Changes and Analytical Techniques in Volatile Flavor Compounds in Dried Agricultural Products: A Review
Abstract
1. Introduction
2. Reactions Associated with VOCs During Drying
2.1. Maillard Reaction
2.2. Lipid Oxidation Reactions
2.3. Enzymatic Reactions
2.4. Fermentation Reactions
2.5. Additional Reactions
3. VOCs Changes During Drying
3.1. Aldehydes
3.2. Ketones
3.3. Esters
3.4. Alcohols
| No. | Agricultural Products | Key Volatile Compounds |
|---|---|---|
| 1 | Chili pepper (Capsicum annuum L.) [50] | (E)-2-nonanal, 3-methylbutanal-M, 2-methylbutanal-M |
| 2 | Dendrocalamus brandisii shoots [51] | e 2-Nonenal, 3-Methylbutanal, trans-2,cis-6-Nonadienal |
| 3 | Rosmarinus officinalis L. [52] | Camphor, α-pinene, and α-terpineol |
| 4 | Turnip (Brassica rapa L.) [53] | 2-azido-2,3,3-trimethyl-butane and hexanal |
| 5 | Zanthoxylum bungeanum Leaves [54] | Linalool and α-terpinyl |
| 6 | Persimmon (Diospyros kaki L.) [55] | Decanal |
| 7 | Eel (Muraenesox cinereus) [56] | Hexanal, nonanal, benzaldehyde, octanal, and oct-1-en-3-ol |
| 8 | Thyme (Thymus vulgaris L.) [57] | Thymol, carvacrol |
| 9 | Beef loin [58] | Toluene, 1-Butanol |
| 10 | Ginger (Zingiber officinale Roscoe) [59] | Dihydro-α-curcumene |
| 11 | Walnut (Juglans regia L.) [60] | (E,E)-2,4-decadienal, oct-1-en-3-ol and pyrazines |
| 12 | Tree tomato [61] | Eucalyptol |
4. Techniques for the Detection of VOCs
4.1. Electronic Nose
4.2. Gas Chromatography
4.2.1. Gas Chromatography–Mass Spectrometry
4.2.2. Gas Chromatography–Ion Mobility Spectrometry
5. Analytical Methods of VOCs
5.1. Descriptive Sensory Analysis
5.2. Odor Activity Value
6. The Impact of Drying Methods on the VOCs
6.1. Hot Air Drying
6.2. Microwave Drying
6.3. Vacuum Freeze Drying
6.4. Infrared Drying
6.5. Other Drying Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, F.; Wang, Q.; Liu, W.; Xiao, H.; Hu, J.; Duan, X.; Sun, X.; Liu, C.; Wang, H. Changes and correlation analysis of volatile flavor compounds, amino acids, and soluble sugars in durian during different drying processes. Food Chem. X 2024, 21, 101238. [Google Scholar] [CrossRef]
- Saha, B.; Bucknall, M.P.; Arcot, J.; Driscoll, R. Profile changes in banana flavour volatiles during low temperature drying. Food Res. Int. 2018, 106, 992. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Y.; Chen, P.; Jiang, M.; Zhu, W. Research Progress on Post-Harvest Drying, Storage, and Processing of Peanuts: A Review. Food Rev. Int. 2025, 1–27. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, H.; Wu, Q.; Hao, L.; Pan, D.; Dang, Y. The flavor quality of dried Lentinus edodes with different species and drying methods (charcoal roasting and naturally drying). J. Food Meas. Charact. 2020, 14, 613–622. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Mujumdar, A.S. Development of flavor during drying and applications of edible mushrooms: A review. Dry. Technol. 2021, 39, 1685–1703. [Google Scholar] [CrossRef]
- Okonkwo, C.E.; Onyeaka, H.; Olaniran, A.F.; Bamgboye, F.J.I.; Nwaiwu, O.; Ukwuru, M.; Adeyanju, A.A.; Nwonuma, C.O.; Alejolowo, O.O.; Inyinbor, A.A.; et al. Changes in flavor profile of vegetable seasonings by innovative drying technologies: A review. J. Food Sci. 2024, 89, 6818–6838. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, L.; Xu, A.; Zhao, Y.; Wang, Y.; Liu, Z.; Xu, P. Thermochemical reactions in tea drying shape the flavor of tea: A review. Food Res. Int. 2024, 197, 115188. [Google Scholar] [CrossRef]
- Deepika, K.; Hamid; Sunakshi, G.; Abhimanyu, T. Maillard reaction in different food products: Effect on product quality, human health and mitigation strategies. Food Control 2023, 153, 109911. [Google Scholar] [CrossRef]
