Ultrasound Thawing Optimization as a Novel Strategy to Improve Quality of Slowly Frozen Chicken Breast
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Ultrasound-Assisted Thawing
- Cp = specific heat capacity of water (4.2 J g−1);
- M = mass of water in the ultrasonic bath (g);
- dT/dt = temperature increase in the bath water over 600 s.
2.3. Analyses Performed
2.3.1. Temperature and Thawing Time
2.3.2. Drip Loss
2.3.3. pH and Redox Potential (Eh)
2.3.4. Moisture Content
2.3.5. Water-Holding Capacity (WHC%)
2.3.6. Texture
2.3.7. Myoglobin Redox States
2.3.8. Color
2.3.9. Total and Free Sulfhydryl Groups
2.3.10. Statistical Analyses
3. Results and Discussion
3.1. Thawing Time of Chicken Breasts
3.2. Drip Loss (Exudation)
3.3. Moisture Content
3.4. Water-Holding Capacity (WHC)
3.5. pH and Redox Potential (Eh)
3.6. Texture: Chewiness and Hardness
3.7. Myoglobin Redox States
3.7.1. Oxymyoglobin (OxyMb)
3.7.2. Deoxymyoglobin (DeoxyMb)
3.7.3. Metmyoglobin (MetMb)
3.7.4. Ferryl Myoglobin (FerrylMb)
3.8. Instrumental Color
3.8.1. L* (Lightness)
3.8.2. Overall Color Difference (ΔE)
3.9. Total and Free Sulfhydryl Groups
3.9.1. Total Sulfhydryl Groups
3.9.2. Free Sulfhydryl Groups
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sohaib, M.; Anjum, F.M.; Arshad, M.S.; Imran, M.; Imran, A.; Hussain, S. Oxidative Stability and Lipid Oxidation Flavoring Volatiles in Antioxidants Treated Chicken Meat Patties during Storage. Lipids Health Dis. 2017, 16, 27. [Google Scholar] [CrossRef]
- Aggrey, S.E.; Ghareeb, A.F.A.; Milfort, M.C.; Ariyo, O.W.; Aryal, B.; Hartono, E.; Kwakye, J.; Sovi, S.; Hipple, S.A.; Stevenson, C.; et al. Quantitative and Molecular Aspects of Water Intake in Meat-Type Chickens. Poult. Sci. 2023, 102, 102973. [Google Scholar] [CrossRef]
- Ullah, J.; Takhar, P.S.; Sablani, S.S. Effect of Temperature Fluctuations on Ice-Crystal Growth in frozen Potatoes during Storage. LWT-Food Sci. Technol. 2014, 59, 1186–1190. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, H.; Xu, R.; Lu, B.; Song, X.; Liu, B. Effects of Temperature Fluctuations on the Meat Quality and muscle Microstructure of Frozen Beef. Int. J. Refrig. 2020, 116, 1–8. [Google Scholar] [CrossRef]
- Günal-Köroğlu, D.; Ylmaz, H.; Gultekin Subasi, B.; Capanoglu, E. Protein Oxidation: The Effect of Different Preservation methods or Phenolic Additives during Chilled and Frozen Storage of meat/Meat Products. Food Res. Int. 2025, 200, 115378. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Z.; Liu, X.; Wu, D.; Ding, Y.; Li, G.; Wu, Y. Typical Reactive Carbonyl Compounds in Food Products: Formation, Influence on Food Quality, and Detection Methods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 503–529. [Google Scholar] [CrossRef]
