Estimation of the Antifungal Threshold of Thyme Essential Oil for Bread Preservation, Ensuring Consumer Acceptance and Product Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Essential Oil Extraction
2.2. Culture Preparation
2.3. Antifungal Activity in Model Systems
2.4. Bread Preparation
2.5. Bread Inoculation
2.6. Mathematical Mold Growth Analysis
2.7. Bread Analysis
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Mold Growth Response
3.2. Bread Physicochemical Properties
3.3. TEO Components Concentration in Bread
3.4. Sensory Analysis
3.5. MIC Estimation Under Sensory Constraints for Mold-Free Bread
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ananda, J.; Pearson, D.; Oakden, S. Breaking Bread: Assessment of Household Bread Waste Incidence and Behavioural Drivers. J. Clean. Prod. 2024, 471, 143377. [Google Scholar] [CrossRef]
- Narisetty, V.; Nagarajan, S.; Gadkari, S.; Ranade, V.V.; Zhang, J.; Patchigolla, K.; Bhatnagar, A.; Kumar Awasthi, M.; Pandey, A.; Kumar, V. Process Optimization for Recycling of Bread Waste into Bioethanol and Biomethane: A Circular Economy Approach. Energy Convers. Manag. 2022, 266, 115784. [Google Scholar] [CrossRef]
- Allipour-Birgani, R.; Loloei, S.; Shab-Bidar, S.; Pouraram, H. Global Magnitude of the Bread Wastes and Its Reasons: A Systematic Review and Meta-Analysis of Observational Studies. Nutr. Food Health Dis. 2023, 10, 19–36. [Google Scholar]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Springer: Boston, MA, USA, 2009; ISBN 978-0-387-92206-5. [Google Scholar]
- Gavahian, M.; Chu, Y.-H.; Lorenzo, J.M.; Mousavi Khaneghah, A.; Barba, F.J. Essential Oils as Natural Preservatives for Bakery Products: Understanding the Mechanisms of Action, Recent Findings, and Applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 310–321. [Google Scholar] [CrossRef]
- Soto-Reyes, N.; Dávila-Rodríguez, M.; Lorenzo-Leal, A.C.; Reyes-Jurado, F.; Mani-López, E.; Hernández-Figueroa, R.; Morales-Camacho, J.I.; López-Malo, A. Prospects for Food Applications of Products from Microorganisms. In Research and Technological Advances in Food Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 195–229. ISBN 978-0-12-824369-5. [Google Scholar]
- Hernández Figueroa, R.H.; López-Malo, A.; Mani-López, E. Antimicrobial Activity and Applications of Fermentates from Lactic Acid Bacteria—A Review. Sustain. Food Technol. 2024, 2, 292–306. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Varela, P.; Peschel, A.O. Consumers’ Categorization of Food Ingredients: Do Consumers Perceive Them as ‘Clean Label’ Producers Expect? An Exploration with Projective Mapping. Food Qual. Prefer. 2019, 71, 117–128. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Cervantes-Rincón, T.; Bach, H.; López-Malo, A.; Palou, E. Antimicrobial Activity of Mexican Oregano (Lippia berlandieri), Thyme (Thymus vulgaris), and Mustard (Brassica nigra) Essential Oils in Gaseous Phase. Ind. Crops Prod. 2019, 131, 90–95. [Google Scholar] [CrossRef]