- Ashbala, S.; Chenping, Z.; Jianchun, X.; Xuelian, Y. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem. 2022, 393, 133416. [Google Scholar] [CrossRef]
- Lund, M.N.; Ray, C.A. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef]
- Amaya, D.B.R.; Farfan, J.A. The Maillard reactions: Pathways, consequences, and control. Vitam. Horm. 2024, 125, 149–182. [Google Scholar]
- Hang, Y.; Ruyue, Z.; Fangwei, Y.; Yunfei, X.; Yahui, G.; Weirong, Y.; Weibiao, Z. Control strategies of pyrazines generation from Maillard reaction. Trends Food Sci. Technol. 2021, 112, 795–807. [Google Scholar] [CrossRef]
- Yang, H.; Li, W.; Lu, B.; Zi, L.; Xu, N.; Guo, L. Effect of different hot air drying process on flavor compounds and Maillard reaction products of Boletus edulis by HS-SPME/GC-MS coupled with multivariate analysis. LWT 2024, 198, 116055. [Google Scholar]
- Wu, J.; Pan, N.; Chen, X.; Shan, D.; Shi, H.; Qiu, Y.; Liu, Z.; Su, Y.; Weng, J. Comparative evaluation of physical characteristics and volatile flavor components of Bangia fusco-purpurea subjected to hot air drying and vacuum freeze-drying. Curr. Res. Food Sci. 2023, 7, 100624. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, Y.; Guo, M.; Zhang, W.; Sang, Y.; Wang, H.; Cheng, S.; Chen, G. Comparative elucidation of bioactive and volatile components in dry mature jujube fruit (Ziziphus jujuba Mill.) subjected to different drying methods. Food Chem. X 2022, 14, 100311. [Google Scholar] [CrossRef]
- Ma, X.; Zheng, C.; Zhou, Q.; Huang, C.; Wang, W.; Huang, Y.; Liu, C. Comparison evaluation pretreatments on the quality characteristics, oxidative stability, and volatile flavor of walnut oil. Food Chem. 2024, 448, 139124. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Hossain, A. Role of Lipids in Food Flavor Generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef] [PubMed]
- Wojtasik-Kalinowska, I.; Szpicer, A.; Binkowska, W.; Hanula, M.; Marcinkowska-Lesiak, M.; Poltorak, A. Effect of Processing on Volatile Organic Compounds Formation of Meat—Review. Appl. Sci. 2023, 13, 705. [Google Scholar] [CrossRef]
- Zeng, J.; Song, Y.; Fan, X.; Luo, J.; Song, J.; Xu, J.; Xue, C. Effect of lipid oxidation on quality attributes and control technologies in dried aquatic animal products: A critical review. Crit. Rev. Food Sci. Nutr. 2023, 64, 10397–10418. [Google Scholar] [CrossRef]
- Lianxin, G.; Kunlun, L.; Huiyan, Z. Lipid oxidation in foods and its implications on proteins. Front. Nutr. 2023, 10, 1192199. [Google Scholar] [CrossRef]
- Sandun, A.E.D.N.; Kichang, N.; Uk, A.D. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants 2021, 10, 1587. [Google Scholar] [CrossRef]
- Han, G.; Zhang, L.; Li, Q.; Wang, Y.; Chen, Q.; Kong, B. Impacts of different altitudes and natural drying times on lipolysis, lipid oxidation and flavour profile of traditional Tibetan yak jerky. Meat Sci. 2020, 162, 108030. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.; Cao, R.; Liu, Q.; Su, D.; Zhang, Y.; Yu, Y. The role of ultraviolet radiation in the flavor formation during drying processing of Pacific saury (Cololabis saira). J. Sci. Food Agric. 2024, 104, 8099–8108. [Google Scholar] [CrossRef]