- Lilburn, M.S.; Griffin, J.R.; Wick, M. From Muscle to Food: Oxidative Challenges and Developmental Anomalies in Poultry Breast Muscle. Poult. Sci. 2019, 98, 4255–4260. [Google Scholar] [CrossRef]
- Chen, Z.; Xing, T.; Li, J.; Zhang, L.; Jiang, Y.; Gao, F. Oxidative Stress Impairs the Meat Quality of Broiler by Damaging Mitochondrial Function, Affecting Calcium Metabolism and leading to Ferroptosis. Anim. Biosci. 2022, 35, 1616–1627. [Google Scholar] [CrossRef]
- Çalışkan Koç, G.; Özkan Karabacak, A.; Süfer, Ö.; Adal, S.; Çelebi, Y.; Delikanlı Kıyak, B.; Öztekin, S. Thawing Frozen Foods: A Comparative Review of Traditional and Innovative Methods. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70136. [Google Scholar] [CrossRef]
- Khalid, S.; Chaudhary, K.; Amin, S.; Raana, S.; Zahid, M.; Naeem, M.; Mousavi Khaneghah, A.; Aadil, R.M. Recent Advances in the Implementation of Ultrasound Technology for the Extraction of Essential Oils from Terrestrial Plant Materials: A Comprehensive Review. Ultrason. Sonochem. 2024, 107, 106914. [Google Scholar] [CrossRef]
- Xu, R.; Chaudhary, K.; Altemimi, A.B.; Khalid, S.; Ansar, S.; Abid, N.; Abdi, G.; Aadil, R.M. Ultrasound-Assisted Extraction with Deep Eutectic Solvents for Valorization of Agro-Food Waste: A Sustainable and Eco-Friendly Approach. Ultrason. Sonochem. 2025, 120, 107500. [Google Scholar] [CrossRef]
- Bernardo, C.O.; Ascheri, J.L.R.; Carvalho, C.W.P.D. Efeito Do Ultrassom Na Extração e modificação de Amidos. Cienc. Rural 2016, 46, 739–746. [Google Scholar] [CrossRef]
- Taha, A.; Mehany, T.; Pandiselvam, R.; Anusha Siddiqui, S.; Mir, N.A.; Malik, M.A.; Sujayasree, O.J.; Alamuru, K.C.; Khanashyam, A.C.; Casanova, F.; et al. Sonoprocessing: Mechanisms and Recent Applications of Power Ultrasound in Food. Crit. Rev. Food Sci. Nutr. 2024, 64, 6016–6054. [Google Scholar] [CrossRef] [PubMed]
- Prempeh, N.Y.A.; Nunekpeku, X.; Murugesan, A.; Li, H. Ultrasound in the Food Industry: Mechanisms and Applications for non-Invasive Texture and Quality Analysis. Foods 2025, 14, 2057. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Ge, X.; Yang, L.; Ma, G.; Ma, J.; Yu, Q.; Han, L. Ultrasound-Assisted Thawing of Frozen White Yak Meat: Effects on Thawing Rate, Meat Quality, Nutrients, and Microstructure. Ultrason Sonochem 2021, 70, 105345. [Google Scholar] [CrossRef]
- Wu, B.; Qiu, C.; Guo, Y.; Zhang, C.; Guo, X.; Bouhile, Y.; Ma, H. Ultrasonic-Assisted Flowing Water Thawing of Frozen Beef with Different Frequency Modes: Effects on Thawing Efficiency, Quality Characteristics and Microstructure. Food Res. Int. 2022, 157, 111484. [Google Scholar] [CrossRef]