- Debonne, E.; Vermeulen, A.; Van Bockstaele, F.; Soljic, I.; Eeckhout, M.; Devlieghere, F. Growth/No-Growth Models of in-Vitro Growth of Penicillium Paneum as a Function of Thyme Essential Oil, pH, aw, Temperature. Food Microbiol. 2019, 83, 9–17. [Google Scholar] [CrossRef]
- Debonne, E.; Van Bockstaele, F.; De Leyn, I.; Devlieghere, F.; Eeckhout, M. Validation of In-Vitro Antifungal Activity of Thyme Essential Oil on Aspergillus Niger and Penicillium Paneum through Application in Par-Baked Wheat and Sourdough Bread. LWT 2018, 87, 368–378. [Google Scholar] [CrossRef]
- Skendi, A.; Katsantonis, D.Ν.; Chatzopoulou, P.; Irakli, M.; Papageorgiou, M. Antifungal Activity of Aromatic Plants of the Lamiaceae Family in Bread. Foods 2020, 9, 1642. [Google Scholar] [CrossRef]
- Jurkaninová, L.; Švec, I.; Kučerová, I.; Havrlentová, M.; Božik, M.; Klouček, P.; Leuner, O. The Use of Thyme and Lemongrass Essential Oils in Cereal Technology—Effect on Wheat Dough Behavior and Bread Properties. Appl. Sci. 2024, 14, 4831. [Google Scholar] [CrossRef]
- Suhr, K.I.; Nielsen, P.V. Antifungal Activity of Essential Oils Evaluated by Two Different Application Techniques against Rye Bread Spoilage Fungi. J. Appl. Microbiol. 2003, 94, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Císarová, M.; Hleba, L.; Medo, J.; Tančinová, D.; Mašková, Z.; Čuboň, J.; Kováčik, A.; Foltinová, D.; Božik, M.; Klouček, P. The in Vitro and in Situ Effect of Selected Essential Oils in Vapour Phase against Bread Spoilage Toxicogenic Aspergilli. Food Control 2020, 110, 107007. [Google Scholar] [CrossRef]
- Gonçalves, N.D.; Pena, F.D.L.; Sartoratto, A.; Derlamelina, C.; Duarte, M.C.T.; Antunes, A.E.C.; Prata, A.S. Encapsulated Thyme (Thymus vulgaris) Essential Oil Used as a Natural Preservative in Bakery Product. Food Res. Int. 2017, 96, 154–160. [Google Scholar] [CrossRef]
- Sharma, P.; Ahuja, A.; Dilsad Izrayeel, A.M.; Samyn, P.; Rastogi, V.K. Physicochemical and Thermal Characterization of Poly (3-Hydroxybutyrate-Co-4-Hydroxybutyrate) Films Incorporating Thyme Essential Oil for Active Packaging of White Bread. Food Control 2022, 133, 108688. [Google Scholar] [CrossRef]
- Oliveira, R.C.; Carvajal-Moreno, M.; Correa, B.; Rojo-Callejas, F. Cellular, Physiological and Molecular Approaches to Investigate the Antifungal and Anti-Aflatoxigenic Effects of Thyme Essential Oil on Aspergillus Flavus. Food Chem. 2020, 315, 126096. [Google Scholar] [CrossRef]
- Dantigny, P. Applications of Predictive Modeling Techniques to Fungal Growth in Foods. Curr. Opin. Food Sci. 2021, 38, 86–90. [Google Scholar] [CrossRef]
- Lainez-Cerón, E.; Ramírez-Corona, N.; López-Malo, A.; Franco-Vega, A. An Overview of Mathematical Modeling for Conventional and Intensified Processes for Extracting Essential Oils. Chem. Eng. Process.—Process Intensif. 2022, 178, 109032. [Google Scholar] [CrossRef]
- Paris, M.J.; Ramírez-Corona, N.; Palou, E.; López-Malo, A. Modelling Release Mechanisms of Cinnamon (Cinnamomum Zeylanicum) Essential Oil Encapsulated in Alginate Beads during Vapor-Phase Application. J. Food Eng. 2020, 282, 110024. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Mani-López, E.; López-Malo, A. Antifungal Activity of Alginate Coatings with Essential Oil of Mexican Oregano Incorporated in the Stem of Tomatoes. Int. J. Food Sci. Technol. 2024, 59, 4774–4783. [Google Scholar] [CrossRef]
