The Effects of Milking and Cleaning Procedures on the Quality and Microbiome of Raw Goat Milk
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection
2.3. Microbial Enumeration
2.4. SCC and Milk Component Analysis
2.5. Milk Microbiome Analysis
2.5.1. DNA Extraction
2.5.2. Microbiome Sequencing
2.6. Statistical Analysis
2.6.1. Statistical Analysis of APC, CC, YM, and SCC Data
2.6.2. Metagenomic Analyses
3. Results
3.1. Cleaning Intensity Based on Farm Assessment
3.2. Microbiological Analyses
3.3. Results of SCC and Milk Component Analysis
3.4. Microbial Diversity
3.4.1. Alpha Diversity
3.4.2. Beta Diversity
3.5. Taxonomic Analysis
3.5.1. Farm-Level Microbiota Composition
3.5.2. Raw Milk Samples
3.5.3. Genera of Interest
3.6. Association Between Milking Hygiene Practices and Bacterial Abundance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duarte, R.V.; Pinto, C.A.; Gomes, A.M.; Delgadillo, I.; Saraiva, J.A. A microbiological perspective of raw milk preserved at room temperature using hyperbaric storage compared to refrigerated storage. Innov. Food Sci. Emerg. Technol. 2022, 78, 103019. [Google Scholar] [CrossRef]
- Mullin, G.E.; Belkoff, S.M.; Box, R. Survey to determine why people drink raw milk. Glob. Adv. Health Med. 2014, 3, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Perin, L.M.; Pereira, J.G.; Bersot, L.S.; Nero, L.A. The microbiology of raw milk. In Raw Milk: Balance Between Hazards Benefits; Elsevier: Amsterdam, The Netherlands, 2018; pp. 45–64. [Google Scholar]
- Dash, K.K.; Fayaz, U.; Dar, A.H.; Shams, R.; Manzoor, S.; Sundarsingh, A.; Deka, P.; Khan, S.A. A comprehensive review on heat treatments and related impact on the quality and microbial safety of milk and milk-based products. Food Chem. Adv. 2022, 1, 100041. [Google Scholar] [CrossRef]
- Akshit, F.N.U.; Deshwal, G.K.; Sharma, H.; Kumar, P.; Maddipatla, D.K.; Singh, M.P.; Goksen, G. Technological challenges in production of goat milk products and strategies to overcome them: A review. Int. J. Food Sci. Technol. 2024, 59, 6–16. [Google Scholar] [CrossRef]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef]
- Miller, B.A.; Lu, C.D. Current status of global dairy goat production: An overview. Asian-Australas. J. Anim. Sci. 2019, 32, 1219–1232. [Google Scholar] [CrossRef]
- Migeemanathan, S.; Bhat, R.; Min-Tze, L.; Wan-Abdullah, W.N. Effects of temperature abuse on the survival, growth, and inactivation of Salmonella typhimurium in goat milk. Foodborne Pathog. Dis. 2011, 8, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Micenková, L.; Grešáková, Ľ.; Maďarová, M.; Simonová, M.P.; Focková, V.; Ščerbová, J. Microbiome associated with Slovak raw goat milk, trace minerals, and vitamin E content. Int. J. Food Sci. 2022, 2022, 4595473. [Google Scholar] [CrossRef]
- Niyazbekova, Z.; Yao, X.T.; Liu, M.J.; Bold, N.; Tong, J.Z.; Chang, J.J.; Wen, Y.; Li, L.; Wang, Y.; Chen, D.K.; et al. Compositional and functional comparisons of the microbiota in the colostrum and mature milk of dairy goats. Animals 2020, 10, 1955. [Google Scholar] [CrossRef]
- Park, Y.W. Improving Goat Milk. In Improving the Safety and Quality of Milk; Woodhead Publishing: London, UK, 2010; Volume 2, pp. 304–346. [Google Scholar]
- Deddefo, A.; Mamo, G.; Asfaw, M.; Amenu, K. Factors affecting the microbiological quality and contamination of farm bulk milk by Staphylococcus aureus in dairy farms in Asella, Ethiopia. BMC Microbiol. 2023, 23, 65. [Google Scholar] [CrossRef]