- Tan, M.; Mei, J.; Xie, J. The Formation and Control of Ice Crystal and Its Impact on the quality of Frozen Aquatic Products: A Review. Crystals 2021, 11, 68. [Google Scholar] [CrossRef]
- Flores, D.R.M.; Brasil, C.C.B.; Campagnol, P.C.B.; Jacob-Lopes, E.; Zepka, L.Q.; Roger, W.; Menezes, C.R.; Barin, J.S.; Flores, E.M.M.; Cichoski, A.J. Application of Ultrasound in Chicken Breast during Chilling by immersion Promotes a Fast and Uniform Cooling. Food Res. Int. 2018, 109, 59–64. [Google Scholar] [CrossRef]
- Raso, J.; Mañas, P.; Pagán, R.; Sala, F.J. Influence of Different Factors on the Output Power transferred into Medium by Ultrasound. Ultrason. Sonochem. 1999, 5, 157–162. [Google Scholar] [CrossRef]
- Zarate, J.R.; Zaritzky, N.E. Production of Weep in Packaged Refrigerated Beef. J. Food Sci. 1985, 50, 155–159. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International; Association of Official Analysis Chemists International: Rockville, MD, USA, 2007; Volume 1. [Google Scholar]
- Marques, Í.E.; Lucion, F.B.; Bizzi, C.A.; Cichoski, A.J.; Wagner, R.; de Menezes, C.R.; Barin, J.S. Are Infrared and Microwave Drying Suitable Alternatives for moisture Determination of Meat Products? J. Food Qual. 2016, 39, 391–397. [Google Scholar] [CrossRef]
- Kato, T.; Barbosa, C.F.; Iouko, I.E.; Soares, A.L.; Shimokomaki, M.; Pedrao, M.R. Broiler Chicken PSE (Pale, Soft, Exudative) Meat and Water Release during Chicken Carcass Thawing and Brazilian Legislation. Braz. Arch. Biol. Technol. 2013, 56, 996–1001. [Google Scholar] [CrossRef]
- Tang, J.; Faustman, C.; Mancini, R.A.; Seyfert, M.; Hunt, M.C. The Effects of Freeze-Thaw and Sonication on Mitochondrial Consumption, Electron Transport Chain-Linked Metmyoglobin, Lipid Oxidation, and Oxymyoglobin Oxidation. Meat Sci. 2006, 74, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Wongwichian, C.; Klomklao, S.; Panpipat, W.; Benjakul, S.; Chaijan, M. Interrelationship between Myoglobin and Lipid Oxidations in oxeye Scad (Selar boops) Muscle during Iced Storage. Food Chem. 2015, 174, 279–285. [Google Scholar] [CrossRef]
- American Meat Science Association. AMSA Meat Color Measurement Guidelines: AMSA; American Meat Science Association: Kearney, MO, USA, 2012. [Google Scholar]
- Zduńczyk, W.; Tkacz, K.; Modzelewska-Kapituła, M. The Effect of Superficial Oregano Essential Oil Application on the Quality of Modified Atmosphere-Packed Pork Loin. Foods 2023, 12, 2013. [Google Scholar] [CrossRef]
- Yin, S.-W.; Tang, C.-H.; Wen, Q.-B.; Yang, X.-Q. Functional and Conformational Properties of Phaseolin (Phaseolus vulgris L.) and Kidney Bean Protein Isolate: A Comparative Study. J. Sci. Food Agric. 2010, 90, 599–607. [Google Scholar] [CrossRef]