- López Malo, A.; Mani López, E.; Davidson, P.M.; Palou, E. Methods for Activity Assay and Evaluation of Results. In Antimicrobials in Food; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2020; ISBN 978-0-429-05819-6. [Google Scholar]
- Hernández-Figueroa, R.H.; Mani-López, E.; López-Malo, A. Antifungal Activity of Wheat-Flour Sourdough (Type II) from Two Different Lactobacillus in Vitro and Bread. Appl. Food Res. 2023, 3, 100319. [Google Scholar] [CrossRef]
- Dos Santos, J.L.P.; Silva, B.S.; Furtado, M.M.; Morassi, L.L.P.; Vermeulen, A.; Sant’Ana, A.S. The Application of Growth-No Growth Models to Directly Assess the Stability of Wholemeal Multigrain Bread towards Penicillium Paneum LMQA-002 and Paecilomyces Variotii LMQA-001. LWT 2018, 97, 231–237. [Google Scholar] [CrossRef]
- Kosegarten, C.E.; Ramírez-Corona, N.; Mani-López, E.; Palou, E.; López-Malo, A. Description of Aspergillus Flavus Growth under the Influence of Different Factors (Water Activity, Incubation Temperature, Protein and Fat Concentration, pH, and Cinnamon Essential Oil Concentration) by Kinetic, Probability of Growth, and Time-to-Detection Models. Int. J. Food Microbiol. 2017, 240, 115–123. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (Ed.) Approved Methods of the American Association of Cereal Chemists, 10th ed.; AACC: St. Paul, MN, USA, 2000; ISBN 978-1-891127-12-0. [Google Scholar]
- Latimer, G.W.; AOAC International (Eds.) Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019; Volume 3, ISBN 978-0-935584-89-9. [Google Scholar]
- Hernández-Figueroa, R.H.; López-Malo, A.; Mani-López, E. Evaluating the Effects of Acacia Gum on Physicochemical and Sensory Properties of Dough and Bread from Wheat Flour with Different Protein Content. Int. J. Food Sci. Technol. 2025, 60, vvaf100. [Google Scholar] [CrossRef]
- Hernández-Figueroa, R.H.; Mani-López, E.; Ramírez-Corona, N.; López-Malo, A. Optimizing Lactic Acid Bacteria Proportions in Sourdough to Enhance Antifungal Activity and Quality of Partially and Fully Baked Bread. Foods 2024, 13, 2318. [Google Scholar] [CrossRef] [PubMed]
- Etri, K.; Pluhár, Z. Exploring Chemical Variability in the Essential Oils of the Thymus Genus. Plants 2024, 13, 1375. [Google Scholar] [CrossRef]
- Pluhár, Z.; Kun, R.; Cservenka, J.; Neumayer, É.; Tavaszi-Sárosi, S.; Radácsi, P.; Gosztola, B. Variations in Essential Oil Composition and Chemotype Patterns of Wild Thyme (Thymus) Species in the Natural Habitats of Hungary. Horticulturae 2024, 10, 150. [Google Scholar] [CrossRef]
- Najar, B.; Pistelli, L.; Ferri, B.; Angelini, L.G.; Tavarini, S. Crop Yield and Essential Oil Composition of Two Thymus vulgaris Chemotypes along Three Years of Organic Cultivation in a Hilly Area of Central Italy. Molecules 2021, 26, 5109. [Google Scholar] [CrossRef]
- Antih, J.; Houdkova, M.; Urbanova, K.; Kokoska, L. Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques. Molecules 2021, 26, 6553. [Google Scholar] [CrossRef]