- Kaban, G.; Kızılkaya, P.; Börekçi, B.S.; Hazar, F.Y.; Kabil, E.; Kaya, M. Microbiological properties and volatile compounds of salted-dried goose. Poult. Sci. 2020, 99, 2293–2299. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Liu, X.; Qin, Y.; Yan, J.; Li, R.; Yang, Q. The impact of different drying methods on the physical properties, bioactive components, antioxidant capacity, volatile components and industrial application of coffee peel. Food Chem. X 2023, 19, 100807. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Qin, L.; Geng, Y.; Kong, Q.; Wang, S.; Lin, S. The Aroma Fingerprints and Discrimination Analysis of Shiitake Mushrooms from Three Different Drying Conditions by GC-IMS, GC-MS and DSA. Foods 2021, 10, 2991. [Google Scholar] [CrossRef]
- Mukhtar, A.; Latif, S.; Mueller, J. Effect of Heat Exposure on Activity Degradation of Enzymes in Mango Varieties Sindri, SB Chaunsa, and Tommy Atkins during Drying. Molecules 2020, 25, 5396. [Google Scholar] [CrossRef]
- Hu, J.; Sun, X.; Yang, F.; Xiao, H.; Liu, C.; Duan, X.; Wu, Y.; Wang, H. Changes and correlation analysis of volatile compounds, key enzymes, and fatty acids in lemon flavedo under different drying methods. Dry. Technol. 2023, 41, 1739–1754. [Google Scholar] [CrossRef]
- Hansen, E.B. Redox reactions in food fermentations. Curr. Opin. Food Sci. 2018, 19, 98–103. [Google Scholar] [CrossRef]
- Wang, F.; Wang, M.; Xu, L.; Qian, J.; Xu, B.; Gao, X.; Ding, Z.; Cui, K. Application and Possible Mechanism of Microbial Fermentation and Enzyme Catalysis in Regulation of Food Flavour. Foods 2025, 14, 1909. [Google Scholar] [CrossRef]
- Lee, D.; Lee, H.J.; Yoon, J.W.; Kim, M.; Jo, C. Effect of Different Aging Methods on the Formation of Aroma Volatiles in Beef Strip Loins. Foods 2021, 10, 146. [Google Scholar] [CrossRef]
- Juhari, N.H.; Martens, H.J.; Petersen, M.A. Changes in Physicochemical Properties and Volatile Compounds of Roselle (Hibiscus sabdariffa L.) Calyx during Different Drying Methods. Molecules 2021, 26, 6260. [Google Scholar] [CrossRef]
- Li, Z.; Ha, M.; Frank, D.; McGilchrist, P.; Warner, R.D. Volatile Profile of Dry and Wet Aged Beef Loin and Its Relationship with Consumer Flavour Liking. Foods 2021, 10, 3113. [Google Scholar] [CrossRef]
- Fang, X.; Xu, W.; Jiang, G.; Sui, M.; Xiao, J.; Ning, Y.; Niaz, R.; Wu, D.; Feng, X.; Chen, J.; et al. Monitoring the dynamic changes in aroma during the whole processing of Qingzhuan tea at an industrial scale: From fresh leaves to finished tea. Food Chem. 2024, 439, 137810. [Google Scholar] [CrossRef]
- Chen, P.; Qiu, Y.; Chen, S.; Zhao, Y.; Wu, Y.; Wang, Y. Insights into the effects of different drying methods on protein oxidation and degradation characteristics of golden pompano (Trachinotus ovatus). Front. Nutr. 2022, 9, 1063836. [Google Scholar] [CrossRef]
- Rajkumar, G.; Rajan, M.; Araujo, H.C.; Jesus, M.S.; Leite Neta, M.T.S.; Sandes, R.D.D.; Narain, N. Comparative evaluation of volatile profile of tomato subjected to hot air, freeze, and spray drying. Dry. Technol. 2021, 39, 383–391. [Google Scholar] [CrossRef]
- Bi, Y.; Ni, J.; Xue, X.; Zhou, Z.; Tian, W.; Orsat, V.; Yan, S.; Peng, W.; Fang, X. Effect of different drying methods on the amino acids, α-dicarbonyls and volatile compounds of rape bee pollen. Food Sci. Hum. Wellness 2024, 13, 517–527. [Google Scholar] [CrossRef]
- Yang, B.; Huang, J.; Jin, W.; Sun, S.; Hu, K.; Li, J. Effects of Drying Methods on the Physicochemical Aspects and Volatile Compounds of Lyophyllum decastes. Foods 2022, 11, 3249. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, A.; Adiletta, G.; Di Matteo, M.; Panfili, G.; Niro, S.; Gentile, C.; Farina, V.; Cinquanta, L.; Corona, O. Evolution of Carotenoid Content, Antioxidant Activity and Volatiles Compounds in Dried Mango Fruits (Mangifera Indica L.). Foods 2020, 9, 1424. [Google Scholar] [CrossRef]
