16.32 a | 639.31 ± 13.05 a | |
| TAC (umol trolox/g) | 0 (Control) | 4.16 ± 0.06 a | 7.19 ± 0.26 a | 4.84 ± 0.06 a | 6.68 ± 0.02 a | 6.88 ± 0.09 a | 3.19 ± 0.31 a | 5.32 ± 0.03 a | 3.56 ± 0.02 a |
| 1 | 4.15 ± 0.03 a | 7.15 ± 0.07 a | 4.79 ± 0.04 a | 6.73 ± 0.07 a | 7.01 ± 0.04 a | 3.30 ± 0.19 a | 5.41 ± 0.14 a | 3.57 ± 0.04 a | |
| 3 | 4.21 ± 0.03 a | 7.12 ± 0.05 a | 4.79 ± 0.05 a | 6.78 ± 0.02 a | 7.06 ± 0.11 a | 3.41 ± 0.05 a | 5.32 ± 0.01 a | 3.57 ± 0.03 a | |
| Chl a | 0 (Control) | 7.54 ± 0.26 a | 8.81 ± 0.30 b | 18.36 ± 0.14 a | 11.63 ± 0.35 b | 14.18 ± 0.34 a | 14.67 ± 0.91 c | 11.96 ± 0.11 c | 15.30 ± 0.27 b |
| 1 | 7.52 ± 0.23 a | 8.79 ± 0.30 b | 16.24 ± 0.26 b | 11.72 ± 0.70 b | 14.62 ± 0.27 a | 17.61 ± 0.31 b | 16.02 ± 0.47 a | 13.55 ± 0.38 c | |
| 3 | 6.19 ± 0.34 b | 10.77 ± 0.91 a | 15.47 ± 0.26 c | 14.11 ± 0.56 a | 15.47 ± 0.99 b | 20.71 ± 0.19 a | 13.23 ± 0.42 b | 21.20 ± 0.74 a | |
| Chl b | 0 (Control) | 3.15 ± 0.15 b | 2.27 ± 0.38 b | 6.72 ± 0.81 a | 6.01 ± 1.27 a | 6.20 ± 1.08 a | 5.36 ± 0.26 c | 4.58 ± 0.05 c | 6.05 ± 0.13 b |
| 1 | 3.19 ± 0.04 b | 3.21 ± 0.11 a | 5.84 ± 0.07 b | 5.78 ± 0.87 a | 5.43 ± 0.11 a | 6.14 ± 0.11 b | 5.78 ± 0.17 a | 5.48 ± 0.17 b | |
| 3 | 3.68 ± 0.54 a | 3.83 ± 0.25 a | 5.62 ± 0.07 c | 5.08 ± 0.21 a | 5.79 ± 0.37 a | 7.68 ± 0.09 a | 5.09 ± 0.10 b | 2.71 ± 0.39 a | |
| Total Chl (a + b) | 0 (Control) | 10.69 ± 0.34 ab | 11.07 ± 0.08 b | 25.08 ± 0.22 a | 17.64 ± 0.92 a | 20.39 ± 1.17 b | 20.03 ± 1.18 c | 16.55 ± 0.16 c | 21.35 ± 0.40 b |
| 1 | 10.71 ± 0.27 a | 12.10 ± 0.41 b | 22.08 ± 0.33 b | 17.50 ± 0.42 a | 20.05 ± 0.38 b | 23.75 ± 0.42 b | 21.80 ± 0.63 a | 19.03 ± 0.54 c | |
| 3 | 9.87 ± 0.39 b | 14.59 ± 1.15 a | 21.09 ± 0.33 c | 19.18 ± 0.77 b | 21.26 ± 1.36 a | 28.38 ± 0.26 a | 18.32 ± 0.51 b | 23.91 ± 1.13 a | |
| TAA (mg cyanidin 3-glycoside/100 g) | 0 (Control) | 13.23 ± 1.71 a | 19.91 ± 0.90 a | 16.50 ± 1.22 a | 10.55 ± 1.80 a | 21.31 ± 0.31 a | 10.89 ± 1.29 a | 16.37 ± 1.48 a | 16.23 ± 1.71 a |
| 1 | 13.56 ± 1.10 a | 20.11 ± 0.41 a | 17.10 ± 1.10 a | 10.55 ± 2.06 a | 20.37 ± 0.76 a | 12.69 ± 2.90 a | 16.97 ± 2.58 a | 18.77 ± 0.95 a | |
| 3 | 13.69 ± 0.58 a | 21.84 ± 1.75 a | 18.57 ± 2.52 a | 11.82 ± 0.69 a | 21.78 ± 1.50 a | 13.83 ± 0.53 a | 18.50 ± 1.67 a | 20.84 ± 1.06 a | |