- Ntuli, V.; Sibanda, T.; Elegbeleye, J.A.; Mugadza, D.T.; Seifu, E.; Buys, E.M. Dairy production: Microbial safety of raw milk and processed milk products. In Present Knowledge in Food Safety: A Risk-Based Approach Through the Food Chain; Elsevier: Amsterdam, The Netherlands, 2022; pp. 439–454. [Google Scholar]
- Nayik, G.A.; Jagdale, Y.D.; Gaikwad, S.A.; Devkatte, A.N.; Dar, A.H.; Dezmirean, D.S.; Bobis, O.; Ranjha, M.M.A.N.; Ansari, M.J.; Hemeg, H.A.; et al. Recent insights into processing approaches and potential health benefits of goat milk and its products: A review. Front. Nutr. 2021, 8, 789117. [Google Scholar] [CrossRef] [PubMed]
- Zecconi, A.; Dell’orco, F.; Vairani, D.; Rizzi, N.; Cipolla, M.; Zanini, L. Differential somatic cell count as a marker for changes of milk composition in cows with very low somatic cell count. Animals 2020, 10, 604. [Google Scholar] [CrossRef]
- Agnihotri, M.K.; Rajkumar, V. Effect of breed, parity and stage of lactation on milk composition of western region goats of India. Int. J. Dairy Sci. 2007, 2, 172–177. [Google Scholar] [CrossRef]
- Park, Y.W.; Humphrey, R.D. Bacterial cell counts in goat milk and their correlations with somatic cell counts, percent fat, and protein. J. Dairy Sci. 1986, 69, 32–37. [Google Scholar] [CrossRef]
- Wilson, D.J.; Stewart, K.N.; Sears, P.M. Effects of stage of lactation, production, parity and season on somatic cell counts in infected and uninfected dairy goats. Small Rumin. Res. 1995, 16, 165–169. [Google Scholar] [CrossRef]
- Zeng, S.S.; Escobar, E.N. Effect of parity and milk production on somatic cell count, standard plate count and composition of goat milk. Small Rumin. Res. 1995, 17, 269–274. [Google Scholar] [CrossRef]
- ALKaisy, Q.H.; Al-Saadi, J.S.; AL-Rikabi, A.K.J.; Altemimi, A.B.; Hesarinejad, M.A.; Abedelmaksoud, T.G. Exploring the health benefits and functional properties of goat milk proteins. Food Sci. Nutr. 2023, 11, 5641–5656. [Google Scholar] [CrossRef] [PubMed]
- Verruck, S.; Dantas, A.; Prudencio, E.S. Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. J. Funct. Foods 2019, 52, 243–257. [Google Scholar] [CrossRef]
- Monareng, N.J.; Ncube, K.T.; van Rooi, C.; Modiba, M.C.; Mtileni, B. A systematic review on microbial profiling techniques in goat milk: Implications for probiotics and shelf-life. Int. J. Mol. Sci. 2025, 26, 5551. [Google Scholar] [CrossRef]
- Praja, R.N.; Yudhana, A.; Saputro, A.L.; Hamonangan, J.M. The first study on antimicrobial resistance of Staphylococcus aureus isolated from raw goat milk associated with subclinical mastitis in Siliragung Subdistrict, East Java, Indonesia. Vet. World 2023, 16, 786–791. [Google Scholar] [CrossRef]
- D’Amico, D.J.; Donnelly, C.W. Microbiological quality of raw milk used for small-scale artisan cheese production in Vermont: Effect of farm characteristics and practices. J. Dairy Sci. 2010, 93, 134–147. [Google Scholar] [CrossRef]
- Code of Federal Regulations. Mandatory Pasteurization for All Milk and Milk Products in Final Package Form Intended for Direct Human Consumption. 2014. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-L/part-1240/subpart-D/section-1240.61 (accessed on 24 September 2025).
- Oregon Revised Statutes (ORS) § 621.012—License Required for Sale of Milk; Exceptions. Available online: https://oregon.public.law/statutes/ors_621.012 (accessed on 24 September 2025).