- Rajkovic, K.; Pekmezovic, M.; Barac, A.; Nikodinovic-Runic, J.; Arsić Arsenijević, V. Inhibitory Effect of Thyme and Cinnamon Essential Oils on Aspergillus Flavus: Optimization and Activity Prediction Model Development. Ind. Crops Prod. 2015, 65, 7–13. [Google Scholar] [CrossRef]
- Gao, T.; Zhou, H.; Zhou, W.; Hu, L.; Chen, J.; Shi, Z. The Fungicidal Activity of Thymol against Fusarium Graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis. Molecules 2016, 21, 770. [Google Scholar] [CrossRef]
- Sriwattanachai, S.; Sadiq, M.B.; Anal, A.K. Synergistic Antifungal Effects of Thyme Essential Oil and Lactobacillus plantarum Cell-Free Supernatant against Penicillium Spp. and in Situ Effects. J. Food Process. Preserv. 2018, 42, e13400. [Google Scholar] [CrossRef]
- Rosas-Gallo, A.; Ramírez-Corona, N.; Palou, E.; López-Malo, A. Modeling Penicillium expansum Growth Response to Thyme Essential Oil at Selected Water Activities and pH Values Using Surface Response Methodology. Procedia Food Sci. 2016, 7, 93–96. [Google Scholar] [CrossRef]
- Nikkhah, M.; Hashemi, M.; Habibi Najafi, M.B.; Farhoosh, R. Synergistic Effects of Some Essential Oils against Fungal Spoilage on Pear Fruit. Int. J. Food Microbiol. 2017, 257, 285–294. [Google Scholar] [CrossRef]
- Li, C.; Chen, G.; Tilley, M.; Chen, R.; Perez-Fajardo, M.; Wu, X.; Li, Y. Enhancing Gluten Network Formation and Bread-Making Performance of Wheat Flour Using Wheat Bran Aqueous Extract. Foods 2024, 13, 1479. [Google Scholar] [CrossRef]
- Dhillon, G.K.; Kaur, A.; Bhise, S. Rheological and Quality Characteristics of Thyme (Thymus vulgaris) Enriched Bread. Int. J. Chem. Stud. 2019, 7, 648–651. [Google Scholar]
- Tomaino, A.; Cimino, F.; Zimbalatti, V.; Venuti, V.; Sulfaro, V.; De Pasquale, A.; Saija, A. Influence of Heating on Antioxidant Activity and the Chemical Composition of Some Spice Essential Oils. Food Chem. 2005, 89, 549–554. [Google Scholar] [CrossRef]
- Hudaib, M.; Speroni, E.; Di Pietra, A.M.; Cavrini, V. GC/MS Evaluation of Thyme (Thymus vulgaris L.) Oil Composition and Variations during the Vegetative Cycle. J. Pharm. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Bota, V.; Sumalan, R.M.; Obistioiu, D.; Negrea, M.; Cocan, I.; Popescu, I.; Alexa, E. Study on the Sustainability Potential of Thyme, Oregano, and Coriander Essential Oils Used as Vapours for Antifungal Protection of Wheat and Wheat Products. Sustainability 2022, 14, 4298. [Google Scholar] [CrossRef]
- Mani López, E.; Valle Vargas, G.P.; Palou, E.; López Malo, A. Penicillium expansum Inhibition on Bread by Lemongrass Essential Oil in Vapor Phase. J. Food Prot. 2018, 81, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Levario-Gómez, A.; Ávila-Sosa, R.; Gutiérrez-Méndez, N.; López-Malo, A.; Nevárez-Moorillón, G.V. Modeling the Combined Effect of pH, Protein Content, and Mexican Oregano Essential Oil Against Food Spoilage Molds. Front. Sustain. Food Syst. 2020, 4, 34. [Google Scholar] [CrossRef]
- Guynot, M.E.; MarÍn, S.; SetÚ, L.; Sanchis, V.; Ramos, A.J. Screening for Antifungal Activity of Some Essential Oils Against Common Spoilage Fungi of Bakery Products. Food Sci. Technol. Int. 2005, 11, 25–32. [Google Scholar] [CrossRef]
