A Systematic Review of Microplastic Contamination in Tuna Species: General Pathways into the Food Chain with Ecotoxicological and Human Health Perspectives
Abstract
1. Introduction
2. Search Strategy
3. General Pathways of Microplastics into the Human Food Chain
3.1. Aquatic Pathway
3.2. Terrestrial Pathway
3.3. Atmospheric Pathway
3.4. Food Packaging and Processing
4. Toxicological and Health Risks of Microplastics for Human
5. Ecotoxicological Risks of Microplastics in Aquatic Organisms
5.1. Ingestion and Accumulation
5.2. Chemical Leaching and Toxic Additives
5.3. Impact on Reproductive Health and Development
5.4. Behavioral Changes and Ecosystem Disruption
6. Prevalence of Microplastics in Tuna Fish
6.1. Evaluation of Microplastics Frequency, Characteristics, and Concentrations in Tuna Species
6.2. Relationship Between Regional Distribution of Microplastics Concentrations and Properties and Local Anthropogenic Factors
7. Detection and Characterization of Microplastics in Tuna Species
8. Research Gaps and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABS | Acrylonitrile butadiene styrene |
ATR-FT-IR | Attenuated Total Reflectance FT-IR |
EFSA | European Food Safety Authority |
EPDM | Ethylene propylene diene monomer |
EVA | Ethylene-vinyl acetate |
FAO | Food and Agriculture Organization |
FT-IR | Fourier-Transform Infrared Spectroscopy |
GC-MS | Gas Chromatography-Mass Spectrometry |
HDPE | High-density polyethylene |
IR | Infrared |
LDPE | Low-density polyethylene |
LLDPE | Linear low-density polyethylene |
MF | Melamine formaldehyde |
Micro-FT-IR | Micro-Fourier Transform Infrared Spectroscopy |
MPs | Microplastics |
Mt | Million metric tons |
PA | Polyamide |
PAH | Polycyclic aromatic hydrocarbons |
PAN | Polyacrylonitrile |
PBDE | Polybrominated diphenyl ethers |
PCBs | Polychlorinated biphenyls |
PE | Polyethylene |
PE-PP | Polyethylene-polypropylene copolymer |
PET | Polyethylene terephthalate |
PMMA | Polymethyl methacrylate |
POPs | Persistent organic pollutants |
PP | Polypropylene |
PS | Polystyrene |
PES | Polyester |
PTFE | Polytetrafluoroethylene |
PU | Polyurethane |
PVA | Polyvinyl acetate |
PVC | Polyvinyl chloride |
ROS | Reactive oxygen species |
SBR | Styrene-butadiene rubber |
SEM | Scanning Electron Microscopy |
UV | Ultraviolet |
USFDA | United States Food and Drug Administration |
UNEA | United Nations Environment Assembly |
References
- Dawson, A.L.; Li, J.Y.; Kroon, F.J. Plastics for dinner: Store-bought seafood, but not wild-caught from the Great Barrier Reef, as a source of microplastics to human consumers. Environ. Adv. 2022, 8, 100249. [Google Scholar] [CrossRef]
- Brooks, W.R.; Rudd, M.E.; Cheng, S.H.; Silliman, B.R.; Gill, D.A.; Ahmadia, G.N.; Andradi-Brown, D.A.; Glew, L.; Campbell, L.M. Social and ecological outcomes of conservation interventions in tropical coastal marine ecosystems: A systematic map protocol. Environ. Evid. 2020, 9, 9. [Google Scholar] [CrossRef]
- Cisneros-Montemayor, A.M.; Pauly, D.; Weatherdon, L.V.; Ota, Y. A global estimate of seafood consumption by coastal indigenous peoples. PLoS ONE 2016, 11, e0166681. [Google Scholar] [CrossRef] [PubMed]
- Sioen, I.; De Henauw, S.; Van Camp, J.; Volatier, J.-L.; Leblanc, J.-C. Pharmacology, Comparison of the nutritional–toxicological conflict related to seafood consumption in different regions worldwide. Regul. Toxicol. Pharmacol. 2009, 55, 219–228. [Google Scholar] [CrossRef]
- Boerger, C.M.; Lattin, G.L.; Moore, S.L.; Moore, C. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 2010, 60, 2275–2278. [Google Scholar] [CrossRef]
- Amirkia, L.; Shakouri, A. Presence of microplastics in the digestive tract of skipjack tuna (Katsuwonus pelamis) in Chabahar Bay. Iran. J. Health Environ. 2024, 16, 629–652. [Google Scholar]
- Justino, A.K.; Ferreira, G.V.; Fauvelle, V.; Schmidt, N.; Lenoble, V.; Pelage, L.; Martins, K.; Travassos, P.; Lucena-Frédou, F. From prey to predators: Evidence of microplastic trophic transfer in tuna and large pelagic species in the southwestern Tropical Atlantic. Environ. Pollut. 2023, 327, 121532. [Google Scholar] [CrossRef]
- Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. Biological degradation of plastics and microplastics: A recent perspective on associated mechanisms and influencing factors. Microorganisms 2023, 11, 1661. [Google Scholar] [CrossRef]
- Padha, S.; Kumar, R.; Dhar, A.; Sharma, P. Microplastic pollution in mountain terrains and foothills: A review on source, extraction, and distribution of microplastics in remote areas. Environ. Res. 2022, 207, 112232. [Google Scholar] [CrossRef]
- Sharma, P. Microplastic Contamination in Food Processing: Role of Packaging Materials. Food Sci. Eng. 2024, 5, 271–287. [Google Scholar] [CrossRef]
- Ali, A.A.M.; Khalid, A.A.; Abd Razak, N.I.; Maulana, N.S.M.; Roslan, N.S.; Razmi, R.S.B.; Ruseli, W.M.A.W.; Ibrahim, Y.S.; Jaafar, M.; Shahrudin, R. A review on the presence of microplastics in environmental matrices within Southeast Asia: Elucidating risk information through an analysis of microplastic characteristics such as size, shape, and type. Water Emerg. Contam. Nanoplast 2024, 3, 12. [Google Scholar] [CrossRef]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [PubMed]
- Bajt, O. From plastics to microplastics and organisms. FEBS Open Bio 2021, 11, 954–966. [Google Scholar] [CrossRef] [PubMed]
- Habumugisha, T.; Zhang, Z.; Uwizewe, C.; Yan, C.; Ndayishimiye, J.C.; Rehman, A.; Zhang, X. Toxicological review of micro-and nano-plastics in aquatic environments: Risks to ecosystems, food web dynamics and human health. Ecotoxicol. Environ. Saf. 2024, 278, 116426. [Google Scholar] [CrossRef]
- De Sá, L.C.; Oliveira, M.; Ribeiro, F.; Rocha, T.L.; Futter, M.N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total Environ. 2018, 645, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B 2009, 364, 2027–2045. [Google Scholar] [CrossRef]
- Alberghini, L.; Truant, A.; Santonicola, S.; Colavita, G.; Giaccone, V. Microplastics in fish and fishery products and risks for human health: A review. Int. J. Environ. Res. Public Health 2022, 20, 789. [Google Scholar] [CrossRef]
- Kibria, G. Exposure routes of microplastics (MPs) to humans and possible risks of MPs to human health from food and the environment: A short review. J. Food Saf. Hyg. 2024, 10, 1–6. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Xu, E.G.; Larsson, H.C.; Tahara, R.; Maisuria, V.B.; Tufenkji, N. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 2019, 53, 12300–12310. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Presence of microplastics and nanoplastics in food, with particular focus on seafood. Efsa J. 2016, 14, e04501. [Google Scholar]
- Mondal, P.; Hoque, M.S.; Rahman, M.A.; Hasan, M.M.; Chakma, S.; Islam, M.S.; Shahjahan, M. Occurrence, characteristics and distribution of microplastics in commercial marine fishes of the Bay of Bengal. Mar. Pollut. Bull. 2024, 208, 117020. [Google Scholar] [CrossRef]
