The Fermentation Mechanism of Pea Protein Yogurt and Its Bean Odour Removal Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments and Equipment
2.3. Preparation of PPY
2.4. pH, Acidity, and Water-Holding Capacity
2.5. Textural Characterisation
2.6. Protein Content
2.7. Determination of Anti-Nutritional Factors in PPY
2.8. Scanning Electron Microscopy (SEM)
2.9. Rheological Measurements of PPY
2.10. Free Sulfhydryl Groups
2.11. Intermolecular Forces in PPY
2.12. Different Treatments Before Fermentation and GC-IMS Processing Conditions
2.12.1. Different Treatments Before Fermentation
2.12.2. Sample Processing Method
2.12.3. Headspace Injection Conditions
2.12.4. Gas Chromatographic (GC) Conditions
2.12.5. Ion Mobility Spectrometry (IMS) Conditions
2.12.6. Data Processing
2.13. Statistical Analysis
3. Results and Discussion
3.1. Fermentation Mechanism of PPY
3.1.1. Changes in Protein Content During Fermentation
3.1.2. Antinutritional Factors in PPY Before and After Fermentation
3.1.3. Comparative Analysis of the Fingerprints of Volatile Components in PPY Before and After Fermentation
3.1.4. Analysis of Volatile Flavour Substances in PPY
3.1.5. pH, Titratable Acidity, and Water-Holding Capacity
3.1.6. Textural Properties
3.1.7. Changes in Free Sulfhydryl Content During Fermentation
3.1.8. Changes in Protein Intermolecular Forces During Fermentation
3.1.9. Changes in Rheological Properties During Fermentation
3.1.10. SEM
3.2. The Effect of Different Treatments on the Flavour of PPY
3.2.1. Analysis and Comparison of Volatiles in PPY with Different Treatments
3.2.2. Comparative Analysis of Fingerprints of Volatile Components in PPY with Different Treatments
3.2.3. Effectiveness of Different Treatments on the Removal of Bean Flavour from PPY
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shishir, M.R.I.; Saifullah, M.; Hashim, S.B.H.; Aalim, H.; Bilal, M.; Khan, S.; Marappan, G.; Tahir, H.E.; Zhihua, L.; Zhai, X.; et al. Micro and nano-encapsulated natural products in yogurt: An emerging trend to achieve multifunctional benefits in product quality and human health. Food Hydrocoll. 2024, 154, 110124. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, present and future: The strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef]
- Zhu, X.; Meng, T.; Ren, F.; An, N.; Chen, B.; Liu, X.; Liu, H. A review on apricot kernel seed proteins and peptides: Biological functions and food applications. Int. J. Biol. Macromol. 2025, 292, 139053. [Google Scholar] [CrossRef]
- Jia, H.; Jia, Y.; Ren, F.; Liu, H. Enhancing bioactive compounds in plant-based foods: Influencing factors and technological advances. Food Chem. 2024, 460, 140744. [Google Scholar] [CrossRef]
- Diez-Ozaeta, I.; Astiazaran, O.J. Fermented foods: An update on evidence-based health benefits and future perspectives. Food Res. Int. 2022, 156, 111133. [Google Scholar] [CrossRef]
- Nicolai, T. Gelation of food protein-protein mixtures. Adv. Colloid Interface Sci. 2019, 270, 147–164. [Google Scholar] [CrossRef]
- Yoo, S.-H.; Chang, Y.H. Volatile Compound, Physicochemical, and Antioxidant Properties of Beany Flavor-Removed Soy Protein Isolate Hydrolyzates Obtained from Combined High Temperature Pre-Treatment and Enzymatic Hydrolysis. Prev. Nutr. Food Sci. 2016, 21, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.J.; Thompson, L.D.; Brittin, H.C. Sogurt, a yogurt-like soybean product: Development and properties. J. Food Sci. 1990, 55, 1178–1179. [Google Scholar] [CrossRef]