- Sung, W.; Lin, H.V.; Liao, W.; Fang, M. Effects of Halogen Lamp and Traditional Sun Drying on the Volatile Compounds, Color Parameters, and Gel Texture of Gongliao Gelidium Seaweed. Foods 2023, 12, 4508. [Google Scholar] [CrossRef]
- Liu, H.; Hui, T.; Fang, F.; Li, S.; Wang, Z.; Zhang, D. The formation of key aroma compounds in roasted mutton during the traditional charcoal process. Meat Sci. 2022, 184, 108689. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Wang, J.; Ji, X.; Min, W.; Yan, W. HS-GC-IMS detection of volatile organic compounds in yak milk powder processed by different drying methods. LWT 2021, 141, 110855. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Hengchao, E.; He, X.; Li, J.; Zhao, X.; Zhou, C. Characteristic fingerprints and comparison of volatile flavor compounds in Morchella sextelata under different drying methods. Food Res. Int. 2023, 172, 113103. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhang, Y.; Qiao, Y.; Wang, C.; Wang, X.; Chen, B.; Kang, J.; Cheng, Z.; Jiang, Y. A comparative evaluation of nutritional characteristics, physical properties, and volatile profiles of sweet corn subjected to different drying methods. Cereal Chem. 2022, 99, 405–420. [Google Scholar]
- Abouelenein, D.; Mustafa, A.M.; Angeloni, S.; Borsetta, G.; Vittori, S.; Maggi, F.; Sagratini, G.; Caprioli, G. Influence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams. Molecules 2021, 26, 4153. [Google Scholar] [CrossRef]
- Khatun, H.; Claes, J.; Smets, R.; De Winne, A.; Akhtaruzzaman, M.; Van Der Borght, M. Characterization of freeze-dried, oven-dried and blanched house crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) by means of their physicochemical properties and volatile compounds. Eur. Food Res. Technol. 2021, 247, 1291–1305. [Google Scholar]
- Zhang, J.; Ding, C.; Lu, J.; Wang, H.; Bao, Y.; Han, B.; Zhu, J.; Duan, S.; Song, Z.; Chen, H. Effects of electrohydrodynamics on drying characteristics and volatile profiles of goji berry (Lycium barbarum L.). Food Sci. Technol. 2024, 200, 116149. [Google Scholar]
- Xu, B.; Feng, M.; Chitrakar, B.; Wei, B.; Wang, B.; Zhou, C.; Ma, H.; Wang, B.; Chang, L.; Ren, G.; et al. Selection of drying techniques for Pingyin rose on the basis of physicochemical properties and volatile compounds retention. Food Chem. 2022, 385, 132539. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Bhandari, B.; Wang, B. Effects of infrared freeze drying on volatile profile, FTIR molecular structure profile and nutritional properties of edible rose flower (Rosa rugosa flower). J. Sci. Food Agric. 2020, 100, 4791–4800. [Google Scholar] [CrossRef]
- Liu, M.; Hu, L.; Deng, N.; Cai, Y.; Li, H.; Zhang, B.; Wang, J. Effects of different hot-air drying methods on the dynamic changes in color, nutrient and aroma quality of three chili pepper (Capsicum annuum L.) varieties. Food Chem. X 2024, 22, 101262. [Google Scholar] [CrossRef]
- Wang, H.; Wu, B.; Zhang, M.; Chen, L.; Liu, Y.; Li, Z.; Li, Z.; Kan, H.; Cao, C. Comparative analysis of drying characteristics, physicochemical properties and volatile flavor components of Dendrocalamus brandisii shoots under four drying techniques. Food Sci. Technol. 2024, 205, 116509. [Google Scholar] [CrossRef]
- Ali, A.; Oon, C.C.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdylo, A.; Turkiewicz, I.P.; Szumny, A.; Łyczko, J. Volatile and polyphenol composition, anti-oxidant, anti-diabetic and anti-aging properties, and drying kinetics as affected by convective and hybrid vacuum microwave drying of Rosmarinus officinalis L. Ind. Crops Prod. 2020, 151, 112463. [Google Scholar] [CrossRef]