- Nodehi, R.N.; Hadi, M.; Hosseinzadeh, A.; Azizi, N. Comprehensive systematic review and meta-analysis of microplastic prevalence and abundance in freshwater fish species: The effect of fish species habitat, feeding behavior, and Fulton’s condition factor. J. Environ. Health Sci. Eng. 2024, 22, 365–380. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.M.; Rodríguez, Y.; Blasco-Monleon, S.; Porter, A.; Lewis, C.; Pham, C.K. Microplastic in the stomachs of open-ocean and deep-sea fishes of the North-East Atlantic. Environ. Pollut. 2020, 265, 115060. [Google Scholar] [CrossRef]
- Ueno, D.; Inoue, S.; Takahashi, S.; Ikeda, K.; Tanaka, H.; Subramanian, A.; Fillmann, G.; Lam, P.K.; Zheng, J.; Muchtar, M. Global pollution monitoring of butyltin compounds using skipjack tuna as a bioindicator. Environ. Pollut. 2004, 127, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Madigan, D.J.; Baumann, Z.; Carlisle, A.B.; Hoen, D.K.; Popp, B.N.; Dewar, H.; Snodgrass, O.E.; Block, B.A.; Fisher, N.S. Reconstructing transoceanic migration patterns of Pacific bluefin tuna using a chemical tracer toolbox. Ecology 2014, 95, 1674–1683. [Google Scholar] [CrossRef] [PubMed]
- Ordiano-Flores, A.; Galván-Magaña, F.; Rosiles-Martínez, R. Bioaccumulation of mercury in muscle tissue of yellowfin tuna, Thunnus albacares, of the eastern Pacific Ocean. Biol. Trace Elem. Res. 2011, 144, 606–620. [Google Scholar] [CrossRef]
- Xie, J.; Bian, Z.; Lin, T.; Tao, L.; Wu, Q.; Chu, M. Global occurrence, bioaccumulation factors and toxic effects of polychlorinated biphenyls in tuna: A review. Emerg. Contam. 2020, 6, 388–395. [Google Scholar] [CrossRef]
- Borriello, L.; Scivicco, M.; Cacciola, N.; Esposito, F.; Severino, L.; Cirillo, T. Microplastics, a global issue: Human exposure through environmental and dietary sources. Foods 2023, 12, 3396. [Google Scholar] [CrossRef]
- Lusher, A.L.; Mchugh, M.; Thompson, R.C. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013, 67, 94–99. [Google Scholar] [CrossRef]
- Sreeparvathi, C.K.; Amal, R.; Remia, K.M.; Devipriya, S.P. Assessment, Ecological assessment of microplastic contamination in surface water and commercially important edible fishes off Kadalundi estuary, Southwest coast of India. Environ. Monit. Assess. 2024, 196, 735. [Google Scholar] [CrossRef] [PubMed]
- Daniel, D.B.; Ashraf, P.M.; Thomas, S.N. Microplastics in the edible and inedible tissues of pelagic fishes sold for human consumption in Kerala, India. Environ. Pollut. 2020, 266, 115365. [Google Scholar] [CrossRef] [PubMed]
- Oßmann, B.E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Danopoulos, E.; Twiddy, M.; Rotchell, J.M. Microplastic contamination of drinking water: A systematic review. PLoS ONE 2020, 15, e0236838. [Google Scholar] [CrossRef]
- Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic pollution in table salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. [Google Scholar] [CrossRef]
- Di Fiore, C.; Sammartino, M.P.; Giannattasio, C.; Avino, P.; Visco, G. Microplastic contamination in commercial salt: An issue for their sampling and quantification. Food Chem. 2023, 404, 134682. [Google Scholar] [CrossRef]
- Shavali Gilani, P.; Moradian, M.-h.; Tajdar-oranj, B.; Basaran, B.; Peivasteh-roudsari, L.; Javanmardi, F.; Khodaei, S.M.; Mirza Alizadeh, A. Microplastics comprehensive review: Impact on honey bee, occurrence in honey and health risk evaluation. J. Appl. Ecol. 2025, 62, 1772–1794. [Google Scholar] [CrossRef]
- Basaran, B.; Özçifçi, Z.; Akcay, H.T.; Aytan, Ü. Microplastics in branded milk: Dietary exposure and risk assessment. J. Food Compos. Anal. 2023, 123, 105611. [Google Scholar] [CrossRef]
- Da Costa Filho, P.A.; Andrey, D.; Eriksen, B.; Peixoto, R.P.; Carreres, B.M.; Ambühl, M.E.; Descarrega, J.B.; Dubascoux, S.; Zbinden, P.; Panchaud, A. Detection and characterization of small-sized microplastics (≥5 µm) in milk products. Sci. Rep. 2021, 11, 24046. [Google Scholar] [CrossRef]
- Liebezeit, G.; Liebezeit, E. Synthetic particles as contaminants in German beers. Food Addit. Contam. Part. A 2014, 31, 1574–1578. [Google Scholar] [CrossRef]
- Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A.-J. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ. 2020, 703, 134699. [Google Scholar] [CrossRef]
- Prata, J.C.; Da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Briassoulis, D. Agricultural plastics as a potential threat to food security, health, and environment through soil pollution by microplastics: Problem definition. Sci. Total Environ. 2023, 892, 164533. [Google Scholar] [CrossRef] [PubMed]
- McGlade, J.; Samy Fahim, I.; Green, D.; Landrigan, P.; Andrady, A.; Costa, M.; Geyer, R.; Gomes, R.; Tan Shau Hwai, A.; Jambeck, J. From Pollution to Solution: A Global Assessment of Marine Litter and Plastic Pollution. UN environment programme (UNEP): Nairobi, Kenya, 2021; Available online: https://www.unep.org/resources/pollution-solution-global-assessment-marine-litter-and-plastic-pollution (accessed on 21 October 2021).
- Hadibarata, T.; Sathishkumar, P.; Prasetia, H.; Pusfitasari, E.D.; Tasfiyati, A.N.; Muzdalifah, D.; Waluyo, J.; Randy, A.; Ramadhaningtyas, D.P.; Zuas, O. Microplastic contamination in the skipjack tuna (Euthynnus affinis) collected from southern coast of Java, Indonesia. Chemosphere 2021, 276, 130185. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.; Fang, M.M.; Lin, J. Marine plastic pollution in Asia: All hands on deck! Chin. J. Environ. Law. 2019, 3, 11–46. [Google Scholar] [CrossRef]
- Peller, J.R.; Nelson, C.R.; Babu, B.G.; Iceman, C.; Kostelnik, E. A review of microplastics in freshwater environments: Locations, methods, and pollution loads. Contam. Our Water Identif. Remediat. Methods 2020, 4, 65–90. [Google Scholar]
- Lett, Z.; Hall, A.; Skidmore, S.; Alves, N. Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system. Environ. Pollut. 2021, 291, 118190. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Adetunji, C.O.; Dar, M.A.; Zhu, D. Microplastic Pollution; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Botterell, Z.L.; Bergmann, M.; Hildebrandt, N.; Krumpen, T.; Steinke, M.; Thompson, R.C.; Lindeque, P.K. Microplastic ingestion in zooplankton from the Fram Strait in the Arctic. Sci. Total Environ. 2022, 831, 154886. [Google Scholar] [CrossRef]
- Prusty, K.; Rabari, V.; Patel, K.; Ali, D.; Alarifi, S.; Yadav, V.K.; Sahoo, D.K.; Patel, A.; Trivedi, J. An assessment of microplastic contamination in a commercially important marine fish, Harpadon nehereus (Hamilton, 1822). Fishes 2023, 8, 432. [Google Scholar] [CrossRef]
- Pappoe, C.; Palm, L.M.N.D.; Denutsui, D.; Boateng, C.M.; Danso-Abbeam, H.; Serfor-Armah, Y. Occurrence of microplastics in gastrointestinal tract of fish from the Gulf of Guinea, Ghana. Mar. Pollut. Bull. 2022, 182, 113955. [Google Scholar] [CrossRef]
- Dias, B.; Amarathunga, A.; De Silva, D.; Bakir, A.; McGoran, A.; Athukorala, A.; Sivyer, D.; Reeve, C.; Maddumage, M. The Ecological Implication of Microplastic in Crabs from a Tropical Lagoon: Ingested Microplastic in Mud Crab Scylla serrata. Water 2024, 16, 3534. [Google Scholar] [CrossRef]
- Yücel, N.J.E.S.; Research, P. Detection of microplastic fibers tangle in deep-water rose shrimp (Parapenaeus longirostris, Lucas, 1846) in the northeastern Mediterranean Sea. Environ. Sci. Pollut. Res. 2023, 30, 10914–10924. [Google Scholar] [CrossRef] [PubMed]