- Matysek, J.; Baier, A.; Kalla-Bertholdt, A.M.; Grebenteuch, S.; Rohn, S.; Rauh, C. Effect of ultrasound and fibre enrichment on aroma profile and texture characteristics of pea protein-based yoghurt alternatives. Innov. Food Sci. Emerg. Technol. 2024, 93, 103610. [Google Scholar] [CrossRef]
- Yu, H.; Liu, R.; Hu, Y.; Xu, B. Flavor profiles of soymilk processed with four different processing technologies and 26 soybean cultivars grown in China. Int. J. Food Prop. 2018, 20, S2887–S2898. [Google Scholar] [CrossRef]
- Bi, S.; Xu, X.; Luo, D.; Lao, F.; Pang, X.; Shen, Q.; Hu, X.; Wu, J. Characterization of Key Aroma Compounds in Raw and Roasted Peas (Pisum sativum L.) by Application of Instrumental and Sensory Techniques. J. Agric. Food Chem. 2020, 68, 2718–2727. [Google Scholar] [CrossRef] [PubMed]
- Pratap-Singh, A.; Yen, P.P.-L.; Singh, A.; Kitts, D.D. Technologies for sustainable plant-based food systems: Removing the plant-based flavours from non-dairy beverages using microwave-vacuum dehydration. Innov. Food Sci. Emerg. Technol. 2023, 86, 103371. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Hu, Y.; Fakayode, O.A.; Ma, H.; Zhou, C.; Hu, Z.; Xia, A.; Li, Q. Dual-frequency multi-angle ultrasonic processing technology and its real-time monitoring on physicochemical properties of raw soymilk and soybean protein. Ultrason. Sonochem. 2021, 80, 105803. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, Z.; Zhu, X.; Chen, B.; Zhou, L.; Liu, X.; Liu, H. Yeast Proteins: Proteomics, Extraction, Modification, Functional Characterization, and Structure: A Review. J. Agric. Food Chem. 2024, 72, 18774–18793. [Google Scholar] [CrossRef]
- Jia, H.; Ren, F.; Liu, H. Development of low glycemic index food products with wheat resistant starch: A review. Carbohydr. Polym. 2025, 361, 123637. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Ma, C.-m.; Bian, X.; Ren, L.-K.; Liu, B.-x.; Ai, L.-z.; Zhang, N. The improvement of the oxidative oat (Avena sativa L.) protein based on ultrasound treatment: Study of structural, emulsifying, and rheological properties. Food Hydrocoll. 2023, 144, 109047. [Google Scholar] [CrossRef]
- Jia, H.; Ren, F.; Liu, H. Innovative non-thermal processing: Unraveling structural and functional transformations in food macromolecules-Starch, proteins, and lipids. Food Res. Int. 2025, 212, 116500. [Google Scholar] [CrossRef] [PubMed]
- Delikanli, B.; Ozcan, T. Improving the Textural Properties of Yogurt Fortified with Milk Proteins. J. Food Process. Preserv. 2017, 41, e13101. [Google Scholar] [CrossRef]
- Wang, W.; Wang, M.; Xu, C.; Liu, Z.; Gu, L.; Ma, J.; Jiang, L.; Jiang, Z.; Hou, J. Effects of Soybean Oil Body as a Milk Fat Substitute on Ice Cream: Physicochemical, Sensory and Digestive Properties. Foods 2022, 11, 1504. [Google Scholar] [CrossRef]
- Zannini, E.; Jeske, S.; Lynch, K.M.; Arendt, E.K. Development of novel quinoa-based yoghurt fermented with dextran producer Weissella cibaria MG1. Int. J. Food Microbiol. 2018, 268, 19–26. [Google Scholar] [CrossRef]
- Li, S.; Hu, M.; Wen, W.; Zhang, P.; Yu, W.; Fan, B.; Wang, F. Effect of different strains on quality characteristics of soy yogurt: Physicochemical, nutritional, safety features, sensory, and formation mechanism. Food Chem. X 2024, 22, 101359. [Google Scholar] [CrossRef]
- Xiong, T.; Xiong, W.; Ge, M.; Xia, J.; Li, B.; Chen, Y. Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res. Int. 2018, 109, 260–267. [Google Scholar] [CrossRef]
- Wang, K.-Q.; Luo, S.-Z.; Zhong, X.-Y.; Cai, J.; Jiang, S.-T.; Zheng, Z. Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation. Food Chem. 2017, 214, 393–399. [Google Scholar] [CrossRef]