- Wang, L.; Dekker, M.; Heising, J.; Zhao, L.; Fogliano, V. Food Matrix Design Can Influence the Antimicrobial Activity in the Food Systems: A Narrative Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 8963–8989. [Google Scholar] [CrossRef] [PubMed]
- Van De Vel, E.; Sampers, I.; Raes, K. A Review on Influencing Factors on the Minimum Inhibitory Concentration of Essential Oils. Crit. Rev. Food Sci. Nutr. 2019, 59, 357–378. [Google Scholar] [CrossRef]
- Hulankova, R. Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro—A Review. Plants 2024, 13, 2784. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Chitrakar, B.; Gu, Z.; Ban, X.; Hong, Y.; Cheng, L.; Li, C. Minimum Inhibitory Concentration (MIC) of Essential Oils Against Microorganisms: Methods, Function, Accuracy Factors and Application. Food Rev. Int. 2024, 40, 3445–3470. [Google Scholar] [CrossRef]
- Sridhar, S.R.; Rajagopal, R.V.; Rajavel, R.; Masilamani, S.; Narasimhan, S. Antifungal Activity of Some Essential Oils. J. Agric. Food Chem. 2003, 51, 7596–7599. [Google Scholar] [CrossRef]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal Activity of Citrus Essential Oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef]
- Nieto, G. A Review on Applications and Uses of Thymus in the Food Industry. Plants 2020, 9, 961. [Google Scholar] [CrossRef]
- Redondo-Blanco, S.; Fernández, J.; López-Ibáñez, S.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Plant Phytochemicals in Food Preservation: Antifungal Bioactivity: A Review. J. Food Prot. 2020, 83, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.; Prasad, J.; Das, S.; Dwivedy, A.K. Essential Oils and their Application in Food Safety. Front. Sustain. Food Syst. 2021, 5, 653420. [Google Scholar] [CrossRef]
- Hildersten, S.; Bartek, L.; Brancoli, P.; Eriksson, M.; Karlsson Potter, H.; Strid, I. Mapping the Climate Impact of Rye Bread Production in Sweden: Insights into Cultivation, Packaging, and Surplus Management for Sustainable Food Systems. Front. Sustain. Food Syst. 2025, 9, 1528862. [Google Scholar] [CrossRef]
- Espinoza-Orias, N.; Stichnothe, H.; Azapagic, A. The Carbon Footprint of Bread. Int. J. Life Cycle Assess. 2011, 16, 351–365. [Google Scholar] [CrossRef]
- Kulak, M.; Nemecek, T.; Frossard, E.; Chable, V.; Gaillard, G. Life Cycle Assessment of Bread from Several Alternative Food Networks in Europe. J. Clean. Prod. 2015, 90, 104–113. [Google Scholar] [CrossRef]
- Malefors, C.; Sjölund, A.; Sundin, N. Food Waste Quantities, Carbon Footprint and Nutrient Loss in University Students’ Households in Sweden. Sustain. Prod. Consum. 2025, 54, 441–451. [Google Scholar] [CrossRef]
- Carbon Cloud Soft Bread, Wheat 0.89 Kg CO2e/Kg | Verified by CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/product-reports/id/99955091022 (accessed on 18 August 2025).
- Carbon Cloud White Bread·1.13 Kg CO2e/Kg | Verified by CarbonCloud. Available online: https://apps.carboncloud.com/climatehub/product-reports/id/426295992804 (accessed on 19 August 2025).