- Piñon, M.; Alarcon-Rojo, A.; Larysa, P.; Mason, T.; Luna, L.; Renteria, A. Ultrasound for Improving the Preservation of Chicken Meat. Food Sci. Technol. 2019, 39, 129–135. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Tayyab Rashid, M.; Yan, J.-K.; Ma, H. Effect of Multi-Frequency Ultrasound Thawing on the structure and Rheological Properties of Myofibrillar Proteins from Small yellow Croaker. Ultrason. Sonochem. 2021, 70, 105352. [Google Scholar] [CrossRef]
- Cichoski, A.J.; Silva, M.S.; Leães, Y.S.V.; Brasil, C.C.B.; de Menezes, C.R.; Barin, J.S.; Wagner, R.; Campagnol, P.C.B. Ultrasound: A Promising Technology to Improve the Technological Quality of Meat Emulsions. Meat Sci. 2019, 148, 150–155. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef]
- Sun, Q.; Kong, B.; Zheng, O.; Liu, S.; Dong, X. Effect of Protein Structure Changes during Different Power Ultrasound Thawing on Emulsification Properties of Common Carp (Cyprinus carpio) Myofibrillar Protein. Ultrason. Sonochem. 2023, 101, 106719. [Google Scholar] [CrossRef]
- Li, X.X.; Ma, Y.; Sun, P.; Liu, H.; Cai, L.; Li, J.R. Effect of Ultrasonic Thawing on Protein Properties and Muscle Quality of Bonito. J. Food Process. Preserv. 2021, 45, e14930. [Google Scholar] [CrossRef]
- Huff-Lonergan, E. Fresh Meat Water-Holding Capacity. In Improving the Sensory and Nutritional Quality of Fresh Meat; Elsevier: Amsterdam, The Netherlands, 2009; pp. 147–160. [Google Scholar]
- Dang, D.S.; Bastarrachea, L.J.; Martini, S.; Matarneh, S.K. Crystallization Behavior and Quality of Frozen Meat. Foods 2021, 10, 2707. [Google Scholar] [CrossRef] [PubMed]
- Al-Hilphy, A.R.; Al-Temimi, A.B.; Al Rubaiy, H.H.M.; Anand, U.; Delgado-Pando, G.; Lakhssassi, N. Ultrasound Applications in Poultry Meat Processing: A Systematic Review. J. Food Sci. 2020, 85, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wu, J.; Li-Chan, E.C.Y.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of Ultrasound on Structural and Physical Properties of Soy Protein Isolate (SPI) Dispersions. Food Hydrocoll. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Impact of Freezing and Thawing on the Quality of Meat: Review. Meat Sci. 2012, 91, 93–98. [Google Scholar] [CrossRef]
- Estévez, M.; Geraert, P.-A.; Rui, L.; Delgado, J.; Mercier, Y.; Zhang, W. Sulphur Amino Acids, Muscle Redox Status and Meat Quality: More than Building Blocks—Invited Review. Meat Sci. 2020, 163, 108087. [Google Scholar] [CrossRef]
- Cheng, H.; Bian, C.; Chu, Y.; Mei, J.; Xie, J. Effects of Dual-Frequency Ultrasound-Assisted Thawing Technology on Thawing Rate, Quality Properties, and Microstructure of Large Yellow Croaker (Pseudosciaena crocea). Foods 2022, 11, 226. [Google Scholar] [CrossRef]