- Han, X.; Yang, Z.; Jing, X.; Yu, P.; Zhang, Y.; Yi, H.; Zhang, L. Improvement of the Texture of Yogurt by Use of Exopolysaccharide Producing Lactic Acid Bacteria. BioMed Res. Int. 2016, 2016, 7945675. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Li, H.; Tu, M.; Wu, Z.; Zhang, T.; Liu, J.; Ding, Y.; Zeng, X.; Pan, D. Legume protein fermented by lactic acid bacteria: Specific enzymatic hydrolysis, protein composition, structure, and functional properties. Colloids Surf. B Biointerfaces 2024, 238, 113929. [Google Scholar] [CrossRef] [PubMed]
- Damodar, D.; Gaurav, K.; Lavaraj, D.; Dinesh, S.; Sushil, D. The choice of probiotics affects the rheological, structural, and sensory attributes of lupin-oat-based yoghurt. Food Hydrocoll. 2024, 156, 110353. [Google Scholar] [CrossRef]
- Chaudhary, A.; Sharma, D.K.; Arora, A. Prospects of Indian traditional fermented food as functional foods. Indian J. Agric. Sci. 2018, 88, 1496–1501. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, H.; Hu, G.; Liu, Q.; Miu, Y.; Zhu, X.; Chen, C. Specificity analysis of organ distribution of antinutritional factors in kidney bean. J. Jianghan Univ. (Nat. Sci. Ed.) 2021, 49, 27–32. [Google Scholar] [CrossRef]
- Vagadia, B.H.; Vanga, S.K.; Raghavan, V. Inactivation methods of soybean trypsin inhibitor—A review. Trends Food Sci. Technol. 2017, 64, 115–125. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, Y.; Xiang, H.; Wang, Z.; Jiang, Z.; Zhao, X.; Sun, X.; Guo, Z. Advancements in Inactivation of Soybean Trypsin Inhibitors. Foods 2025, 14, 975. [Google Scholar] [CrossRef]
- Yang, Y.; Ge, A.; Ren, L.; Li, L.; Ma, C.; Bian, X.; Shu, S.; Zhang, N. Research progress on the formation mechanism of soybean milk soy odor and its removal method. Food Ind. Sci. Technol. 2024, 45, 401–411. [Google Scholar] [CrossRef]
- Meinlschmidt, P.; Schweiggert-Weisz, U.; Eisner, P. Soy protein hydrolysates fermentation: Effect of debittering and degradation of major soy allergens. LWT Food Sci. Technol. 2016, 71, 202–212. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef]
- GÜLer-Akin, M.B. The effects of different incubation temperatures on the acetaldehyde content and viable bacteria counts of bio-yogurt made from ewe’s milk. Int. J. Dairy Technol. 2005, 58, 174–179. [Google Scholar] [CrossRef]
- Xinyue, X.; Huaitian, C.; Jiaxin, X.; Zhiheng, Y.; Xiaoqing, L.; Xiangrong, F.; Jun, L.; Danshi, Z.; He, L. Effects of different probiotic fermentations on the quality, soy isoflavone and equol content of soy protein yogurt made from soy whey and soy embryo powder. LWT Food Sci. Technol. 2022, 157, 113096. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, M.; Li, K.; Zhang, K.; Kong, X.; Zheng, Y.; Li, J.; Liu, L. Two DNA repair gene polymorphisms on the risk of gastrointestinal cancers: A meta-analysis. Tumor Biol. 2014, 35, 1715–1725. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, C.; Kong, X.; Li, X.; Chen, Y.; Hua, Y. Effect of pea milk preparation on the quality of non-dairy yoghurts. Food Biosci. 2021, 44, 101416. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Tu, Y.; Zhao, Y.; Luo, X.; Wang, J.; Wang, M. Changes in gel characteristics of egg white under strong alkali treatment. Food Hydrocoll. 2015, 45, 1–8. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, F.; Li, Y.; Liu, Q.; Kong, B. Modification of gel properties of soy protein isolate by freeze-thaw cycles are associated with changes of molecular force involved in the gelation. Process Biochem. 2017, 52, 200–208. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Y.; Zhang, X.; Zeng, J.; Zou, J.; Zhang, L.; Gong, P. Texture analysis and physicochemical characteristics of fermented soymilk gel by different lactic acid bacteria. Food Hydrocoll. 2023, 136, 108252. [Google Scholar] [CrossRef]