- Devriese, L.I.; Van der Meulen, M.D.; Maes, T.; Bekaert, K.; Paul-Pont, I.; Frère, L.; Robbens, J.; Vethaak, A.D. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar. Pollut. Bull. 2015, 98, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, S.; Zhang, L.; Yu, K.; Wang, S.; Wang, Y. Field study of the microplastic pollution in sea snails (Ellobium chinense) from mangrove forest and their relationships with microplastics in water/sediment located on the north of Beibu Gulf. Environ. Pollut. 2020, 263, 114368. [Google Scholar] [CrossRef]
- Franceschini, S.; Cau, A.; D’Andrea, L.; Follesa, M.C.; Russo, T. Eating near the dump: Identification of nearby plastic hotspot as a proxy for potential microplastic contamination in the Norwegian lobster (Nephrops norvegicus). Front. Mar. Sci. 2021, 8, 682616. [Google Scholar] [CrossRef]
- Saeedi, M. How microplastics interact with food chain: A short overview of fate and impacts. J. Food Sci. Technol. 2024, 61, 403–413. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Wong, W.L.; Darmayati, Y.; Hatmanti, A.; Wulandari, N.F.; Sibero, M.T.; Afianti, N.F.; Hernandes, E.; Lopez-Martinez, F. Characteristics of microplastic in commercial aquatic organisms. Trop. Aquat. Soil. Pollut. 2022, 2, 134–158. [Google Scholar] [CrossRef]
- Chen, Q.; Lackmann, C.; Wang, W.; Seiler, T.B.; Hollert, H.; Shi, H. Microplastics Lead to Hyperactive Swimming Behaviour in Adult Zebrafish. Aquat. Toxicol. 2020, 224, 105521. [Google Scholar] [CrossRef]
- Yu, H.; Chen, Q.; Qiu, W.; Ma, C.; Gao, Z.; Chu, W.; Shi, H. Concurrent water-and foodborne exposure to microplastics leads to differential microplastic ingestion and neurotoxic effects in zebrafish. Water Res. 2022, 219, 118582. [Google Scholar] [CrossRef]
- Makhdoumi, P.; Hossini, H.; Pirsaheb, M. A review of microplastic pollution in commercial fish for human consumption. Rev. Environ. Health 2023, 38, 97–109. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef]
- Li, J.; Yang, D.; Li, L.; Jabeen, K.; Shi, H. Microplastics in commercial bivalves from China. Environ. Pollut. 2015, 207, 190–195. [Google Scholar] [CrossRef]
- Teng, J.; Wang, Q.; Ran, W.; Wu, D.; Liu, Y.; Sun, S.; Liu, H.; Cao, R.; Zhao, J. Microplastic in cultured oysters from different coastal areas of China. Sci. Total Environ. 2019, 653, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Koongolla, J.B.; Lin, L.; Pan, Y.-F.; Yang, C.-P.; Sun, D.-R.; Liu, S.; Xu, X.-R.; Maharana, D.; Huang, J.-S.; Li, H.-X. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environ. Pollut. 2020, 258, 113734. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Liu, Q.; Xu, J.; Li, W.; Lin, H. Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption. Environ. Pollut. 2022, 303, 119163. [Google Scholar] [CrossRef] [PubMed]
- Milne, M.H.; De Frond, H.; Rochman, C.M.; Mallos, N.J.; Leonard, G.H.; Baechler, B.R. Exposure of US adults to microplastics from commonly-consumed proteins. Environ. Pollut. 2024, 343, 123233. [Google Scholar] [CrossRef]
- Wootton, N.; Reis-Santos, P.; Dowsett, N.; Turnbull, A.; Gillanders, B.M. Low abundance of microplastics in commercially caught fish across southern Australia. Environ. Pollut. 2021, 290, 118030. [Google Scholar] [CrossRef]
- Ribeiro, F.; Okoffo, E.D.; O’Brien, J.W.; Fraissinet-Tachet, S.; O’Brien, S.; Gallen, M.; Samanipour, S.; Kaserzon, S.; Mueller, J.F.; Galloway, T. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by pyrolysis gas chromatography mass spectrometry. Environ. Sci. Technol. 2020, 54, 9408–9417. [Google Scholar] [CrossRef]
- Mandal, R. A critical review on microplastics in edible fruits and vegetables: A threat to human health. Multidiscip. Rev. 2025, 8, 2025088. [Google Scholar] [CrossRef]
- Panda, S.; Behera, R. Microplastic accumulation in agricultural soils–Impacts on crop microbiomes and soil health. J. Agric. Livest. Farming 2024, 1, 1–4. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; He, M.; Tsang, D.C.; Gupta, J.; Khan, E.; Harrad, S.; Hou, D.; Ok, Y.S.; Bolan, N.S. Microplastics as pollutants in agricultural soils. Environ. Pollut. 2020, 265, 114980. [Google Scholar] [CrossRef]
- Ullah, R.; Tsui, M.T.K.; Chen, H.; Chow, A.; Williams, C.; Ligaba-Osena, A. Microplastics interaction with terrestrial plants and their impacts on agriculture. J. Environ. Qual. 2021, 50, 1024–1041. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ingraffia, R.; de Souza Machado, A.A. Microplastic incorporation into soil in agroecosystems. Front. Plant Sci. 2017, 8, 1805. [Google Scholar] [CrossRef]
- Yadav, V.; Dhanger, S.; Sharma, J. Microplastics accumulation in agricultural soil: Evidence for the presence, potential effects, extraction, and current bioremediation approaches. J. Appl. Biol. Biotechnol. 2022, 10, 38–47. [Google Scholar] [CrossRef]
- Conti, G.O.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro-and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef] [PubMed]
- Aydın, R.B.; Yozukmaz, A.; Şener, İ.; Temiz, F.; Giannetto, D. Occurrence of microplastics in most consumed fruits and vegetables from Turkey and public risk assessment for consumers. Life 2023, 13, 1686. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Jin, T.; Tang, J.; Lyu, H.; Wang, L.; Gillmore, A.B.; Schaeffer, S.M. Activities of microplastics (MPs) in agricultural soil: A review of MPs pollution from the perspective of agricultural ecosystems. J. Agric. Food Chem. 2022, 70, 4182–4201. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, W.; Zou, G.; Wang, X.; Zhao, M.; Guo, S.; Chen, Y. Urban pipeline rainwater runoff is an important pathway for land-based microplastics transport to inland surface water: A case study in Beijing. Sci. Total Environ. 2023, 861, 160619. [Google Scholar] [CrossRef]
- Ren, S.-Y.; Kong, S.-F.; Ni, H.-G. Contribution of mulch film to microplastics in agricultural soil and surface water in China. Environ. Pollut. 2021, 291, 118227. [Google Scholar] [CrossRef]
- Petersen, F.; Hubbart, J.A. The occurrence and transport of microplastics: The state of the science. Sci. Total Environ. 2021, 758, 143936. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, T.; Kang, S.; Sillanpää, M. Importance of atmospheric transport for microplastics deposited in remote areas. Environ. Pollut. 2019, 254, 112953. [Google Scholar] [CrossRef]
- Fang, M.; Liao, Z.; Ji, X.; Zhu, X.; Wang, Z.; Lu, C.; Shi, C.; Chen, Z.; Ge, L.; Zhang, M. Microplastic ingestion from atmospheric deposition during dining/drinking activities. J. Hazard. Mater. 2022, 432, 128674. [Google Scholar] [CrossRef]
- Jahandari, A. Microplastics in the urban atmosphere: Sources, occurrences, distribution, and potential health implications. J. Hazard. Mater. Adv. 2023, 12, 100346. [Google Scholar] [CrossRef]
- Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ. 2020, 703, 135504. [Google Scholar] [CrossRef]
- Browne, M.A.; Galloway, T.S.; Thompson, R.C. Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 2010, 44, 3404–3409. [Google Scholar] [CrossRef]