- Xue, Y.L.; Han, H.T.; Liu, C.J.; Gao, Q.; Li, J.H.; Zhang, J.H.; Li, D.J.; Liu, C.Q. Multivariate analyses of the volatile components in fresh and dried turnip (Brassica rapa L.) chips via HS-SPME-GC-MS. J. Food Sci. Technol. 2020, 57, 3390–3399. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Wang, Y.; Kan, H.; Hao, J.; Hu, Q.; Lu, B.; Liu, Y. Comparison of different drying techniques for Zanthoxylum bungeanum leaves: Changes in color, microstructure, antioxidant capacities, and volatile components. LWT 2023, 188, 115469. [Google Scholar] [CrossRef]
- de Jesus, M.S.; Araujo, H.C.S.; Denadai, M.; Sandes, R.D.D.; Nogueira, J.P.; Leite Neta, M.T.S.; Narain, N. Effect of different drying methods on the phenolic and volatile compounds of persimmon (Diospyros kaki L.). J. Food Meas. Charact. 2023, 17, 2576–2594. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Chen, X.; Chen, D.; Deng, S. Use of relative odor activity value (ROAV) to link aroma profiles to volatile compounds: Application to fresh and dried eel (Muraenesox cinereus). Int. J. Food Prop. 2020, 23, 2257–2270. [Google Scholar] [CrossRef]
- Yildiz, G.; Cox, G.; Moran, L. Identification of aroma compounds of dried and fresh thyme (Thymus vulgaris L.) by gas chromatography-olfactometry and gas chromatography-mass spectroscopy analysis. Lat. Am. Appl. Res. 2021, 51, 51–55. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, X.; Wen, R.; Sun, C.; Yu, Q. Changes in meat quality and volatile flavor compounds profile in beef loin during dry-aging. Food Sci. Technol. 2024, 205, 116500. [Google Scholar] [CrossRef]
- Amoah, R.E.; Wireko-Manu, F.D.; Oduro, I.; Saalia, F.K.; Ellis, W.O.; Dodoo, A.; Dermont, C.; Manful, M.E.; Flora, V.R.; Romeo, F.V. Effects of Pretreatment and Drying on the Volatile Compounds of Sliced Solar-Dried Ginger (Zingiber officinale Roscoe) Rhizome. J. Food Qual. 2022, 2022, 1274679. [Google Scholar] [CrossRef]
- Liu, B.; Chang, Y.; Sui, X.; Wang, R.; Liu, Z.; Sun, J.; Chen, H.; Sun, B.; Zhang, N.; Xia, J. Characterization of Predominant Aroma Components in Raw and Roasted Walnut (Juglans regia L.). Food Anal. Methods 2022, 15, 717–727. [Google Scholar] [CrossRef]
- Ndisanze, M.A.; Koca, I. Dehydration and Rehydration Kinetics Modeling in the Phytochemical, Aroma, and Antioxidant Capacity of Tree Tomato Fruit Dried with Microwaves and Freeze Driers: A Comparative Study. Processes 2022, 10, 1437. [Google Scholar] [CrossRef]
- Chen, H.; Huo, D.; Zhang, J. Gas Recognition in E-Nose System: A Review. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, Y. Electronic nose and its application in the food industry: A review. Eur. Food Res. Technol. 2024, 250, 21–67. [Google Scholar] [CrossRef]
- Bu, Y.; Zhao, Y.; Zhou, Y.; Zhu, W.; Li, J.; Li, X. Quality and flavor characteristics evaluation of red sea bream surimi powder by different drying techniques. Food Chem. 2023, 428, 136714. [Google Scholar] [CrossRef]
- Han, J.; Liang, J.; Yu, X.; Li, Y.; Huang, C.; Rehman, A.U.; Mukhtar, A.; Zhou, C.; Lv, W. Vacuum freeze drying combined with catalyzed infrared drying of chive: Effects on flavor and quality characterization. Dry. Technol. 2024, 42, 1442–1455. [Google Scholar] [CrossRef]
- Xu, C.H.; Chen, G.S.; Xiong, Z.H.; Fan, Y.X.; Liu, Y. Applications of solid-phase microextraction in food analysis. Trac. Trends Anal. Chem. 2016, 80, 12–29. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, B.; He, X.; Yu, F. Flavor Variations in Precious Tricholoma matsutake under Different Drying Processes as Detected with HS-SPME-GC-MS. Foods 2024, 13, 2123. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Ju, R.; Mujumdar, A. Novel nondestructive NMR method aided by artificial neural network for monitoring the flavor changes of garlic by drying. Dry. Technol. 2021, 39, 1184–1195. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, G.; Chen, K.; Chen, X.; Hong, Q.; Kan, J. Assessment of fresh star anise (Illicium verum Hook. f.) drying methods for influencing drying characteristics, color, flavor, volatile oil and shikimic acid. Food Chem. 2021, 342, 128359. [Google Scholar] [CrossRef]