| TFC (mg EK/g) | 0 (Control) | 9.91 ± 0.29 a | 27.87 ± 0.38 a | 11.48 ± 0.09 a | 2.49 ± 0.03 a | 11.17 ± 0.40 a | 9.47 ± 0.27 a | 2.56 ± 0.072 a | 9.50 ± 0.04 a |
| 1 | 9.86 ± 0.04 a | 27.96 ± 1.08 a | 11.41 ± 0.58 a | 2.50 ± 0.04 a | 11.17 ± 0.34 a | 10.10 ± 0.61 a | 2.45 ± 0.04 a | 9.29 ± 0.06 a | |
| 3 | 9.78 ± 0.02 a | 28.22 ± 0.88 a | 10.92 ± 1.08 a | 2.51 ± 0.06 a | 11.25 ± 0.45 a | 9.97 ± 0.32 a | 2.46 ± 0.02 a | 9.88 ± 0.06 a | |
| L* | 0 (Control) | 45.94 ± 3.19 a | 47.09 ± 1.27 a | 38.54 ± 0.60 a | 43.02 ± 0.77 a | 38.64 ± 1.92 a | 44.03 ± 1.18 a | 35.92 ± 0.62 a | 38.44 ± 2.40 a |
| 1 | 46.41 ± 2.49 a | 46.63 ± 1.10 a | 38.74 ± 1.58 a | 42.54 ± 1.50 a | 40.45 ± 2.03 a | 43.77 ± 1.32 a | 36.94 ± 0.71 a | 38.08 ± 1.96 a | |
| 3 | 48.81 ± 2.14 a | 46.29 ± 0.88 a | 39.10 ± 0.81 a | 420.0 ± 1.73 a | 39.81 ± 1.50 a | 43.58 ± 0.65 a | 36.64 ± 1.09 a | 38.64 ± 2.36 a | |
| ΔE* | 0 (Control) | - | - | - | - | - | - | - | - |
| 1 | 0.76 | 0.71 | 0.56 | 0.54 | 2.11 | 0.39 | 1.06 | 0.71 | |
| 3 | 2.92 | 0.99 | 0.57 | 1.31 | 1.81 | 0.76 | 2.07 | 0.57 | |
| BI | 0 (Control) | - | - | - | - | - | - | - | - |
| 1 | 32.60 | 24.68 | 59.30 | 71.88 | 40.13 | 41.15 | 33.13 | 18.05 | |
| 3 | 32.16 | 22.02 | 54.51 | 72.17 | 44.56 | 42.76 | 42.77 | 18.22 | |
| H° | 0 (Control) | 55.86 | 48.10 | 55.40 | 55.53 | 56.76 | 55.14 | 51.28 | 51.76 |
| 1 | 55.22 | 49.10 | 55.27 | 55.89 | 59.10 | 55.69 | 51.30 | 49.87 | |
| 3 | 56.41 | 47.33 | 55.34 | 55.28 | 59.96 | 55.55 | 53.86 | 50.69 | |
| C* | 0 (Control) | 26.27 | 29.47 | 31.19 | 38.06 | 24.15 | 29.16 | 24.97 | 18.32 |
| 1 | 26.79 | 29.29 | 31.41 | 38.07 | 23.67 | 29.24 | 25.25 | 18.34 | |
| 3 | 26.72 | 29.89 | 31.09 | 38.89 | 24.37 | 29.73 | 26.52 | 17.91 |
| Sample | Plasma Treatment Time | |||||||
|---|---|---|---|---|---|---|---|---|
| Mint | 0 (Control) | 3 min | ||||||
| ID | Volatile components | RI | RT | AREA % | RI | RT | AREA % | LRI |
| 1 | 2-Hexenal, (E)- | 843 | 4.4 | 0.21 | - | - | - | 817–844 |
| 2 | 3-Hexen-1-ol, (Z)- | - | - | - | 845 | 4.5 | 0.60 | 829–862 |
| 3 | α-Pinene | 935 | 6.7 | 2.20 | 935 | 6.7 | 0.61 | 924–951 |
| 4 | Sabinene | 973 | 7.7 | 2.41 | 973 | 7.7 | 1.16 | 958–981 |