- Järlskog, I.; Strömvall, A.-M.; Magnusson, K.; Galfi, H.; Björklund, K.; Polukarova, M.; Garção, R.; Markiewicz, A.; Aronsson, M.; Gustafsson, M. Traffic-related microplastic particles, metals, and organic pollutants in an urban area under reconstruction. Sci. Total Environ. 2021, 774, 145503. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.N.; Fryrear, D. Aerodynamic and Geometric Diameters of Airborne Particles. J. Sediment. Res. 2001, 71, 365–371. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, H.-X.; Lin, L.; Pan, Y.-F.; Liu, S.; Hou, R.; Xu, X.-R. Occurrence and human exposure risks of atmospheric microplastics: A review. Gondwana Res. 2022, 108, 200–212. [Google Scholar] [CrossRef]
- Guan, Q.F.; Yang, H.B.; Zhao, Y.X.; Han, Z.M.; Ling, Z.C.; Yang, K.P.; Yin, C.H.; Yu, S.H. Microplastics release from victuals packaging materials during daily usage. EcoMat 2021, 3, e12107. [Google Scholar] [CrossRef]
- Li, D.; Shi, Y.; Yang, L.; Xiao, L.; Kehoe, D.K.; Gun’ko, Y.K.; Boland, J.J.; Wang, J.J. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat. Food 2020, 1, 746–754. [Google Scholar] [CrossRef]
- Prata, J.C.; Dias-Pereira, P. Microplastics in terrestrial domestic animals and human health: Implications for food security and food safety and their role as sentinels. Animals 2023, 13, 661. [Google Scholar] [CrossRef]
- Bouwmeester, H.; Hollman, P.C.; Peters, R.J. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environ. Sci. Technol. 2015, 49, 8932–8947. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene: Review. Springerplus 2013, 2, 398. [Google Scholar] [CrossRef]
- Singh, R.; Ruj, B.; Sadhukhan, A.; Gupta, P. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 2: Effect of process temperature on product characteristics and their future applications. J. Environ. Manag. 2020, 261, 110112. [Google Scholar] [CrossRef]
- Al Mamun, A.; Prasetya, T.A.E.; Dewi, I.R.; Ahmad, M. Microplastics in human food chains: Food becoming a threat to health safety. Sci. Total Environ. 2023, 858, 159834. [Google Scholar] [CrossRef]
- Nayanathara Thathsarani Pilapitiya, P.; Ratnayake, A.S. The world of plastic waste: A review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- Fasake, V.; Shelake, P.S.; Srivastava, A.; Dashora, K. Characteristics of different plastic materials, properties and their role in food packaging. Curr. Nutr. Food Sci. 2021, 17, 944–954. [Google Scholar] [CrossRef]
- Novák, I.; Popelka, A.; Špitalský, Z.; Krupa, I.; Tavman, S. Polyolefin in packaging and food industry. In Polyolefin Compounds and Materials: Fundamentals and Industrial Applications; Springer International Publishing: Cham, Switzerland, 2016; pp. 181–199. [Google Scholar]
- Trinh, B.M.; Chang, B.P.; Mekonnen, T.H. The barrier properties of sustainable multiphase and multicomponent packaging materials: A review. Prog. Mater. Sci. 2023, 133, 101071. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, J.; Sohn, J.; Kim, C. Health Effects of Microplastic Exposures: Current Issues and Perspectives in South Korea. Yonsei Med. J. 2023, 64, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, Y.; Zhang, S.; Dong, Y.; Pang, Q.; Lynch, I.; Xie, C.; Guo, Z.; Zhang, P. From marine to freshwater environment: A review of the ecotoxicological effects of microplastics. Ecotoxicol. Environ. Saf. 2023, 251, 114564. [Google Scholar] [CrossRef]
- Pérez-Reverón, R.; Álvarez-Méndez, S.J.; González-Sálamo, J.; Socas-Hernández, C.; Díaz-Peña, F.J.; Hernández-Sánchez, C.; Hernández-Borges, J. Nanoplastics in the soil environment: Analytical methods, occurrence, fate and ecological implications. Environ. Pollut. 2023, 317, 120788. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.; Jiang, G. Microplastics exposure promotes the proliferation of skin cancer cells but inhibits the growth of normal skin cells by regulating the inflammatory process. Ecotoxicol. Environ. Saf. 2023, 267, 115636. [Google Scholar] [CrossRef]
- Hunt, K.; Davies, A.; Fraser, A.; Burden, C.; Howell, A.; Buckley, K.; Harding, S.; Bakhbakhi, D. Gynaecology, Exposure to microplastics and human reproductive outcomes: A systematic review. BJOG Int. J. Obstet. Gynaecol. 2024, 131, 675–683. [Google Scholar] [CrossRef]
- Liang, J.; Ji, F.; Wang, H.; Zhu, T.; Rubinstein, J.; Worthington, R.; Abdullah, A.L.B.; Tay, Y.J.; Zhu, C.; George, A. Unraveling the threat: Microplastics and nano-plastics‘ impact on reproductive viability across ecosystems. Sci. Total Environ. 2024, 913, 169525. [Google Scholar] [CrossRef]
- Dubey, I.; Khan, S.; Kushwaha, S. Developmental and reproductive toxic effects of exposure to microplastics: A review of associated signaling pathways. Front. Toxicol. 2022, 4, 901798. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Y.; Li, G.; Xiong, Y.; Zhang, Y.; Zhang, M. The hidden threat: Unraveling the impact of microplastics on reproductive health. Sci. Total Environ. 2024, 935, 173177. [Google Scholar] [CrossRef]
- Ali, W.; Buriro, R.S.; Gandahi, J.A.; Chen, Y.; ul Aabdin, Z.; Bhutto, S.; Sun, J.; Zhu, J.; Liu, Z.; Zou, H. A critical review on male-female reproductive and developmental toxicity induced by micro-plastics and nano-plastics through different signaling pathways. Chem. Biol. Interact. 2024, 394, 110976. [Google Scholar] [CrossRef] [PubMed]
- Fard, N.J.H.; Mohammadi, M.J.; Jahedi, F. Effects of nano and microplastics on the reproduction system: In vitro and in vivo studies review. Food Chem. Toxicol. 2023, 178, 113938. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Vidili, G.; Casu, G.; Navarese, E.P.; Sechi, L.A.; Chen, Y. Microplastics and nanoplastics in cardiovascular disease—A narrative review with worrying links. Front. Toxicol. 2024, 6, 1479292. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C. Microplastics and nanoplastics in atheromas and cardiovascular events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef]
- Guraka, A.; Souch, G.; Duff, R.; Brown, D.; Moritz, W.; Kermanizadeh, A. Microplastic-induced hepatic adverse effects evaluated in advanced quadruple cell human primary models following three weeks of repeated exposure. Chemosphere 2024, 364, 143032. [Google Scholar] [CrossRef]
- Cheng, W.; Li, X.; Zhou, Y.; Yu, H.; Xie, Y.; Guo, H.; Wang, H.; Li, Y.; Feng, Y.; Wang, Y. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids. Sci. Total Environ. 2022, 806, 150328. [Google Scholar] [CrossRef]
- Cao, J.; Xu, R.; Geng, Y.; Xu, S.; Guo, M. Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice. Environ. Pollut. 2023, 320, 121068. [Google Scholar] [CrossRef]
- Bora, S.S.; Gogoi, R.; Sharma, M.R.; Anshu; Borah, M.P.; Deka, P.; Bora, J.; Naorem, R.S.; Das, J.; Teli, A.B. Microplastics and human health: Unveiling the gut microbiome disruption and chronic disease risks. Front. Cell Infect. Microbiol. 2024, 14, 1492759. [Google Scholar] [CrossRef]
- Huang, Z.; Weng, Y.; Shen, Q.; Zhao, Y.; Jin, Y. Microplastic: A potential threat to human and animal health by interfering with the intestinal barrier function and changing the intestinal microenvironment. Sci. Total Environ. 2021, 785, 147365. [Google Scholar] [CrossRef]