- Zhu, X.; Healy, L.E.; Sevindik, O.; Sun, D.; Selli, S.; Kelebek, H.; Tiwari, B.K. Impacts of novel blanching treatments combined with commercial drying methods on the physicochemical properties of Irish brown seaweed Alaria esculenta. Food Chem. 2022, 369, 130949. [Google Scholar] [CrossRef]
- Feng, J.; Hao, L.; Zhu, H.; Li, M.; Liu, Y.; Duan, Q.; Jia, L.; Wang, D.; Wang, C. Combining with volatilomic profiling and chemometrics to explore the volatile characteristics in five different dried Zanthoxylum bungeanum maxim. Food Res. Int. 2024, 175, 113719. [Google Scholar] [CrossRef]
- Yan, Y.; Lu, W.; Tian, T.; Shu, N.; Yang, Y.; Fan, S.; Han, X.; Ge, Y.; Xu, P. Analysis of Volatile Components in Dried Fruits and Branch Exudates of Schisandra chinensis with Different Fruit Colors Using GC-IMS Technology. Molecules 2023, 28, 6865. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Chen, Y.; Ding, S.; Zhou, H.; Jiang, L.; Yi, Y.; Deng, F.; Wang, R. Changes in volatile flavor compounds of peppers during hot air drying process based on headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). J. Sci. Food Agric. 2020, 100, 3087–3098. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, Y.P.; Blank, I.; Li, F.; Li, C.; Liu, Y. GC × GC-ToF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions. Food Res. Int. 2021, 142, 110222. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, H.; Xiao, H.; Fang, X.; Zhang, W.; Ma, C. Effects of drying temperature on the drying characteristics and volatile profiles of Citrus reticulata Blanco peels under two stages of maturity. Dry. Technol. 2022, 40, 2456–2469. [Google Scholar] [CrossRef]
- Rong, Y.; Xie, J.; Yuan, H.; Wang, L.; Liu, F.; Deng, Y.; Jiang, Y.; Yang, Y. Characterization of volatile metabolites in Pu-erh teas with different storage years by combining GC-E-Nose, GC–MS, and GC-IMS. Food Chem. X 2023, 18, 100693. [Google Scholar] [CrossRef]
- Gyawali, R.; Feng, X.; Chen, Y.P.; Lorenzo, J.M.; Ibrahim, S.A. A review of factors influencing the quality and sensory evaluation techniques applied to Greek yogurt. J. Dairy Res. 2022, 89, 213–219. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Pan, N.; Liu, S.; Su, Y.; Xiao, M.; Shi, W.; Liu, Z. The effects of five different drying methods on the quality of semi-dried Takifugu obscurus fillets. LWT 2022, 161, 113340. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Jiang, Y.; Qian, M.C.; Deng, Y.; Xie, J.; Li, J.; Wang, J.; Dong, C.; Yuan, H. Aroma dynamic characteristics during the drying process of green tea by gas phase electronic nose and gas chromatography-ion mobility spectrometry. LWT 2022, 154, 112691. [Google Scholar] [CrossRef]
- Yu, X.; Chen, X.; Li, Y.; Li, L. Effect of Drying Methods on Volatile Compounds of Citrus reticulata Ponkan and Chachi Peels as Characterized by GC-MS and GC-IMS. Foods 2022, 11, 2662. [Google Scholar] [CrossRef]
- Liu, D.; Shen, Q.; Lin, K.; Wang, F.; Bu, Z.; Peng, J.; Brennan, C.; Benjakul, S.; Xiao, G.; Ma, L. The aroma profiles of dried gonggans: Characterization of volatile compounds in oven-dried and freeze-dried gonggan. Food Res. Int. 2024, 191, 114716. [Google Scholar]