- Noh, S.W.; Song, D.H.; Ham, Y.K.; Yang, N.E.; Kim, H.W. Physicochemical Properties of Chicken Breast and Thigh as Affected by Sous-Vide Cooking Conditions. Foods 2023, 12, 2592. [Google Scholar] [CrossRef]
- Kohno, M.; Mokudai, T.; Ozawa, T.; Niwano, Y. Free Radical Formation from Sonolysis of Water in the presence of Different Gases. J. Clin. Biochem. Nutr. 2011, 49, 96–101. [Google Scholar] [CrossRef]
- Shang, X.; Yan, X.; Li, Q.; Liu, Z.; Teng, A. Effect of Multiple Freeze-Thaw Cycles on Myoglobin and Lipid Oxidations of Grass Carp (Ctenopharyngodon idella) Surimi with different Pork Back Fat Content. Food Sci. Anim. Resour. 2020, 40, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Aroeira, C.N.; de Almeida Torres Filho, R.; Fontes, P.R.; Ramos, A.D.L.S.; de Miranda Gomide, L.A.; Ladeira, M.M.; Ramos, E.M. Effect of Freezing Prior to Aging on Myoglobin Redox Forms and CIE Color of Beef from Nellore and Aberdeen Angus Cattle. Meat Sci. 2017, 125, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Henriott, M.L.; Herrera, N.J.; Ribeiro Felipe, A.; Hart, K.B.; Bland, N.A.; Calkins, C.R. Impact of Myoglobin Oxygenation Level on Color Stability of frozen Beef Steaks. J. Anim. Sci. 2020, 98, skaa193. [Google Scholar] [CrossRef] [PubMed]
- Mannino, M.H.; Patel, R.S.; Eccardt, A.M.; Janowiak, B.E.; Wood, D.C.; He, F.; Fisher, J.S. Reversible Oxidative Modifications in Myoglobin and Functional Implications. Antioxidants 2020, 9, 549. [Google Scholar] [CrossRef]
- Wei, R.; Wang, P.; Han, M.; Chen, T.; Xu, X.; Zhou, G. Effect of Freezing on Electrical Properties and Quality of Thawed Chicken Breast Meat. Asian-Australas. J. Anim. Sci. 2017, 30, 569–575. [Google Scholar] [CrossRef]
- Lv, Y.; Chu, Y.; Zhou, P.; Mei, J.; Xie, J. Effects of Different Freezing Methods on Water Distribution, Microstructure and Protein Properties of Cuttlefish during the frozen Storage. Appl. Sci. 2021, 11, 6866. [Google Scholar] [CrossRef]
- Zheng, X.; Zou, B.; Zhang, J.; Cai, W.; Na, X.; Du, M.; Zhu, B.; Wu, C. Recent Advances of Ultrasound-Assisted Technology on Aquatic Protein Processing: Extraction, Modification, and freezing/Thawing-Induced Oxidation. Trends Food Sci. Technol. 2024, 144, 104309. [Google Scholar] [CrossRef]
Treatments | Frequency (kHz) | Amplitude (%) | Operating Modes | Power (W) | |
---|---|---|---|---|---|
Number | Code | ||||
1 | Raw material | n.a | n.a | n.a | n.a |
2 | TWUS/NoAgit. | n.a | n.a | n.a | n.a |
3 | TWUS/Agit. | n.a | n.a | n.a | n.a |
4 | T25N100 | 25 | 100 | Normal | 202 |
5 | T25S100 | 25 | 100 | Sweep | 218 |
6 | T25S100/Agit. | 25 | 100 | Sweep | 218 |