- Ali, S.; Peña, A.N.; Lafazanos, Y.S.; Ehrenpreis, E.D. What Gastroenterologists Should Know About Microplastics and Nanoplastics. J. Clin. Gastroenterol. 2025, 59, 105–109. [Google Scholar] [CrossRef]
- Duman, S.; Doyen, P.; Merveillie, P.; Andersson, N.; Bayeuil, R.; Grard, T.; Dehaut, A.; Duflos, G. Optimization of a method designed to extract and characterize microplastics in different packaged fish products. Food Control 2023, 154, 110029. [Google Scholar] [CrossRef]
- Tan, H.; Yue, T.; Xu, Y.; Zhao, J.; Xing, B. Microplastics reduce lipid digestion in simulated human gastrointestinal system. Environ. Sci. Technol. 2020, 54, 12285–12294. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E. Local and systemic effects of microplastic particles through cell damage, release of chemicals and drugs, dysbiosis, and interference with the absorption of nutrients. J. Toxicol. Environ. Health B 2024, 27, 315–344. [Google Scholar] [CrossRef] [PubMed]
- Alqurashi, A.; El-Naggar, S.; Soliman, A. Exploring Bacterial Interactions with Microplastics in the Human Gut Microbiome. Egypt. Acad. J. Biol. Sci. C Physiol. Mol. Biol. 2024, 16, 351–364. [Google Scholar]
- Fournier, E.; Etienne-Mesmin, L.; Grootaert, C.; Jelsbak, L.; Syberg, K.; Blanquet-Diot, S.; Mercier-Bonin, M. Microplastics in the human digestive environment: A focus on the potential and challenges facing in vitro gut model development. J. Hazard. Mater. 2021, 415, 125632. [Google Scholar] [CrossRef]
- Bhuyan, M.S. Effects of microplastics on fish and in human health. Front. Environ. Sci. 2022, 10, 827289. [Google Scholar] [CrossRef]
- Prüst, M.; Meijer, J.; Westerink, R.H. The plastic brain: Neurotoxicity of micro-and nanoplastics. Part. Fibre Toxicol. 2020, 17, 24. [Google Scholar] [CrossRef]
- Sofield, C.E.; Anderton, R.S.; Gorecki, A.M. Mind over microplastics: Exploring microplastic-induced gut disruption and gut-brain-axis consequences. Curr. Issues Mol. Biol. 2024, 46, 4186–4202. [Google Scholar] [CrossRef]
- Peivasteh-Roudsari, L.; Barzegar-Bafrouei, R.; Sharifi, K.A.; Azimisalim, S.; Karami, M.; Abedinzadeh, S.; Asadinezhad, S.; Tajdar-Oranj, B.; Mahdavi, V.; Alizadeh, A.M. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023, 9, e18140. [Google Scholar] [CrossRef]
- Guzzetti, E.; Sureda, A.; Tejada, S.; Faggio, C. Microplastic in marine organism: Environmental and toxicological effects. Environ. Toxicol. Pharmacol. 2018, 64, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhao, Y.; Shi, Z.; Li, Z.; Liang, X. Ecotoxicoproteomic assessment of microplastics and plastic additives in aquatic organisms: A review. Comp. Biochem. Physiol. D 2020, 36, 100713. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A.L.; O‘Donnell, C.; Officer, R.; O‘Connor, I. Microplastic interactions with North Atlantic mesopelagic fish. ICES J. Mar. Sci. 2016, 73, 1214–1225. [Google Scholar] [CrossRef]
- Wan, J.K.; Chu, W.L.; Kok, Y.Y.; Lee, C.S. Distribution of microplastics and nanoplastics in aquatic ecosystems and their impacts on aquatic organisms, with emphasis on microalgae. Rev. Environ. Contam. Toxicol. 2019, 246, 133–158. [Google Scholar]
- Jovanović, B. management, Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integr. Environ. Assess. Manag. 2017, 13, 510–515. [Google Scholar] [CrossRef]
- Foley, C.J.; Feiner, Z.S.; Malinich, T.D.; Höök, T.O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 2018, 631, 550–559. [Google Scholar] [CrossRef]
- Markic, A.; Nicol, S. In a nutshell: Microplastics and fisheries. SPC Fish. Newslett 2014, 144, 27–29. [Google Scholar]
- Kelly, B.C.; Ikonomou, M.G.; Blair, J.D.; Morin, A.E.; Gobas, F.A. Food web specific biomagnification of persistent organic pollutants. Science 2007, 317, 236–239. [Google Scholar] [CrossRef]
- Alava, J.J. Modeling the bioaccumulation and biomagnification potential of microplastics in a cetacean foodweb of the northeastern pacific: A prospective tool to assess the risk exposure to plastic particles. Front. Mar. Sci. 2020, 7, 566101. [Google Scholar] [CrossRef]
- Miller, M.E.; Hamann, M.; Kroon, F. Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PLoS ONE 2020, 15, e0240792. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef]
- Yu, Y.; Kumar, M.; Bolan, S.; Padhye, L.P.; Bolan, N.; Li, S.; Wang, L.; Hou, D.; Li, Y. Various additive release from microplastics and their toxicity in aquatic environments. Environ. Pollut. 2024, 343, 123219. [Google Scholar] [CrossRef]
- Siwach, S.; Bharti, M.; Yadav, S.; Dolkar, P.; Modeel, S.; Yadav, P.; Negi, T.; Negi, R.K. Unveiling the ecotoxicological impact of microplastics on organisms-the persistent organic pollutant (POP): A comprehensive review. J. Contam. Hydrol. 2024, 266, 104397. [Google Scholar] [CrossRef]
- Huang, W.; Song, B.; Liang, J.; Niu, Q.; Zeng, G.; Shen, M.; Deng, J.; Luo, Y.; Wen, X.; Zhang, Y. Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. J. Hazard. Mater. 2021, 405, 124187. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Ziccardi, L.M.; Edgington, A.; Hentz, K.; Kulacki, K.J.; Kane Driscoll, S. Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review. Environ. Toxicol. Chem. 2016, 35, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- DiBona, E.; Haley, C.; Geist, S.; Seemann, F. Developmental polyethylene microplastic fiber exposure entails subtle reproductive impacts in juvenile Japanese Medaka (Oryzias latipes), Environmental Toxicology and Chemistry. Environ. Toxicol. Chem. 2022, 41, 2848–2858. [Google Scholar] [CrossRef]
- Setälä, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef]
- de Sá, L.C.; Luís, L.G.; Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 2015, 196, 359–362. [Google Scholar] [CrossRef]
- Subaramaniyam, U.; Allimuthu, R.S.; Vappu, S.; Ramalingam, D.; Balan, R.; Paital, B.; Panda, N.; Rath, P.K.; Ramalingam, N.; Sahoo, D.K. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front. Physiol. 2023, 14, 1217666. [Google Scholar] [CrossRef]
- Abolghait, S.; Garbaj, A. Determination of cadmium, lead and mercury residual levels in meat of canned light tuna (Katsuwonus pelamis and Thunnus albacares) and fresh little tunny (Euthynnus alletteratus) in Libya. Open Vet. J. 2015, 5, 130–137. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, J.; Zhang, P.; Su, L.; Hong, X.; Qiu, Y.; Chen, Z. This is what we know: Assessing the stock status of the data-poor skipjack tuna (Katsuwonus pelamis) fishery in the South China Sea. Front. Mar. Sci. 2023, 10, 1095411. [Google Scholar] [CrossRef]
- Araújo, C.V.; Cedeño-Macias, L.A. Heavy metals in yellowfin tuna (Thunnus albacares) and common dolphinfish (Coryphaena hippurus) landed on the Ecuadorian coast. Sci. Total Environ. 2016, 541, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Yemmen, C.; Gargouri, M. Potential hazards associated with the consumption of Scombridae fish: Infection and toxicity from raw material and processing. J. Appl. Microbiol. 2022, 132, 4077–4096. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour, A.; Chamani, A.; Mirzaei, R.; Mohebbi-Nozar, S.L. Occurrence, abundance and characteristics of microplastics in some commercial fish of northern coasts of the Persian Gulf. Mar. Pollut. Bull. 2021, 171, 112693. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Pan, Z.; Sun, D.; Xie, S.; Zhou, A.; Wang, J.; Zou, J. Occurrence and distribution of microplastics in commercial fishes from estuarine areas of Guangdong, South China. Chemosphere 2020, 260, 127656. [Google Scholar] [CrossRef]