| 5 | β-Pinene | 978 | 7.8 | 3.96 | 978 | 7.8 | 1.34 | 962–987 |
| 6 | β-Myrcene | 988 | 8.1 | 1.78 | 988 | 8.1 | 1.18 | 975–991 |
| 7 | 3-Octanol | 996 | 8.3 | 3.81 | 996 | 8.3 | 2.52 | 981–1005 |
| 8 | α-Terpinene | 1017 | 8.7 | 0.14 | 1017 | 8.7 | 0.35 | 1001–1024 |
| 9 | Limonene | 1031 | 9.1 | 11.23 | 1031 | 9.0 | 6.34 | 1012–1038 |
| 10 | 1,8-Cineole | 1035 | 9.1 | 5.25 | 1035 | 9.1 | 4.41 | 1013–1039 |
| 11 | β-Ocimene, (Z)- | - | - | - | 1047 | 9.4 | 0.33 | 1028–1047 |
| 12 | 1,3,8-p-Menthatriene | 1059 | 9.7 | 0.28 | 1059 | 9.7 | 0.85 | 1074–1118 |
| 13 | Sabinene hydrate, trans- | 1072 | 9.9 | 0.34 | 1072 | 9.9 | 2.26 | 1070–1107 |
| 14 | Terpinolene | - | - | - | 1086 | 10.2 | 0.19 | 1064–1091 |
| 15 | Linalool acetate | 1098 | 10.5 | 0.62 | 1098 | 10.5 | 0.29 | 1234–1254 |
| 16 | p-Mentha-2,8-dien-1-ol, trans- | 1123 | 10.9 | 0.09 | - | - | - | 1122–1142 |
| 17 | Limonene oxide, trans- | 1139 | 11.2 | 0.13 | 1139 | 11.2 | 0.10 | 1126–1149 |
| 18 | Menthol | 1173 | 11.8 | 1.77 | 1174 | 11.8 | 1.62 | 1172–1182 |
| 19 | Limonen-4-ol | 1183 | 12.0 | 0.89 | 1184 | 12.0 | 3.27 | 1167–1189 |
| 20 | Dihydrocarvone, trans- | 1200 | 12.3 | 4.16 | 1199 | 12.3 | 1.48 | 1162–1206 |
| 21 | Verbenone | 1211 | 12.5 | 0.19 | - | - | - | 1190–1224 |
| 22 | Carveol, cis- | 1229 | 12.8 | 0.64 | 1222 | 12.7 | 0.43 | 1196–1224 |
| 23 | Carvone | 1257 | 13.2 | 51.25 | 1258 | 13.2 | 62.01 | 1227–1265 |
| 24 | Menthyl acetate | 1322 | 14.3 | 0.20 | 1322 | 14.3 | 0.25 | 1278–1310 |
| 25 | Elemene | 1334 | 14.4 | 0.15 | 1334 | 14.4 | 0.16 | 1418–1499 |
| 26 | Piperitenone | 1340 | 14.6 | 0.22 | - | - | - | 1329–1347 |
| 27 | Carvyl acetate, cis- | - | - | - | 1355 | 14.8 | 0.56 | 1310–1366 |
| 28 | β-Bourbonene | 1390 | 15.4 | 1.56 | 1390 | 15.4 | 1.58 | 1366–1400 |
| 29 | Caryophyllene, (Z)- | 1426 | 16.1 | 2.17 | 1425 | 16.1 | 0.70 | 1392–1426 |
| 30 | β-Cubebene | 1433 | 16.3 | 0.25 | 1433 | 16.3 | 0.37 | 1370–1560 |
| 31 | γ-Cadinene | - | - | - | 1448 | 16.6 | 0.59 | 1490–1521 |
| 32 | γ-Muurolene | 1448 | 16.6 | 0.74 | - | - | - | 1455–1494 |
| 33 | Muurola-4 (14),5-diene, cis- | - | - | - | 1466 | 17.0 | 1.02 | 1448–1478 |
| 34 | α-Humulene | 1460 | 16.9 | 0.84 | - | - | - | 1430–1466 |
| 35 | Germacrene-D | 1486 | 17.5 | 0.83 | 1487 | 17.5 | 3.53 | 1458–1491 |