- Korsaeth, A.; Jacobsen, A.Z.; Roer, A.-G.; Henriksen, T.M.; Sonesson, U.; Bonesmo, H.; Skjelvåg, A.O.; Strømman, A.H. Environmental Life Cycle Assessment of Cereal and Bread Production in Norway. Acta Agric. Scand. Sect.—Anim. Sci. 2012, 62, 242–253. [Google Scholar] [CrossRef]
- Rayichuk, L.; Draga, M.; Boroday, V. Product Environmental Footprint and Bread Industry. In Baking Business Sustainability Through Life Cycle Management; Ferreira Da Rocha, J.M., Figurek, A., Goncharuk, A.G., Sirbu, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 15–27. ISBN 978-3-031-25026-2. [Google Scholar]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ Perspective on Circular Economy Strategy for Reducing Food Waste. Sustainability 2017, 9, 141. [Google Scholar] [CrossRef]
- Singh, S.; Chaurasia, P.K.; Bharati, S.L. Functional Roles of Essential Oils as an Effective Alternative of Synthetic Food Preservatives: A Review. J. Food Process. Preserv. 2022, 46, e16804. [Google Scholar] [CrossRef]
- Obahiagbon, E.G.; Ogwu, M.C. Organic Food Preservatives: The Shift Towards Natural Alternatives and Sustainability in the Global South’s Markets. In Food Safety and Quality in the Global South; Ogwu, M.C., Izah, S.C., Ntuli, N.R., Eds.; Springer Nature: Singapore, 2024; pp. 299–329. ISBN 978-981-97-2427-7. [Google Scholar]
- Quested, T.E.; Parry, A.D.; Easteal, S.; Swannell, R. Food and Drink Waste from Households in the UK. Nutr. Bull. 2011, 36, 460–467. [Google Scholar] [CrossRef]
- Manika, D.; Iacovidou, E.; Canhoto, A.; Pei, E.; Mach, K. Capabilities, Opportunities and Motivations That Drive Food Waste Disposal Practices: A Case Study of Young Adults in England. J. Clean. Prod. 2022, 370, 133449. [Google Scholar] [CrossRef]
- Porter, S.D.; Reay, D.S.; Higgins, P.; Bomberg, E. A Half-Century of Production-Phase Greenhouse Gas Emissions from Food Loss & Waste in the Global Food Supply Chain. Sci. Total Environ. 2016, 571, 721–729. [Google Scholar] [CrossRef] [PubMed]
Compound | Proportion (%) | Retention Index |
---|---|---|
Thymol | 33.25 ± 0.67 | 1290 |
p-Cymene | 30.5 ± 0.76 | 1025 |
Carvacrol | 12.5 ± 0.38 | 1298 |
Caryophyllene | 6.5 ± 0.13 | 1419 |
γ-Terpinene | 5.5 ± 0.14 | 1057 |
Borneol | 4.0 ± 0.12 | 1165 |
Terpinene-4-ol | 1.75 ± 0.04 | 1177 |
α-Pinene | 1.55 ± 0.04 | 939 |
Linalool | 1.4 ± 0.04 | 1096 |
Camphene | 1.25 ± 0.03 | 954 |
TEO Concentration (ppm) | Moisture Content (%) | Water Activity | pH | W/H Ratio | Specific Volume (cm3/g) | Hardness (N) |
---|---|---|---|---|---|---|
0 | 40.2 ± 0.4 a | 0.955 ± 0.005 a | 5.65 ± 0.03 a | 0.98 ± 0.06 a,b | 5.01 ± 0.14 a | 4.25 ± 0.25 b,c |
50 | 41.0 ± 0.5 a | 0.960 ± 0.007 a | 5.61 ± 0.07 a | 0.97 ± 0.06 b | 4.99 ± 0.12 a | 3.85 ± 0.15 c |
100 | 40.1 ± 0.3 a | 0.945 ± 0.004 a | 5.67 ± 0.06 a | 1.00 ± 0.05 a,b | 4.74 ± 0.16 a,b | 3.98 ± 0.18 c |