- Ragesh, S.; Abdul Jaleel, K.U.; Nikki, R.; Abdul Razaque, M.A.; Muhamed Ashraf, P.; Ravikumar, C.N.; Abdulaziz, A.; Dinesh Kumar, P.K. Environmental and ecological risk of microplastics in the surface waters and gastrointestinal tract of skipjack tuna (Katsuwonus pelamis) around the Lakshadweep Islands, India. Environ. Sci. Pollut. Res. 2024, 31, 22715–22735. [Google Scholar] [CrossRef]
- Jamal, N.T.; Islam, M.R.U.; Sultana, S.; Banik, P.; Nur, A.-A.U.; Albeshr, M.F.; Arai, T.; Yu, J.; Hossain, M.B. Microplastic contamination in some popular seafood fish species from the northern Bay of Bengal and possible consumer risk assessment. Food Control 2025, 171, 111114. [Google Scholar] [CrossRef]
- Wu, L.; Dai, X.; Xu, J.; Ou, D.; Wang, L.; Lin, H.; He, W.; Lin, H.; Du, R.; Huang, H. Assessment of microplastic contamination in an eastern Pacific tuna (Katsuwonus pelamis) and evaluation of its health risk implication through molecular docking and metabolomics studies. Food Chem. 2023, 426, 136507. [Google Scholar] [CrossRef]
- Musa, S.M.; Sining, S.; Arba‘in, A.I.; Amizuri, M.I.; Lazim, A.M.; Ghaffar, M.A. Toxic tuna tales: Tracing microplastic pathways in mackerel tuna (Euthynnus affinis), longtail tuna (Thunnus tonggol), and bullet tuna (Auxis rochei). Mar. Pollut. Bull. 2025, 212, 117584. [Google Scholar] [CrossRef]
- Yona, D.; Evitantri, M.R.; Wardana, D.S.; Pitaloka, D.A.; Ningrum, D.; Fuad, M.; Prananto, Y.P.; Harlyan, L.I.; Isobe, A. Microplastics in Organs of Commercial Marine Fishes from Five Fishing Ports in Java Island, Indonesia. Llmu Kelaut. Indones. J. Mar. Sci. 2022, 27, 199–214. [Google Scholar]
- Chagnon, C.; Thiel, M.; Antunes, J.; Ferreira, J.L.; Sobral, P.; Ory, N.C. Plastic ingestion and trophic transfer between Easter Island flying fish (Cheilopogon rapanouiensis) and yellowfin tuna (Thunnus albacares) from Rapa Nui (Easter Island). Environ. Pollut. 2018, 243, 127–133. [Google Scholar] [CrossRef]
- Kandeyaya, K.; Ranatunga, S.; Ranatunga, R. Occurrence of microplastics in some commercially important seafood varieties from Negombo, Sri Lanka. Reg. Stud. Mar. Sci. 2023, 62, 102958. [Google Scholar] [CrossRef]
- Di Giacinto, F.; Di Renzo, L.; Mascilongo, G.; Notarstefano, V.; Gioacchini, G.; Giorgini, E.; Bogdanović, T.; Petričević, S.; Listeš, E.; Brkljača, M. Detection of Microplastics, Polymers and Additives in Edible Muscle of Swordfish (X. Gladius) and Bluefin Tuna (T. Thynnus) Caught in the Mediterranean Sea. J. Sea Res. 2023, 192, 102359. [Google Scholar] [CrossRef]
- Neto, J.G.B.; Rodrigues, F.L.; Ortega, I.; Rodrigues, L.d.S.; Lacerda, A.L.; Coletto, J.L.; Kessler, F.; Cardoso, L.G.; Madureira, L.; Proietti, M.C. Ingestion of plastic debris by commercially important marine fish in southeast-south Brazil. Environ. Pollut. 2020, 267, 115508. [Google Scholar] [CrossRef] [PubMed]
- My, T.T.A.; Dat, N.D.; Hung, N.Q.; Viet, P.H. Micro-debris accumulated in marine fishes collected from Central Vietnam: Characteristics and implication for human health risk. Water Air Soil. Pollut. 2023, 234, 632. [Google Scholar] [CrossRef]
- Widyastuti, S.; Abidin, A.S.; Hikmaturrohmi, H.; Ilhami, B.T.K.; Kurniawan, N.S.H.; Jupri, A.; Candri, D.A.; Frediansyah, A.; Prasedya, E.S. Microplastic Contamination in Different Marine Species of Bintaro Fish Market, Indonesia. Sustainability 2023, 15, 9836. [Google Scholar] [CrossRef]
- Sathish, M.N.; Jeyasanta, I.; Patterson, J. Occurrence of microplastics in epipelagic and mesopelagic fishes from Tuticorin, Southeast coast of India. Sci. Total Environ. 2020, 720, 137614. [Google Scholar] [CrossRef]
- Rudyansyah Ismail, M.; Rosidah; Lili, W.; Maqbul, I.; Nika Alina, D.; Ernawati; Abdurrahman, U.; Rachmawati, S. Identification of Microplastic in the Digestive Tracts of Mackerel Tuna, Lemuru and Sea Water from Pangandaran, Indonesia. Egypt. J. Aquat. Biol. Fish. 2025, 29, 1451–1462. [Google Scholar] [CrossRef]
- Hasan, M.R.; Das, D. What makes the second-largest apparel-exporting nation? An in-depth analysis of competitiveness and comparative advantage in Bangladesh’s apparel industry. Compet. Rev. 2025, 35, 498–528. [Google Scholar] [CrossRef]
- Naim, M.N.H.; Kafy, A.A. Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: A remote sensing and statistical approach. Environ. Chall. 2021, 4, 100107. [Google Scholar] [CrossRef]
- Connor, R.; United Nations Economic and Social Commission for Western Asia, Economic and Social Commission for Asia and the Pacific; United Nations Economic Commission for Latin America and the Caribbean. The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource; Alliance of Agricultural Information Services: Beltsville, MD, USA, 2017; Available online: https://wedocs.unep.org/20.500.11822/20448 (accessed on 25 June 2025).
- Shimul, S.A.; Bakeya, Z.; Ananna, J.N.; Sarker, A.; Rana, S.; Nahid, S.A.A. Microplastic pollution in two industrial locations of the Karnaphuli River, Bangladesh: Insights on abundance, types, and characteristics. Fish. Aquat. Sci. 2023, 26, 715–725. [Google Scholar] [CrossRef]
- Homer, S.T. Asia’s battle against the perpetual plastic problem. Emerald Emerg. Mark. Case Stud. 2024, 14, 1–22. [Google Scholar] [CrossRef]
- Lebdioui, A. The political economy of moving up in global value chains: How Malaysia added value to its natural resources through industrial policy. Rev. Int. Polit. Econ. 2022, 29, 870–903. [Google Scholar] [CrossRef]
- Mahagamage, M.; Gajanayake, P.; Gamage, S.; Samarathunga, D.; Peiris, B.; Marasinghe, M.; Igalavithana, A.; Abeynayaka, H.; Abeynayaka, A. Water quality and floating microplastics pollution along Southern to Northwestern Coast, Sri Lanka. Sri Lanka J. Aquat. Sci. 2025, 30, 37–52. [Google Scholar] [CrossRef]
- de Moraes, N.G.; Olivatto, G.P.; de Oliveira Lourenço, F.M.; Lourenço, A.L.A.; Garcia, G.M.; Pimpinato, R.F.; Tornisielo, V.L. Contamination by microplastics and sorbed organic pollutants in the surface waters of the Tietê River, São Paulo-SP, Brazil. Heliyon 2024, 10, e36047. [Google Scholar] [CrossRef] [PubMed]
- Escrobot, M.; Pagioro, T.A.; Martins, L.R.R.; de Freitas, A.M. Microplastics in Brazilian coastal environments: A systematic review. Rev. Bras. De. Ciências Ambient. 2024, 59, e1719. [Google Scholar] [CrossRef]
- EU; European Parliament; Council of the European Union. Directive (EU) 2019/904 of the European Parliament and of the Council on the reduction of the impact of certain plastic products on the environment. Off. J. Eur. Union 2019, 155, 1–19. [Google Scholar]
- EU. Commission Regulation (EU) 2023/2055 of 25 September 2023 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as regards synthetic polymer microparticles. Off. J. Eur. Union 2023, 27, 67–88. [Google Scholar]
- Susnjara, N. France the First to Introduce Mandatory Microfiber Filters on Washing Machines from 2025. 2021. Available online: https://planetcare.org/ (accessed on 21 June 2025).