7 | T25D100 | 25 | 100 | Degas | 168 |
8 | T25N60 | 25 | 60 | Normal | 120 |
9 | T25S60 | 25 | 60 | Sweep | 123 |
10 | T25D60 | 25 | 60 | Degas | 112 |
11 | T130N100 | 130 | 100 | Normal | 120 |
12 | T130S100 | 130 | 100 | Sweep | 120 |
13 | T130D100 | 130 | 100 | Degas | 108 |
14 | T130N60 | 130 | 60 | Normal | 112 |
15 | T130S60 | 130 | 60 | Sweep | 112 |
16 | T130D60 | 130 | 60 | Degas | 95 |
Treatments | Time (min) | Drip Loss (%) | Moisture (%) | WHC (%) | pH | Eh (mV) | |
---|---|---|---|---|---|---|---|
Number | Code | ||||||
1 | Raw material | n.a | n.a | 72.67 ± 0.62 ab | 14.81 ± 0.42 gh | 5.89 ± 0.22 f | 169.00 ± 3.69 a |
2 | TWUS/NoAgit. | 50 ± 0.61 a | 4.65 ± 0.27 f | 72.95 ± 0.88 a | 17.03 ± 0.38 e | 5.98 ± 0.02 def | 165.83 ± 5.88 ab |
3 | TWUS/Agit. | 39 ± 0.58 b | 4.34 ± 0.26 fg | 72.36 ± 0.49 ab | 17.70 ± 0.84 e | 5.98 ± 0.06 def | 126.00 ± 4.15 d |
4 | T25N100 | 25 ± 0.58 de | 3.91 ± 0.22 gh | 72.16 ± 0.34 ab | 17.88 ± 0.86 de | 6.33 ± 0.07 a | 127.00 ± 4.05 d |
5 | T25S100 | 18 ± 0.50 g | 4.23 ± 0.22 fg | 72.43 ± 0.49 ab | 23.14 ± 0.93 a | 6.00 ± 0.09 cdef | 162.50 ± 4.89 ab |
6 | T25S100/Agit. | 17 ± 0.68 g | 4.17 ± 0.20 fgh | 72.05 ± 0.50 abc | 21.58 ± 0.63 b | 6.04 ± 0.04 bcdef | 162.16 ± 7.28 ab |
7 | T25D100 | 26 ± 0.59 cde | 5.51 ± 0.22 de | 71.23 ± 0.30 c | 13.45 ± 0.76 hi | 6.19 ± 0.06 ab | 170.00 ± 6.54 a |
8 | T25N60 | 27 ± 0.55 c | 5.53 ± 0.27 de | 72.29 ± 0.59 abc | 16.82 ± 0.93 ef | 6.12 ± 0.06 bcd | 164.00 ± 6.23 ab |
9 | T25S60 | 23 ± 0.58 f | 5.46 ± 0.49 e | 72.73 ± 0.57 ab | 13.68 ± 0.40 hi | 6.12 ± 0.07 bcd | 146.00 ± 2.28 c |
10 | T25D60 | 25 ± 0.58 cde | 3.56 ± 0.21 h | 72.10 ± 0.43 abc | 12.65 ± 0.76 ij | 6.03 ± 0.09 bcdef | 128.33 ± 4.18 d |
11 | T130N100 | 26 ± 0.53 de | 5.56 ± 0.18 de | 71.91 ± 0.64 abc | 15.58 ± 0.81 fg | 5.95 ± 0.05 ef | 138.67 ± 3.14 c |
12 | T130S100 | 24 ± 0.61 ef | 6.10 ± 0.87 de | 71.68 ± 0.47 bc | 19.34 ± 0.28 c | 6.17 ± 0.04 ab | 161.83 ± 5.64 ab |
13 | T130D100 | 26 ± 0.55 cd | 6.72 ± 0.24 c | 71.78 ± 0.51 bc | 19.26 ± 0.53 cd | 6.08 ± 0.07 bcde | 165.83 ± 1.33 ab |
14 | T130N60 | 25 ± 0.55 de | 9.05 ± 0.51 a | 71.64 ± 0.43 bc | 9.69 ± 0.50 k | 6.17 ± 0.06 ab | 158.33 ± 4.37 b |
15 | T130S60 | 24 ± 0.64 f | 7.69 ± 0.36 b | 71.90 ± 0.15 abc | 11.30 ± 0.61 j | 6.06 ± 0.06 bcde | 145.33 ± 2.42 c |
16 | T130D60 | 25 ± 0.50 de | 8.72 ± 0.49 a | 72.27 ± 0.87 abc | 12.95 ± 0.74 i | 6.03 ± 0.05 bcdef | 129.17 ± 3.43 d |
Treatments | Chewiness (N/m) | Hardness (N) | |
---|---|---|---|
Number | Code | ||
1 | Raw material | 44.29 ± 1.31 g | 48.27 ± 1.2 g |
2 | TWUS/NoAgit. | 55.92 ± 2.76 cd | 53.22 ± 1.63 ef |
3 | TWUS/Agit. | 52.81 ± 2.51 cdef | 53.93 ± 1.1 def |