150 | 40.8 ± 0.6 a | 0.950 ± 0.003 a | 5.66 ± 0.03 a | 1.05 ± 0.04 a,b | 4.46 ± 0.15 b | 4.50 ± 0.20 a,b |
200 | 40.5 ± 0.4 a | 0.957 ± 0.008 a | 5.63 ± 0.04 a | 1.10 ± 0.05 a | 4.38 ± 0.20 b | 4.80 ± 0.11 a |
TEO Concentration (ppm) | Color | Odor | Texture | Flavor | Overall Acceptability |
---|---|---|---|---|---|
0 | 7.50 ± 0.80 a | 7.00 ± 0.60 a | 7.50 ± 0.40 a | 7.20 ± 0.40 a | 7.50 ± 0.40 a |
50 | 7.50 ± 0.75 a | 7.40 ± 0.80 a | 7.50 ± 0.50 a | 7.50 ± 0.40 a | 7.70 ± 0.50 a |
100 | 7.40 ± 0.85 a | 7.20 ± 0.90 a | 7.50 ± 0.60 a | 7.10 ± 0.45 a | 7.30 ± 0.60 a,b |
150 | 7.30 ± 0.90 a | 7.00 ± 0.80 a | 7.40 ± 0.50 a | 6.80 ± 0.50 a,b | 6.90 ± 0.55 a,b |
200 | 7.40 ± 0.95 a | 6.80 ± 0.90 a | 7.50 ± 0.70 a | 6.10 ± 0.60 b | 6.10 ± 0.75 b |
Parameter | Aspergillus flavus | Penicillium expansum | ||
---|---|---|---|---|
Model System | Bread | Model System | Bread | |
IC50 | 94.5 | 82.6 | 134.1 | 82.6 |
N | 2.64 | 2.26 | 6.76 | 2.61 |
Dmax | 0.211 | 0.144 | 0.164 | 0.145 |
RMSE | 0.0163 | 0.0095 | 0.0059 | 0.0087 |
R2 | 0.979 | 0.984 | 0.997 | 0.988 |
Parameter | Aspergillus flavus | Penicillium expansum | ||
---|---|---|---|---|
Model system | Bread | Model system | Bread | |
A | 22.55 | 49.53 | 37.65 | 49.51 |
K | 0.0156 | 0.0134 | 0.0133 | 0.0131 |
Mold | System Tested | Lag Time (h) | Growth Rate Reduction | ||
---|---|---|---|---|---|
150 | 200 | 250 | 75% | ||
A. flavus | PDA | 121.5 | 139.9 | 154.2 | 143.2 |
P. expansum | PDA | 103.9 | 125.6 | 142.3 | 157.8 |
A. flavus | Bread | 82.7 | 104.2 | 120.8 | 134.3 |
P. expansum | Bread | 84.6 | 106.6 | 123.6 | 125.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Figueroa, R.H.; López-Malo, A.; Ramírez-Corona, N.; Mani-López, E. Estimation of the Antifungal Threshold of Thyme Essential Oil for Bread Preservation, Ensuring Consumer Acceptance and Product Quality. Foods 2025, 14, 3549. https://doi.org/10.3390/foods14203549
Hernández-Figueroa RH, López-Malo A, Ramírez-Corona N, Mani-López E. Estimation of the Antifungal Threshold of Thyme Essential Oil for Bread Preservation, Ensuring Consumer Acceptance and Product Quality. Foods. 2025; 14(20):3549. https://doi.org/10.3390/foods14203549
Chicago/Turabian StyleHernández-Figueroa, Ricardo H., Aurelio López-Malo, Nelly Ramírez-Corona, and Emma Mani-López. 2025. "Estimation of the Antifungal Threshold of Thyme Essential Oil for Bread Preservation, Ensuring Consumer Acceptance and Product Quality" Foods 14, no. 20: 3549. https://doi.org/10.3390/foods14203549
APA StyleHernández-Figueroa, R. H., López-Malo, A., Ramírez-Corona, N., & Mani-López, E. (2025). Estimation of the Antifungal Threshold of Thyme Essential Oil for Bread Preservation, Ensuring Consumer Acceptance and Product Quality. Foods, 14(20), 3549. https://doi.org/10.3390/foods14203549