- OSPAR. OSPAR Background Document on Pre-Production Plastic Pellets. In OSPAR Convention; OSPAR: London, UK, 2018. [Google Scholar]
- Directive, S.F. Directive 2008/56/EC of the European Parliament and of the Council. J. Counc. Decis. 2008, 17, 19–40. [Google Scholar]
- Cózar, A.; Sanz-Martín, M.; Martí, E.; González-Gordillo, J.I.; Ubeda, B.; Gálvez, J.Á.; Irigoien, X.; Duarte, C.M. Plastic accumulation in the Mediterranean Sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef]
- Llorca, M.; Álvarez-Muñoz, D.; Ábalos, M.; Rodríguez-Mozaz, S.; Santos, L.H.; León, V.M.; Campillo, J.A.; Martínez-Gómez, C.; Abad, E.; Farré, M. Microplastics in Mediterranean coastal area: Toxicity and impact for the environment and human health. Trends Environ. Anal. Chem. 2020, 27, e00090. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, V.; Chatterjee, S. Microplastics in the Mediterranean Sea: Sources, pollution intensity, sea health, and regulatory policies. Front. Mar. Sci. 2021, 8, 634934. [Google Scholar] [CrossRef]
- Kazour, M.; Jemaa, S.; Issa, C.; Khalaf, G.; Amara, R. Microplastics pollution along the Lebanese coast (Eastern Mediterranean Basin): Occurrence in surface water, sediments and biota samples. Sci. Total Environ. 2019, 696, 133933. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.T.; Chung, Y.P.; Lee, Y.Y.; Wu, T.L.; Huynh, T.T.T.; Nguyen, P.T.; Lu, M.J.; Huang, B.W.; Sriram, B.; Wang, S.F. Emerging analytical frontiers in microplastic detection: From spectroscopy to smart sensor technologies. Talanta Open 2025, 12, 100514. [Google Scholar] [CrossRef]
- Olesen, K.B.; van Alst, N.; Simon, M.; Vianello, A.; Liu, F.; Vollertsen, J. Analysis of Microplastics Using FTIR imaging: Application Note. Agilent Technologies, Inc.: Santa Clara, CA, USA, 2018; Available online: www.agilent.com/chem (accessed on 25 June 2025).
- Bouchard, M.; Rivenc, R.; Menke, C.; Learner, T. Micro-FTIR and micro-Raman study of paints used by Sam Francis. E Preserv. Sci. 2009, 6, 27–37. [Google Scholar]
- Vasudeva, M.; Warrier, A.K.; Kartha, V.; Unnikrishnan, V. Advances in microplastic characterization: Spectroscopic techniques and heavy metal adsorption insights. TrAC Trends Anal. Chem. 2025, 183, 118111. [Google Scholar] [CrossRef]
- Xue, Q.; Wang, N.; Yang, H.; Yang, J.; Bai, H. Detection of microplastics based on spatial heterodyne Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 283, 121712. [Google Scholar] [CrossRef]
- Ghanadi, M.; Joshi, I.; Dharmasiri, N.; Jaeger, J.E.; Burke, M.; Bebelman, C.; Symons, B.; Padhye, L.P. Quantification and characterization of microplastics in coastal environments: Insights from laser direct infrared imaging. Sci. Total Environ. 2024, 912, 168835. [Google Scholar] [CrossRef]
- Sathish, N.; Jeyasanta, K.I.; Patterson, J. Abundance, characteristics and surface degradation features of microplastics in beach sediments of five coastal areas in Tamil Nadu, India. Mar. Pollut. Bull. 2019, 142, 112–118. [Google Scholar] [CrossRef]
- Xu, J.L.; Thomas, K.V.; Luo, Z.; Gowen, A.A. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC Trends Anal. Chem. 2019, 119, 115629. [Google Scholar] [CrossRef]
Species | Common Name | Number of Samples | Sampling Location | Polymer | Size | Shape | Color | Organ | Concentration MPs/g | Abundance MPs/Individual | Detection Method | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Thunnus tonggol | Longtail tuna | 3 | Northern coasts of the Persian Gulf, Iran | NR ** | 23–75 µm (dominant), 75–150 µm, 150–225 µm, 225–5000 µm * | Fiber (dominant), fragment * | Black (dominant), red, blue, green, transparent * | Total gill and gut | NR | 5.71 | NR | [158] |
Gill | 0.02 ± 0.01 | 5.67 ± 1.53 | ||||||||||
Gut | 0.03 ± 0.03 | 3.00 ± 2.65 | ||||||||||
Katsuwonus pelamis | Skipjack tuna | 10 | Fishing Ports in Java Island, Indonesia | NR | NR | Fiber (dominant), fragment, film | NR | Gill, muscle and GIT | 0.92 ± 0.45 | 16.9 ± 5.86 | FTIR | [164] |
Euthynnus affinis | Mackerel tuna | 50 | Southern coast of Java, Indonesia | Polybrominated diphenyl ethers (PBDE) | <0.25 mm, 0.25–0.5 mm, 0.5–1 mm (dominant), 1–5 mm | Filament (dominant), angular, round | NR | GIT | NR | 4 ± 3.06 | GC-Mass | [45] |
Euthynnus affinis | Mackerel tuna | 69 | Terengganu, Pahang, Selangor, and Jahor states of Malaysia | Ethylene propylene diene monomer (EPDM), Melamine formaldehyde (MF), Polyamide/nylon, Polytetrafluoroethylene (PTFE), PU, Rayon | 0.01–1.00 mm (dominant), 1.01–2.00 mm, 2.01–3.00 mm, 3.01–4.00 mm, 4.01–5.00 mm | Fiber, fragment | Black (dominant), blue, brown, green, orange, pink, red, transparent, white, yellow | GIT, gill and muscle | 0.68 ± 0.05 | NR | micro-FTIR | [163] |
Thunnus tonggol | Longtail tuna | 31 | EPDM, MF, Polyamide/nylon, (PTFE), PU, Rayon | Black (dominant), blue, green, orange, red, transparent, white, yellow | 1.22 ± 0.14 | NR | ||||||
Auxis rochei | Bullet tuna | 25 | Polyamide/nylon, PET, PTFE, Rayon | Black (dominant), blue, green, orange, purple, red, transparent, white, yellow | 0.48 ± 0.06 | NR | ||||||
Thunnus albacares | Yellowfin tuna | 50 | Raba Nui/easter island south pacific subtropical gyre, Chile | PP | 0.3 to 0.6 mm | Fragment (dominant), flake | Green, blue, white | GIT | NR | NR | ATR-FTIR and micro-FTIR | [165] |
Katsuwonus pelamis | Skipjack tuna | 10 | Negombo fishing harbour, Sri Lanka | LDPE, HDPE, PS, PP, Nylon-6,6 | _ | Fiber (dominant), fragment, film, foam, spheres, pellets | Blue (dominant), redblack, yellow, orange, transparent | Muscle, gill, gut | 1.42 ± 0.29 | NR | FTIR | [166] |
Katsuwonus pelamis | Skipjack tuna | 22 | Eastern pacific | PES (dominant), PET, PS, PP, Polyacrylonitrile (PAN), Polyvinyl chloride (PVC), polyethylene-polypropylene copolymer (PE-PP), PE | 0.1–0.5 mm, 0.5–1 mm, 1–2.5 mm (dominant), 2.5–5 mm | Fiber (dominant), fragment, film, line | Transparent (dominant), white, blue, pink, black, yellow, green, prpule, blue, red, gray | Total gill, esophagus, muscle, intestine, stomach | NR | NR | Raman | [162] |
PES, PS, PET, PE-PP, PP | 1 to 2.5 mm (dominant), 0.1–0.5 mm, 0.5–1 mm, 2.5–5 mm | Fiber (dominant), fragment | Transparent (dominant), white, blue, purple, pink, black, green | Gill | 0.01 ± 0.02 | NR | ||||||
PES, PET (dominant), PS, PE, PE-PP, PVC | 0.1–0.5 mm, 0.5–1 mm, 1–2.5 mm (dominant), 2.5–5 mm | Fiber (dominant), fragment, film | Transparent (dominant), white, blue, purple | Esophagus | 0.04 ± 0.09 | NR | ||||||