- Park, S.H.; Kim, S.A.; Rubinelli, P.M.; Roto, S.M.; Ricke, S.C. Microbial compositional changes in broiler chicken cecal contents from birds challenged with different Salmonella vaccine candidate strains. Vaccine 2017, 35, 3204–3208. [Google Scholar] [CrossRef]
- Middelbos, I.S.; Godoy, M.R.; Fastinger, N.D.; Fahey, G.C. A dose-response evaluation of spray-dried yeast cell wall supplementation of diets fed to adult dogs: Effects on nutrient digestibility, immune indices, and fecal microbial populations. J. Anim. Sci. 2007, 85, 3022–3032. [Google Scholar] [CrossRef]
- ISO 4833-1:2013; Microbiology of the Food Chain: Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30° C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6611:2004; Milk and Milk Products—Enumeration of Colony-Forming Units of Yeasts and/or Moulds—Colony-Count Technique at 25 °C. International Organization for Standardization: Geneva, Switzerland, 2004.
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Pantoja, J.C.F.; Reinemann, D.J.; Ruegg, P.L. Factors associated with coliform count in unpasteurized bulk milk. J. Dairy Sci. 2011, 94, 2680–2691. [Google Scholar] [CrossRef] [PubMed]
- Vacheyrou, M.; Normand, A.C.; Guyot, P.; Cassagne, C.; Piarroux, R.; Bouton, Y. Cultivable microbial communities in raw cow milk and potential transfers from stables of sixteen French farms. Int. J. Food Microbiol. 2011, 146, 253–262. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Kaskous, S.; Farschtschi, S.; Pfaffl, M.W. Physiological aspects of milk somatic cell count in small ruminants—A review. Dairy 2023, 4, 26–42. [Google Scholar] [CrossRef]
- Alhussien, M.N.; Dang, A.K. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World 2018, 11, 562–577. [Google Scholar] [CrossRef]
- Smistad, M.; Inglingstad, R.A.; Sølverød, L.; Skeie, S.; Hansen, B.G. Somatic cell count in dairy goats I: Association with infectious and non-infectious factors. BMC Vet. Res. 2024, 20, 509. [Google Scholar] [CrossRef] [PubMed]
- Polveiro, R.C.; Vidigal, P.M.P.; de Oliveira Mendes, T.A.; Yamatogi, R.S.; da Silva, L.S.; Fujikura, J.M.; Da Costa, M.M.; Moreira, M.A.S. Distinguishing the milk microbiota of healthy goats and goats diagnosed with subclinical mastitis, clinical mastitis, and gangrenous mastitis. Front. Microbiol. 2022, 13, 918706. [Google Scholar] [CrossRef]
- Hoving-Bolink, R.A.H.; Antonis, A.F.G.; te Pas, M.F.W.; Schokker, D. An observational study of the presence and variability of the microbiota composition of goat herd milk related to mainstream and artisanal farm management. PLoS ONE 2023, 18, e0292650. [Google Scholar] [PubMed]
- Kim, E.; Song, T.C.; Yang, S.M.; Kim, J.; Kim, H.Y. Comparative analysis of microbial diversity and fatty acids in raw milk from different production systems. Food Chem. 2025, 493, 145899. [Google Scholar] [CrossRef]
- Addis, M.F.; Tanca, A.; Uzzau, S.; Oikonomou, G.; Bicalho, R.C.; Moroni, P. The bovine milk microbiota: Insights and perspectives from -omics studies. Mol. Biosyst. 2016, 12, 2359–2372. [Google Scholar] [CrossRef]
- Celano, G.; Calasso, M.; Costantino, G.; Vacca, M.; Ressa, A.; Nikoloudaki, O.; De Palo, P.; Calabrese, F.M.; Gobbetti, M.; De Angelis, M. Effect of seasonality on microbiological variability of raw cow milk from apulian dairy farms in Italy. Microbiol. Spectr. 2022, 10, e00514-22. [Google Scholar] [CrossRef]
