AI-Powered Advances in Data Handling for Enhanced Food Analysis: From Chemometrics to Machine Learning
1. Introduction
2. Bridging the Knowledge Gap: From Chemometrics to AI
3. Future Research Directions: Unlocking New Potential
4. Conclusions
5. An Overview of Published Articles
Acknowledgments
Conflicts of Interest
List of Contributions
- Hansen, J.; Fransson, I.; Schrieck, R.; Kunert, C.; Seifert, S. Classification of Apples (Malus× domestica borkh.) According to Geographical Origin, Variety and Production Method Using Liquid Chromatography Mass Spectrometry and Random Forest. Foods 2025, 14, 2655.
- Zhao, Z.; Kantono, K.; Kam, R.; Le, T.T.; Kitundu, E.; Chen, T.; Hamid, N. Improving the Bioactivities of Apricot Kernels Through Fermentation: Investigating the Relationship Between Bioactivities, Polyphenols, and Amino Acids Through the Random Forest Regression XAI Approach. Foods 2025, 14, 845.
- Chen, Z.; Wang, J.; Wang, Y. Enhancing food image recognition by multi-level fusion and the attention mechanism. Foods 2025, 14, 461.
- Zhang, W.; Pan, M.; Wang, P.; Xue, J.; Zhou, X.; Sun, W.; Hu, Y.; Shen, Z. Comparative Analysis of XGB, CNN, and ResNet Models for Predicting Moisture Content in Porphyra yezoensis Using Near-Infrared Spectroscopy. Foods 2024, 13, 3023.
- Du, H.; Zhang, Y.; Ma, Y.; Jiao, W.; Lei, T.; Su, H. Rapid determination of crude protein content in alfalfa based on fourier transform infrared spectroscopy. Foods 2024, 13, 2187.
- Song, Y.; Chang, S.; Tian, J.; Pan, W.; Feng, L.; Ji, H. A comprehensive comparative analysis of deep learning based feature representations for molecular taste prediction. Foods 2023, 12, 3386.
- Karamoutsios, A.; Lekka, P.; Voidarou, C.C.; Dasenaki, M.; Thomaidis, N.S.; Skoufos, I.; Tzora, A. Assessing Milk Authenticity Using Protein and Peptide Biomarkers: A Decade of Progress in Species Differentiation and Fraud Detection. Foods 2025, 14, 2588.
References
- Kharbach, M.; Alaoui Mansouri, M.; Taabouz, M.; Yu, H. Current application of advancing spectroscopy techniques in food analysis: Data handling with chemometric approaches. Foods 2023, 12, 2753. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Wang, G.; Zhuang, W.; Hu, J.; He, X.; Zhang, L.; Du, Z.; Xu, X.; Yin, M.; Yao, Y.; et al. Artificial intelligence-enabled analysis methods and their applications in food chemistry. Crit. Rev. Food Sci. Nutr. 2025, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.; Iqbal, S.Z.; Bhatti, I.A.; Alim, M.B.; Waseem, M.; Iqbal, M.; Khaneghah, A.M. Food authentication, current issues, analytical techniques, and future challenges: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13360. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R. High-Performance Liquid Chromatography (HPLC): Principles, Applications, Versatality, Efficiency, Innovation and Comparative Analysis in Modern Analytical Chemistry and In Pharmaceutical Sciences. Clin. Investig. 2024, 14, 524–535. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Otto, M. Chemometrics: Statistics and Computer Application in Analytical Chemistry, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Yegnanarayana, B. Artificial Neural Networks; PHI Learning Pvt. Ltd.: New Delhi, India, 2009. [Google Scholar]
- Lun, Z.; Wu, X.; Dong, J.; Wu, B. Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers. Foods 2025, 14, 2350. [Google Scholar] [CrossRef] [PubMed]
- Buyuktepe, O.; Catal, C.; Kar, G.; Bouzembrak, Y.; Marvin, H.; Gavai, A. Food fraud detection using explainable artificial intelligence. Expert Syst. 2025, 42, e13387. [Google Scholar] [CrossRef]
- Okoye, C.O.; Jiang, H.; Nazar, M.; Tan, X.; Jiang, J. Redefining modern food analysis: Significance of omics analytical techniques integration, chemometrics and bioinformatics. TrAC Trends Anal. Chem. 2024, 175, 117706. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharbach, M. AI-Powered Advances in Data Handling for Enhanced Food Analysis: From Chemometrics to Machine Learning. Foods 2025, 14, 3415. https://doi.org/10.3390/foods14193415
Kharbach M. AI-Powered Advances in Data Handling for Enhanced Food Analysis: From Chemometrics to Machine Learning. Foods. 2025; 14(19):3415. https://doi.org/10.3390/foods14193415
Chicago/Turabian StyleKharbach, Mourad. 2025. "AI-Powered Advances in Data Handling for Enhanced Food Analysis: From Chemometrics to Machine Learning" Foods 14, no. 19: 3415. https://doi.org/10.3390/foods14193415
APA StyleKharbach, M. (2025). AI-Powered Advances in Data Handling for Enhanced Food Analysis: From Chemometrics to Machine Learning. Foods, 14(19), 3415. https://doi.org/10.3390/foods14193415