PET (dominant), PES, PP, PS, PAN, PE | 0.1–0.5 mm, 0.5–1 mm, 1–2.5 mm (dominant), 2.5–5 mm | Fiber (dominant), thread, fragment, film | Transparent (dominant), blue, white, grey, black, pink | Muscle | 0.01 ± 0.01 | NR | ||||||
PES (dominant), PET, PS, PP, PVC | 0.1–0.5 mm, 0.5–1 mm, 1–2.5 mm (dominant), 2.5–5 mm | Fiber (dominant), film | White (dominant), transparent, pink, yellow, blue, black, red, grey, green, purple | Intestine | 0.02 ± 0.03 | NR | ||||||
PES, PP, PET (dominant), PS, PAN, PVC | 1–2.5 mm (dominant), 0.1–0.5 mm, 2.5–5 mm, 5–10 mm | Fiber (dominant), fragment, film | White (dominant), transparent, blue, black, pink, red | Stomach | 0.02 ± 0.05 | NR | ||||||
Thunnus thynnus | Bluefin tuna | 5 | Adriatic Sea, Italy | PE, PET, PEVA, poly(ethylene-co-vinyl acetate); PES, PP (dominant), PS, PU, PVAc, PVC | <10 µm | Fragment (dominant), filament, spheroid | Blue (dominant), brown, black, yellow, green, sky blue, red, transparent | Muscle | 0.16 to 0.27 | NR | FTIR and Raman | [167] |
Katsuwonus pelamis | Skipjack tuna | 30 | Kavaratti Island, India | PE (dominant), PP, PES, PS, PA | 0.01–0.5 mm, 0.5–1 mm (dominant), 1–1.5 mm, 1.5–2 mm, 2–2.5 mm, 2.5–3 mm, 3–3.5 mm, 3.5–4 mm, 4–4.5 mm, 4.5–5 mm | Fiber (dominant), fragment, film, foam, microbead | Blue (dominant), black, red, green, white, transparent | GIT | NR | 4 ± 3 | ATR-FTIR and Scanning Electron Microscopy (SEM) | [160] |
Thunnus albacares | Yellowfin tuna | 102 | Southwestern Tropical Atlantic | SBR (dominant), PA, PET, PE, PU, LDPE, PVC, ABS, Alkyd Varnish, PP, PS, Poly methyl methacrylate (PMMA), Poly tetrafluoroethylene (PTFE), Chlorinated Polyisoprene | 0.77 ± 0.92 mm | Fiber (dominant), film, foam, fragment, pellet | White, blue, black, yellow, red | GUT | NR | 10.33 ± 14.06 | Laser Directed Infra-Red spectroscopy | [7] |
Thunnus obesus | Bigeye tuna | 63 | SBR, PA, PET, PE | NR | Foam (dominant), fiber, pellet, fragment | NR | NR | NR | ||||
Thunnus alalunga | White tuna | 3 | Boulogne-sur-mer, France | PET (dominant), PP, PE, PVC, PTFE, PP, Phenoxy resin, Ethylene-vinyl acetate (EVA) | 0–50 µm, 50–100 µm, 100–500 µm (dominant), 500–5000 µm | Fiber (dominant), pellet, fragment | NR | Muscle | 0.33 ± 0.008 | NR | micro-FTIR | [125] |
Katsuwonus pelamis | Skipjack tuna | 120 | Southeast-south coast of Brazil | PA (dominant), PU, PP, PS | 0.001–5 mm | Fiber/line (dominant), rigid fragment, flexible fragment | Transparent (dominant), white, black, green, red, blue | GIT | NR | 1.65 ± 1.2 | FTIR with an IRP restige-21 SHIMADZU mass spectrophotometer | [168] |
Euthynnus affinis | Mackerel tuna | 12 | Thua Thien Hue province, Central Vietnam | Rayon, PET, PA, polyacrylic | 100 μm (dominant), 100–200 μm, 200–500 μm | Fiber (dominant), fragment | White transparent (dominant), yellow-orange, blue-green, red-pink, black-grey | Fish tissue | 1.0 ± 0.4 | NR | FTIR-ATR | [169] |
Auxis rochei | Bullet tuna | 20 | Bintaro market in Lombok, west nusa tenggara province, Indonesia | PA | 100–500 µm (dominant), 500–1000 µm, >1000 µm | Fiber (dominant), film, fragment, foam, pellet | Black, yellow, red, blue, green, white | Skin and muscle tissue | 0.216 ± 0.87 | NR | FTIR | [170] |
Thunnas obesus | Bigeye tuna | 8 | Northern coastline of the Bay of Bengal, Bangladesh | EVA, nylon, PE, PP * | <0.5 mm (dominant), 0.5–1 mm, 1–5 mm | Fiber (dominant), sheet | Violet (dominant), transparent, blue, green, red, black, pink, yellow | Total muscle, GIT, Gill | NR | 42.13 ± 13.58 | FTIR | [161] |
Muscle | 0.375 ± 0.17 | NR | ||||||||||
GIT | 1.37 ± 0.62 | NR | ||||||||||
Gill | 1.57 ± 0.58 | NR | ||||||||||
Katsuwonus pelamis | Skipjack tuna | 50 | Azores archipelago, North-East Atlantic | PS, PP, PVC, PE | 0.02–1 mm | Fiber, thread, fragment (dominant) | White, blue, black (dominant) | Stomach | NR | 0.08 ± 0.05 | micro-FTIR | [24] |
1–5 mm | NR | 0.02 ± 0.02 | ||||||||||
>5 mm | NR | 0.06 ± 0.03 | ||||||||||
Katsuwonus pelamis | Skipjack tuna | 10 | Tuticorin, located on the southeast coast of India | PE, PEST, PA, PS, PP, Acrylic * | 500 μm to 1 mm, 1–5 mm | Fiber, fragment (equal) | Blue, transparent, green, red, black * | Total body and gut | NR | 0.2 ± 0.06 | FTIR and SEM-EDAX | [171] |
Body | 6.67E-05 ± 0.0000001 | NR | ||||||||||
Gut | 0.001 ± 0.0005 | NR | ||||||||||
Katsuwonus pelamis | Skipjack tuna | 10 | Kuakata, Bay of Bengal, Bangladesh | PE (dominant), PP, PES | <0.5 mm, 0.5–1 mm, 1–5 mm (dominant), >5 mm | Filament and fiber (dominant), fragment | Transparent (dominant), black, white, green, red, blue | Muscle | 7.16 ± 1.36 | NR | FTIR-ATR | [22] |
Gut | 2.16 ± 0.26 | NR | ||||||||||
Gill | 2.66 ± 0.40 | NR | ||||||||||
NR | Mackerel tuna | NR | Pangandaran East Coast, Indonesia | PP, PES | NR | Fragment (dominant), film, fiber, pellets | NR | Intestine | 4.61 ± 2.61 | NR | FTIR-ATR | [172] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peivasteh-roudsari, L.; Javanmardi, F.; Shavali Gilani, P.; Tajdar-oranj, B.; Doost, Z.S.; Yazdanbakhsh, H.; Basaran, B. A Systematic Review of Microplastic Contamination in Tuna Species: General Pathways into the Food Chain with Ecotoxicological and Human Health Perspectives. Foods 2025, 14, 3547. https://doi.org/10.3390/foods14203547
Peivasteh-roudsari L, Javanmardi F, Shavali Gilani P, Tajdar-oranj B, Doost ZS, Yazdanbakhsh H, Basaran B. A Systematic Review of Microplastic Contamination in Tuna Species: General Pathways into the Food Chain with Ecotoxicological and Human Health Perspectives. Foods. 2025; 14(20):3547. https://doi.org/10.3390/foods14203547
Chicago/Turabian StylePeivasteh-roudsari, Leila, Fardin Javanmardi, Parisa Shavali Gilani, Behrouz Tajdar-oranj, Zohreh Safayi Doost, Hananeh Yazdanbakhsh, and Burhan Basaran. 2025. "A Systematic Review of Microplastic Contamination in Tuna Species: General Pathways into the Food Chain with Ecotoxicological and Human Health Perspectives" Foods 14, no. 20: 3547. https://doi.org/10.3390/foods14203547
APA StylePeivasteh-roudsari, L., Javanmardi, F., Shavali Gilani, P., Tajdar-oranj, B., Doost, Z. S., Yazdanbakhsh, H., & Basaran, B. (2025). A Systematic Review of Microplastic Contamination in Tuna Species: General Pathways into the Food Chain with Ecotoxicological and Human Health Perspectives. Foods, 14(20), 3547. https://doi.org/10.3390/foods14203547