- McInnis, E.A.; Kalanetra, K.M.; Mills, D.A.; Maga, E.A. Analysis of raw goat milk microbiota: Impact of stage of lactation and lysozyme on microbial diversity. Food Microbiol. 2015, 46, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Perin, L.M.; Nero, L.A. Antagonistic lactic acid bacteria isolated from goat milk and identification of a novel nisin variant Lactococcus lactis. BMC Microbiol. 2014, 14, 36. [Google Scholar] [CrossRef]
- De Jonghe, V.; Coorevits, A.; Van Hoorde, K.; Messens, W.; Van Landschoot, A.; De Vos, P.; Heyndrickx, M. Influence of storage conditions on the growth of pseudomonas species in refrigerated raw milk. Appl. Environ. Microbiol. 2011, 77, 460–470. [Google Scholar] [CrossRef]
- Suguna, M.; Bhat, R.; Wan, W.A. Microbiological quality evaluation of goat milk collected from small-scale dairy farms in Penang Island, Malaysia. Int. Food Res. J. 2012, 19, 1241–1245. [Google Scholar]
- Oliver, S.P.; Jayarao, B.M.; Almeida, R.A. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathog. Dis. 2005, 2, 115–129. [Google Scholar] [CrossRef]
- Anderson, K.L.; Kearns, R.; Lyman, R.; Correa, M.T. Staphylococci in dairy goats and human milkers, and the relationship with herd management practices. Small Rumin. Res. 2019, 171, 13–22. [Google Scholar] [CrossRef]
- Kousta, M.; Mataragas, M.; Skandamis, P.; Drosinos, E.H. Prevalence and sources of cheese contamination with pathogens at farm and processing levels. Food Control 2010, 21, 805–815. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed]
- Mallet, A.; Guéguen, M.; Kauffmann, F.; Chesneau, C.; Sesboué, A.; Desmasures, N. Quantitative and qualitative microbial analysis of raw milk reveals substantial diversity influenced by herd management practices. Int. Dairy J. 2012, 27, 13–21. [Google Scholar] [CrossRef]
- Lafarge, V.; Ogier, J.C.; Girard, V.; Maladen, V.; Leveau, J.Y.; Gruss, A.; Delacroix-Buchet, A. Raw cow milk bacterial population shifts attributable to refrigeration. Appl. Environ. Microbiol. 2004, 70, 5644–5650. [Google Scholar] [CrossRef] [PubMed]
Farm | Farm Location | Breed | No. of Milking Does |
---|---|---|---|
A | Silverton, OR, USA | American Alpine, La Mancha | 6 |
B | Monroe, OR, USA | Alpine, Oberhasli, Nigerian Dwarf | 4 |
C | Sherwood, OR, USA | American Alpine, La Mancha, Saanen | 8 |
D | Dallas, OR, USA | French and American Alpines | 3 |
Criterion | Coding Scheme |
---|---|
Barn/parlor layout | 0 = milking in barn, 1 = semi-enclosed, 2 = separate enclosed parlor |
Barn/parlor cleaning | 0 = only occasional sweeping, 1 = regular sweeping, 2 = sweeping and mopping routine |
Glove/hand sanitizer use | 0 = none, 1 = occasional, 2 = consistent |
Udder preparation | 0 = minimal (wipes), 1 = moderate (wipes + dip or soap), 2 = intensive (multi-step with agents) |
Equipment cleaning | 0 = inconsistent/short, 1 = regular but limited, 2 = thorough (hot water or sanitizer with contact) |
Farm | Layout | Barn/Parlor Cleaning | Gloves/Hand Sanitizer | Udder Preparation | Equipment Cleaning |
---|---|---|---|---|---|
A | 1 | 2 | 2 (gloves + sanitizer) | 2 (iodine/bleach) | 2 (bleach + hot wash) |