- Lai, P.; Li, L.; Wei, Y.; Sun, J.; Tang, B.; Yang, Y.; Chen, J.; Wu, L. GC-IMS-Based Volatile Characteristic Analysis of Hypsizygus marmoreus Dried by Different Methods. Foods 2024, 13, 1322. [Google Scholar]
- Li, K.; Li, W.; Zhang, Y.; Cheng, J.; Wang, J.; Yang, L.; Wang, C. Effects of different drying temperatures on flavor related quality of blueberry. J. Berry Res. 2023, 13, 7–20. [Google Scholar] [CrossRef]
- Wu, J.; Ling, C.; Chen, Y.; Li, Z.; Song, F.; Raghavan, G.S.V.; Jin, G.; Song, C. Monitoring and control of microwave drying with volatiles detection of celery stalks. Comput. Electron. Agric. 2021, 187, 106256. [Google Scholar] [CrossRef]
- Zhao, R.; Xiao, H.; Liu, C.; Wang, H.; Wu, Y.; Ben, A.; Wang, Y. Dynamic changes in volatile and non-volatile flavor compounds in lemon flavedo during freeze-drying and hot-air drying. LWT 2023, 175, 114510. [Google Scholar] [CrossRef]
- Liao, Y.; Ding, Y.; Wu, Y.; Du, Q.; Xia, J.; Jia, J.; Lin, H.; Benjakul, S.; Zhang, B.; Hu, Y. Analysis of volatile compounds and flavor fingerprint in hairtail (Trichiurus lepturus) during air-drying using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Front. Nutr. 2023, 9, 1088128. [Google Scholar]
- Wang, L.; Xie, J.; Deng, Y.; Jiang, Y.; Tong, H.; Yuan, H.; Yang, Y. Volatile profile characterization during the drying process of black tea by integrated volatolomics analysis. LWT 2023, 184, 115039. [Google Scholar] [CrossRef]
- Ma, R.; Cheng, H.; Li, X.; Zhang, G.; Zheng, J. Evaluating How Different Drying Techniques Change the Structure and Physicochemical and Flavor Properties of Gastrodia elata. Foods 2024, 13, 1210. [Google Scholar] [CrossRef]
- Dai, Y.; Cao, Y.; Zhou, W.; Zhu, D. Hot Air Drying of Sipunculus nudus: Effect of Microwave-Assisted Drying on Quality and Aroma. Foods 2023, 12, 733. [Google Scholar] [CrossRef]
- Lemarcq, V.; Sioriki, E.; van de Walle, D.; Dewettinck, K. Influence of convection and microwave roasting on roasting degree, microstructure and aroma profile of cocoa beans. Eur. Food Res. Technol. 2022, 248, 2383–2392. [Google Scholar] [CrossRef]
- Luo, L.; Wang, J.; Li, M.; Zhang, Y.; Wang, Y.; Xu, Y.; Chen, H.; Zhu, Y.; Feng, Z.; Yin, J. Characterization of the key odorants and investigation of the effects of drying methods on the aroma, taste, color and volatile profiles of the fruit of Clausena anisum-olens (Blanco) Merr. LWT 2023, 175, 114476. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, B.; Yagoub, A.E.A.; Ma, H.; Sun, Y.; Xu, X.; Yu, X.; Zhou, C. Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chem. 2021, 343, 128404. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, Y.; Mehmood, A.; Lu, T.; Chen, X. Unraveling the temporal changes of Maillard reaction products and aroma profile in coffee leaves during hot-air drying. J. Food Compos. Anal. 2024, 128, 106055. [Google Scholar] [CrossRef]
- Li, D.; Dai, T.; Chen, M.; Liang, R.; Liu, W.; Liu, C.; Sun, J.; Chen, J.; Deng, L. Role of maturity status on the quality and volatile properties of mango fruits dried by infrared radiation. Food Biosci. 2023, 52, 102497. [Google Scholar] [CrossRef]
- Luan, C.; Zhang, M.; Mujumdar, A.S.; Liu, Y. Influence of pulse-spouted infrared freeze drying on nutrition, flavor, and application of horseradish. Dry. Technol. 2021, 39, 1165–1175. [Google Scholar] [CrossRef]