| 36 | Bicyclogermacrene | - | - | - | 1502 | 17.8 | 0.37 | 1474–1501 |
| 37 | γ-Elemene | 1502 | 17.8 | 0.34 | - | - | - | 1418–1499 |
| 38 | Calamenene, cis- | 1524 | 18.3 | 0.68 | 1525 | 18.3 | 0.63 | 1492–1528 |
| 39 | Spathulenol | 1582 | 19.7 | 0.17 | - | - | - | 1562–1590 |
| 40 | Caryophyllene oxide | 1588 | 19.9 | 0.36 | - | - | - | 1563–1595 |
| 41 | Cubenol | 1619 | 20.6 | 0.14 | 1619 | 20.6 | 0.16 | 1600–1644 |
| 42 | α-Muurolol | - | - | - | 1658 | 21.6 | 0.21 | 1620–1656 |
| Rosemary | 0 (Control) | 3 min | ||||||
| ID | Volatile components | RI | RT | AREA % | RI | RT | AREA % | LRI |
| 1 | α-Thujene | 927 | 6.5 | 0.63 | 927 | 6.5 | 0.33 | 916–938 |
| 2 | α-Pinene | 935 | 6.7 | 19.64 | 935 | 6.7 | 8.34 | 924–951 |
| 3 | Camphene | 951 | 7.1 | 5.33 | 952 | 7.1 | 2.65 | 936–965 |
| 4 | β-Pinene | 978 | 7.8 | 8.56 | 978 | 7.8 | 4.66 | 962–987 |
| 5 | β-Myrcene | 988 | 8.1 | 2.07 | 988 | 8.1 | 1.35 | 975–991 |
| 6 | α-Phellandrene | 1005 | 8.5 | 0.81 | 1005 | 8.5 | 0.61 | 990–1009 |
| 7 | 3-Carene | 1008 | 8.6 | 0.94 | 1008 | 8.6 | 1.54 | 1001–1010 |
| 8 | α-Terpinene | 1017 | 8.7 | 1.43 | 1017 | 8.7 | 0.53 | 1001–1024 |
| 9 | m-Cymene | 1025 | 8.9 | 2.90 | 1025 | 9.0 | 1.41 | 998–1037 |
| 10 | Limonene | 1030 | 9.0 | 3.24 | 1030 | 9.0 | 2.35 | 1012–1038 |
| 11 | 1,8 Cineole (Eucalyptol) | 1034 | 9.1 | 11.28 | 1035 | 9.1 | 7.07 | 1013–1039 |
| 12 | Sabinene hydrate, trans- | 1072 | 9.9 | 0.38 | 1072 | 9.9 | 0.24 | 1070–1107 |
| 13 | α-Terpineol | 1086 | 10.2 | 1.11 | 1086 | 10.2 | 1.20 | 1178–1203 |
| 14 | Linalool | 1098 | 10.5 | 2.67 | 1099 | 10.5 | 5.01 | 1074–1098 |
| 15 | Nonanal | - | - | - | 1103 | 10.6 | 0.13 | 1093–1118 |
| 16 | p-Menth-2-en-1-ol, trans- | - | - | - | 1127 | 11.0 | 0.26 | 1095–1130 |
| 17 | Verbenol, cis- | 1145 | 11.3 | 0.21 | 1146 | 11.4 | 0.51 | 1110–1146 |
| 18 | Camphor | 1151 | 11.4 | 6.91 | 1152 | 11.4 | 7.28 | 1106–1153 |
| 19 | γ-Terpinene | - | - | - | 1169 | 11.8 | 0.46 | 1049–1069 |
| 20 | Borneol | 1179 | 11.9 | 1.80 | 1179 | 12.0 | 27.49 | 1152–1177 |
| 21 | Pinocamphone, cis | 1180 | 12.0 | 1.82 | 1181 | 12.0 | 2.51 | 1162–1180 |
| 22 | Terpinen-4-ol | 1183 | 12.0 | 2.83 | - | - | - | 1165–1189 |