B | 2 | 2 | 0 (none) | 0 (wipes only) | 0 (lukewarm, short) |
C | 2 | 0 | 1 (gloves/sanitizer, irregular) | 1 (wipes + dip) | 2 (dishwasher hot water) |
D | 0 | 2 | 0 (none) | 1 (wipes + soap + bleach) | 1 (hot water + bleach, short) |
Parameter | Month | Kruskal–Wallis χ2 | p Value | Significant Pairwise Differences | |
---|---|---|---|---|---|
Adjusted p (Bonferroni) | Adjusted p (FDR: Benjamini–Hochberg) | ||||
APC | July | 9.36 | 0.025 | A vs. B (0.038), A vs. C (0.028) | A vs. B (0.020), A vs. C (0.028) |
APC | August | 8.90 | 0.031 | A vs. B (0.010) | A vs. B (0.010) |
YM | July | 4.11 | 0.250 | None | None |
YM | August | 7.00 | 0.072 | A vs. B (0.036) * | A vs. B (0.036) * |
CC | August | 4.11 | 0.250 | None | None |
SCC | July | 5.15 | 0.161 | None | None |
SCC | August | 1.97 | 0.578 | None | None |
Fat | July | 4.33 | 0.228 | None | None |
Fat | August | 6.28 | 0.099 | None | None |
Protein | July | 8.08 | 0.045 | A vs. D (0.020) | A vs. D (0.020) |
Protein | August | 9.46 | 0.024 | A vs. C (0.020) | A vs. C (0.020) |
Lactose | July | 9.46 | 0.024 | B vs. D (0.020) | B vs. D (0.020) |
Lactose | August | 8.95 | 0.030 | B vs. D (0.028) | B vs. D (0.028) |
Blood NEFA | July | 2.59 | 0.459 | None | None |
Blood NEFA | August | 9.46 | 0.024 | A vs. B (0.007) | A vs. B (0.007) |
Taxa | R2 | p Value | Key Interpretation |
---|---|---|---|
Pseudomonas | 0.305 | 0.059 | Not significant |
Yersiniaceae | 0.307 | 0.058 | Not significant |
Lactococcus | 0.259 | 0.105 | Not significant |
Allorhizobium | 0.298 | 0.065 | Not significant |
Achromobacter | 0.212 | 0.180 | Not significant |
Staphylococcus | 0.330 | 0.042 | Intercept (p = 5.59 × 10−5) |
Escherichia_Shigella | 0.526 | 0.002 | Intercept (p = 9.32 × 10−7), Glove use no (p = 0.004) |
Deinococcus | 0.428 | 0.010 | Hand sanitation no, Bleach chlorhexidine sanitizer (p = 0.005) |
Ochrobactrum | 0.308 | 0.057 | Not significant |
Corynebacterium | 0.351 | 0.032 | Glove use no (p = 0.026), Hand sanitation no (p = 0.010) |
Acinetobacter | 0.130 | 0.415 | Not significant |
Kocuria | 0.435 | 0.009 | Glove use no, Hand sanitation no (p = 0.004) |
Enterococcus | 0.365 | 0.026 | Glove use no (p = 0.010), Hand sanitation no (p = 0.012) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thibodeau, A.; Kim, E.; Yang, S.-M.; Goddik, L.; Kim, H.-Y.; Park, S.H. The Effects of Milking and Cleaning Procedures on the Quality and Microbiome of Raw Goat Milk. Foods 2025, 14, 3563. https://doi.org/10.3390/foods14203563
Thibodeau A, Kim E, Yang S-M, Goddik L, Kim H-Y, Park SH. The Effects of Milking and Cleaning Procedures on the Quality and Microbiome of Raw Goat Milk. Foods. 2025; 14(20):3563. https://doi.org/10.3390/foods14203563
Chicago/Turabian StyleThibodeau, Alyssa, Eiseul Kim, Seung-Min Yang, Lisbeth Goddik, Hae-Yeong Kim, and Si Hong Park. 2025. "The Effects of Milking and Cleaning Procedures on the Quality and Microbiome of Raw Goat Milk" Foods 14, no. 20: 3563. https://doi.org/10.3390/foods14203563
APA StyleThibodeau, A., Kim, E., Yang, S.-M., Goddik, L., Kim, H.-Y., & Park, S. H. (2025). The Effects of Milking and Cleaning Procedures on the Quality and Microbiome of Raw Goat Milk. Foods, 14(20), 3563. https://doi.org/10.3390/foods14203563