- Gao, J.; Cheng, S.; Sun, X.; Bai, Y.; Yu, X.; Zeng, X.; Hu, S.; Zhang, M.; Yue, J.; Xu, X.; et al. Combination of contact ultrasound and infrared radiation for improving the quality and flavor of air-dried beef during hot air drying. Ultrason. Sonochem. 2024, 110, 107047. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ding, C.; Lu, J.; Wang, H.; Bao, Y.; Han, B.; Duan, S.; Song, Z.; Chen, H. Influence of electrohydrodynamics on the drying characteristics and volatile components of iron stick yam. Food Chem. X 2023, 20, 101026. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Belloch, C.; Flores, M. The Maillard Reaction as Source of Meat Flavor Compounds in Dry Cured Meat Model Systems under Mild Temperature Conditions. Molecules 2021, 26, 223. [Google Scholar] [CrossRef]
- Bozkir, H.; Tekgül, Y.; Erten, E.S. Effects of tray drying, vacuum infrared drying, and vacuum microwave drying techniques on quality characteristics and aroma profile of orange peels. J. Food Process Eng. 2021, 44, e13611. [Google Scholar] [CrossRef]
- Li, Y.; Peng, K.; Wang, H.; Sun, Y.; Jiang, X.; Yi, Y. Physicochemical properties and volatile compounds of whole lotus root powders prepared by different drying methods. Food Sci. Technol. 2024, 201, 116212. [Google Scholar] [CrossRef]
- Xu, H.; Wu, M.; Wang, Y.; Wei, W.; Sun, D.; Li, D.; Zheng, Z.; Gao, F. Effect of Combined Infrared and Hot Air Drying Strategies on the Quality of Chrysanthemum (Chrysanthemum morifolium Ramat.) Cakes: Drying Behavior, Aroma Profiles and Phenolic Compounds. Foods 2022, 11, 2240. [Google Scholar] [CrossRef]
- Xu, W.; Pei, Y.; Zhu, G.; Han, C.; Wu, M.; Wang, T.; Cao, X.; Jiang, Y.; Li, G.; Sun, J.; et al. Effect of far infrared and far infrared combined with hot air drying on the drying kinetics, bioactives, aromas, physicochemical qualities of Anoectochilus roxburghii (Wall.) Lindl. LWT 2022, 162, 113452. [Google Scholar] [CrossRef]



| Sensor No. | Sensor Name | Description of Performance |
|---|---|---|
| S1 | W1C | Aromatic compounds |
| S2 | W5S | Nitrogenous compounds |
| S3 | W3C | Ammonia, Aromatic compounds |
| S4 | W6S | Hydrocarbons |
| S5 | W5C | Alkanes, Olefins, Aromatic compounds |
| S6 | W1S | Alkanes |
| S7 | W1W | Sulfur-containing compounds |
| S8 | W2S | Alcohols, Some Aromatic Compounds |
| S9 | W2W | Aromatic compounds, organosulfur compounds |
| S10 | W3S | Alkanes, Aliphatics |
| No. | Drying Method | Appropriate Agricultural Products |
|---|---|---|
| 1 | Ultraviolet-assisted cold-air drying | Pacific saury (Cololabis saira) [23] |
| 2 | Vacuum-infrared drying | Orange peels [99] |
| 3 | Hot air drying combined with baking | Whole lotus root powders [100] |
| 4 | Infrared-hot air drying | Chrysanthemum (Chrysanthemum morifolium Ramat.) [101] |
| 5 | Far infrared-hot air drying | Anoectochilus [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Zhao, S.; Li, C.; Zhang, T.; Xing, Y.; Zhang, K.; Lv, J.; Zhu, W. Changes and Analytical Techniques in Volatile Flavor Compounds in Dried Agricultural Products: A Review. Foods 2025, 14, 3531. https://doi.org/10.3390/foods14203531
Chen P, Zhao S, Li C, Zhang T, Xing Y, Zhang K, Lv J, Zhu W. Changes and Analytical Techniques in Volatile Flavor Compounds in Dried Agricultural Products: A Review. Foods. 2025; 14(20):3531. https://doi.org/10.3390/foods14203531
Chicago/Turabian StyleChen, Pengxiao, Siyuan Zhao, Chengyu Li, Tingting Zhang, Yanjia Xing, Kai Zhang, Jiale Lv, and Wenxue Zhu. 2025. "Changes and Analytical Techniques in Volatile Flavor Compounds in Dried Agricultural Products: A Review" Foods 14, no. 20: 3531. https://doi.org/10.3390/foods14203531
APA StyleChen, P., Zhao, S., Li, C., Zhang, T., Xing, Y., Zhang, K., Lv, J., & Zhu, W. (2025). Changes and Analytical Techniques in Volatile Flavor Compounds in Dried Agricultural Products: A Review. Foods, 14(20), 3531. https://doi.org/10.3390/foods14203531