4 | T25N100 | 54.63 ± 2.09 cde | 52.48 ± 2.06 ef |
5 | T25S100 | 61.15 ± 3.06 b | 57.50 ± 1.2 cd |
6 | T25S100/Agit. | 62.68 ± 2.73 ab | 57.72 ± 1.01 bcd |
7 | T25D100 | 53.91 ± 1.24 cdef | 51.49 ± 1.83 fg |
8 | T25N60 | 52.76 ± 2.00 cdef | 55.11 ± 2.64 def |
9 | T25S60 | 61.40 ± 1.89 b | 57.96 ± 2.54 bcd |
10 | T25D60 | 50.39 ± 1.44 f | 54.54 ± 2.43 def |
11 | T130N100 | 62.33 ± 1.03 ab | 64.89 ± 1.8 a |
12 | T130S100 | 63.97 ± 2.46 ab | 61.67 ± 1.52 ab |
13 | T130D100 | 65.70 ± 2.88 a | 60.79 ± 2.7 bc |
14 | T130N60 | 56.37 ± 1.13 c | 57.41 ± 1.42 cd |
15 | T130S60 | 51.00 ± 1.24 ef | 52.26 ± 2.59 efg |
16 | T130D60 | 51.88 ± 1.72 def | 55.77 ± 2.73 de |
Treatments | DeoxyMb (%) | OxyMb (%) | MetMb (%) | FerrylMb (µM/kg) | |
---|---|---|---|---|---|
Number | Code | ||||
1 | Raw material | 25.12 ± 0.49 de | 15.54 ± 0.58 a | 61.55 ± 0.80 bc | 3.67 ± 0.17 k |
2 | TWUS/NoAgit. | 26.84 ± 0.45 a | 13.43 ± 0.44 fgh | 59.31 ± 0.55 ef | 7.56 ± 0.83 ij |
3 | TWUS/Agit. | 26.03 ± 0.94 abc | 12.59 ± 0.06 hi | 60.69 ± 0.83 cde | 17.04 ± 0.78 b |
4 | T25N100 | 24.68 ± 0.11 ef | 12.60 ± 0.34 h | 62.68 ± 0.95 b | 14.12 ± 0.73 cd |
5 | T25S100 | 25.40 ± 0.25 def | 13.98 ± 0.64 cdef | 60.83 ± 0.47 cde | 9.89 ± 0.39 fg |
6 | T25S100/Agit. | 25.38 ± 0.13 cde | 13.65 ± 0.46 efgh | 61.25 ± 0.59 bcd | 10.75 ± 0.50 fg |
7 | T25D100 | 25.00 ± 0.22 de | 13.82 ± 0.57 defg | 62.02 ± 0.99 bc | 9.71 ± 0.75 gh |
8 | T25N60 | 25.61 ± 0.28 bcd | 15.50 ± 0.24 ab | 58.59 ± 0.91 f | 18.57 ± 0.64 a |
9 | T25S60 | 25.53 ± 0.66 cd | 13.36 ± 0.59 fgh | 60.90 ± 0.87 cde | 6.56 ± 0.41 j |
10 | T25D60 | 25.59 ± 0.28 bcd | 14.76 ± 0.67 abcd | 59.87 ± 0.96 def | 11.02 ± 0.54 f |
11 | T130N100 | 26.04 ± 0.19 abc | 14.87 ± 0.50 abc | 59.26 ± 0.57 ef | 2.92 ± 0.55 k |
12 | T130S100 | 26.39 ± 0.33 ab | 14.27 ± 0.64 cdef | 59.69 ± 0.85 def | 13.12 ± 0.64 de |
13 | T130D100 | 24.12 ± 0.47 f | 11.57 ± 0.41 i | 64.63 ± 0.76 a | 12.64 ± 0.47 e |
14 | T130N60 | 26.10 ± 0.08 abc | 14.49 ± 0.45 bcde | 59.58 ± 0.50 ef | 14.60 ± 0.58 c |
15 | T130S60 | 25.35 ± 0.31 cde | 12.92 ± 0.58 gh | 62.15 ± 0.95 bc | 14.18 ± 0.76 cd |
16 | T130D60 | 25.41 ± 0.30 cde | 15.57 ± 0.38 a | 58.84 ± 0.94 f | 8.52 ± 0.14 hi |
Treatments | L* | ΔE | |
---|---|---|---|
Number | Code | ||
1 | Raw material | 54.34 ± 1.03 bcd | n.a. |
2 | TWUS/NoAgit. | 53.20 ± 3.54 bcdef | 3.91 ± 2.14 |
3 | TWUS/Agit. | 55.04 ± 1.73 ab | 2.85 ± 0.92 |
4 | T25N100 | 51.42 ± 2.69 fg | 3.61 ± 1.98 |
5 | T25S100 | 52.26 ± 2.73 defg | 3.72 ± 1.43 |
6 | T25S100/Agit. | 54.03 ± 2.99 bcd | 3.92 ± 0.97 |
7 | T25D100 | 53.77 ± 1.10 bcde | 3.25 ± 1.26 |
8 | T25N60 | 51.68 ± 1.72 efg | 4.79 ± 0.82 |
9 | T25S60 | 54.75 ± 0.52 bc | 2.74 ± 1.29 |