| 23 | α-Terpinyl acetate | 1197 | 12.3 | 5.39 | 1198 | 12.3 | 5.22 | 1324–1348 |
| 24 | Verbenone | 1211 | 12.5 | 4.98 | 1213 | 12.5 | 5.16 | 1190–1224 |
| 25 | Carvotanacetone | 1247 | 13.1 | 0.32 | - | - | - | 1230–1256 |
| 26 | Bornyl acetate | 1287 | 13.7 | 11.76 | - | - | - | 1259–1284 |
| 27 | α-Cubebene | - | - | - | 1348 | 14.7 | 0.18 | 1334–1379 |
| 28 | Jasmone | - | - | - | 1362 | 14.9 | 0.28 | 1359–1379 |
| 29 | α-Copaene | - | - | - | 1380 | 15.2 | 0.45 | 1360–1392 |
| 30 | Geranyl acetate | 1371 | 15.1 | 0.92 | - | - | - | 1355–1370 |
| 31 | Methyl eugenol | 1397 | 15.5 | 1.81 | 1398 | 15.5 | 1.68 | 1364–1402 |
| 32 | Caryophyllene | 1425 | 16.1 | 2.94 | 1426 | 16.1 | 3.64 | 1392–1426 |
| 33 | Geranyl acetone | - | - | - | 1442 | 16.5 | 0.78 | 1422–1453 |
| 34 | α-Humulene | 1460 | 16.9 | 1.23 | 1460 | 16.9 | 2.24 | 1430–1466 |
| 35 | α-muurolene | - | - | - | 1502 | 17.8 | 0.46 | 1477–1502 |
| 36 | γ-Cadinene | - | - | - | 1518 | 18.2 | 0.72 | 1490–1521 |
| 37 | δ-Cadinene | 1521 | 18.3 | 0.45 | 1522 | 18.3 | 1.31 | 1498–1526 |
| 38 | Caryophyllene oxide | 1588 | 19.9 | 1.22 | 1589 | 19.9 | 1.33 | 1563–1595 |
| 39 | α-Bisabolol | - | - | - | 1686 | 22.2 | 0.64 | 1649–1686 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Özdemir, E.; Başaran, P.; Kartal, S.; Akan, T. Effect of Non-Thermal Atmospheric Cold Plasma on Surface Microbial Inactivation and Quality Properties of Fresh Herbs and Spices. Foods 2025, 14, 3617. https://doi.org/10.3390/foods14213617
Özdemir E, Başaran P, Kartal S, Akan T. Effect of Non-Thermal Atmospheric Cold Plasma on Surface Microbial Inactivation and Quality Properties of Fresh Herbs and Spices. Foods. 2025; 14(21):3617. https://doi.org/10.3390/foods14213617
Chicago/Turabian StyleÖzdemir, Emel, Pervin Başaran, Sehban Kartal, and Tamer Akan. 2025. "Effect of Non-Thermal Atmospheric Cold Plasma on Surface Microbial Inactivation and Quality Properties of Fresh Herbs and Spices" Foods 14, no. 21: 3617. https://doi.org/10.3390/foods14213617
APA StyleÖzdemir, E., Başaran, P., Kartal, S., & Akan, T. (2025). Effect of Non-Thermal Atmospheric Cold Plasma on Surface Microbial Inactivation and Quality Properties of Fresh Herbs and Spices. Foods, 14(21), 3617. https://doi.org/10.3390/foods14213617