10 | T25D60 | 52.70 ± 1.27 cedfg | 3.95 ± 1.49 |
11 | T130N100 | 53.56 ± 0.85 bcdef | 3.44 ± 0.73 |
12 | T130S100 | 51.44 ± 3.49 fg | 4.24 ± 2.21 |
13 | T130D100 | 52.08 ± 1.77 defg | 3.33 ± 1.29 |
14 | T130N60 | 50.80 ± 1.13 g | 4.81 ± 1.59 |
15 | T130S60 | 51.62 ± 1.03 efg | 3.77 ± 2.15 |
16 | T130D60 | 57.08 ± 1.70 a | 5.21 ± 2.38 |
Treatments | Sulfhydryls (µmol/g of Protein) | ||
---|---|---|---|
Number | Code | Total | Free |
1 | Raw material | 50.81 ± 0.92 a | 30.82 ± 0.66 a |
2 | TWUS/NoAgit. | 34.31 ± 0.57 fg | 16.38 ± 0.68 g |
3 | TWUS/Agit. | 33.07 ± 0.69 gh | 17.44 ± 0.68 g |
4 | T25N100 | 43.43 ± 0.74 c | 24.21 ± 0.77 ef |
5 | T25S100 | 35.20 ± 0.43 ef | 24.69 ± 0.35 def |
6 | T25S100/Agit. | 36.80 ± 0.53 e | 25.68 ± 0.99 de |
7 | T25D100 | 34.31 ± 0.88 fg | 23.27 ± 0.15 f |
8 | T25N60 | 34.47 ± 0.89 fg | 25.90 ± 0.65 cd |
9 | T25S60 | 35.22 ± 0.7 ef | 27.37 ± 0.55 bc |
10 | T25D60 | 31.95 ± 0.96 h | 30.25 ± 0.55 a |
11 | T130N100 | 39.81 ± 0.9 d | 28.70 ± 0.72 b |
12 | T130S100 | 43.66 ± 0.52 c | 25.46 ± 0.27 de |
13 | T130D100 | 31.83 ± 0.6 h | 23.29 ± 0.16 f |
14 | T130N60 | 46.24 ± 0.72 b | 27.27 ± 0.43 bc |
15 | T130S60 | 36.74 ± 0.43 e | 25.05 ± 0.77 de |
16 | T130D60 | 34.78 ± 0.85 fg | 25.50 ± 0.34 de |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, S.P.; Robalo, S.S.; Voss, M.; Casarin, B.C.; dos Santos, B.A.; de Oliveira Mello, R.; Barin, J.S.; de Menezes, C.R.; Campagnol, P.C.B.; Cichoski, A.J. Ultrasound Thawing Optimization as a Novel Strategy to Improve Quality of Slowly Frozen Chicken Breast. Foods 2025, 14, 3446. https://doi.org/10.3390/foods14193446
Santos SP, Robalo SS, Voss M, Casarin BC, dos Santos BA, de Oliveira Mello R, Barin JS, de Menezes CR, Campagnol PCB, Cichoski AJ. Ultrasound Thawing Optimization as a Novel Strategy to Improve Quality of Slowly Frozen Chicken Breast. Foods. 2025; 14(19):3446. https://doi.org/10.3390/foods14193446
Chicago/Turabian StyleSantos, Suelen Priscila, Silvino Sasso Robalo, Monica Voss, Bianca Campos Casarin, Bibiana Alves dos Santos, Renius de Oliveira Mello, Juliano Smanioto Barin, Cristiano Ragagnin de Menezes, Paulo Cezar Bastianello Campagnol, and Alexandre José Cichoski. 2025. "Ultrasound Thawing Optimization as a Novel Strategy to Improve Quality of Slowly Frozen Chicken Breast" Foods 14, no. 19: 3446. https://doi.org/10.3390/foods14193446
APA StyleSantos, S. P., Robalo, S. S., Voss, M., Casarin, B. C., dos Santos, B. A., de Oliveira Mello, R., Barin, J. S., de Menezes, C. R., Campagnol, P. C. B., & Cichoski, A. J. (2025). Ultrasound Thawing Optimization as a Novel Strategy to Improve Quality of Slowly Frozen Chicken Breast. Foods, 14(19), 3446. https://doi.org/10.3390/foods14193446