- Tang, Q.; Miao, S.; Roos, Y.H. Comparative studies of structural and thermal gelation behaviours of soy, lentil and whey protein: A pH-dependency evaluation. Food Hydrocoll. 2024, 146, 109240. [Google Scholar] [CrossRef]
- Kang, S.-H.; Yu, M.-S.; Kim, J.-M.; Park, S.-K.; Lee, C.-H.; Lee, H.-G.; Kim, S.-K. Biochemical, Microbiological, and Sensory Characteristics of Stirred Yogurt Containing Red or Green Pepper (Capsicum annuum cv. Chungyang) Juice. Korean J. Food Sci. Anim. Resour. 2018, 38, 451–467. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.H.; Chang, S.K.C. Selected odor compounds in cooked soymilk as affected by soybean materials and direct steam injection. J. Food Sci. 2007, 72, S481–S486. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, Q.; Zhang, N.; Bak, K.H.; Soladoye, O.P.; Aluko, R.E.; Fu, Y.; Zhang, Y. Insights into formation, detection and removal of the beany flavor in soybean protein. Trends in Food Sci. Technol. 2021, 112, 336–347. [Google Scholar] [CrossRef]
- Du, L.; Ro, K.-S.; Zhang, Y.; Tang, Y.-J.; Li, W.; Xie, J.; Wei, D. Effects of lactiplantibacillus plantarum X7021 on physicochemical properties, purines, isoflavones and volatile compounds of fermented soymilk. Process Biochem. 2022, 113, 150–157. [Google Scholar] [CrossRef]
- Matsui, K.; Takemoto, H.; Koeduka, T.; Ohnishi, T. 1-Octen-3-ol Is Formed from Its Glycoside during Processing of Soybean [Glycine max (L.) Merr.] Seeds. J. Agric. Food Chem. 2018, 66, 7409–7416. [Google Scholar] [CrossRef]
- Min, S.; Yu, Y.; Yoo, S.; Martin, S.S. Effect of soybean varieties and growing locations on the flavor of soymilk. J. Food Sci. 2005, 70, C1–C11. [Google Scholar] [CrossRef]
- Lv, Y.C.; Song, H.L.; Li, X.; Wu, L.; Guo, S.T. Influence of blanching and grinding process with hot water on beany and non-beany flavor in soymilk. J. Food Sci. 2011, 76, S20–S25. [Google Scholar] [CrossRef]
- Vara-Ubol, S.; Chambers, E.; Chambers, D.H. Sensory characteristics of chemical compounds potentially associated with beany aroma in foods. J. Sens. Stud. 2004, 19, 15–26. [Google Scholar] [CrossRef]
Addition | Samples (mL) | Standard (mL) |
---|---|---|
L-BAPA solution | 5 | 5 |
Tris-CaCl2 solution | 1 | 2 |
Trypsin solution | 2 | 2 |
Sample Diluent | 1 | 0 |
Acetate solution | 1 | 1 |
Categories | Number | Methods | Terms |
---|---|---|---|
Physical method | A2 | Wall breaker heating | Bean milk mode |
A3 | Microwave heating | Power: 500 w; time: 5 min | |
A4 | High temperature, high voltage | Temperature: 121 °C; time: 3 min | |
Bioenzymatic method | A5 | Double enzymatic method | Alcohol dehydrogenase: 0.5%; aldehyde dehydrogenase: 0.5%; 2 h |
Hidden method | A6 | Complexed with coconut protein | Compounding ratio: 1:1 |
Time (min) | E1 (mL/min) | E2 (mL/min) | R |
---|---|---|---|
0 | 75.0 | 2.0 | recording |
2 | 75.0 | 2.0 | - |
10 | 75.0 | 10.0 | - |
20 | 75.0 | 100.0 | - |
30 | 75.0 | 150.0 | stop |
Number | Compound | CAS | Formula | MW | RI | Rt (s) | Dt (RIPrel.) | Flavour Description |
---|---|---|---|---|---|---|---|---|
Aldehyde | ||||||||
1 | n-Nonanal | C124196 | C9H18O | 142.2 | 1109.5 | 803.208 | 1.47121 | rose, citrus, strong oily |
2 | (E)-2-Octenal | C2548870 | C8H14O | 126.2 | 1070.4 | 720.012 | 1.33691 | fresh cucumber, fatty, green herbal, banana, green leaf |
3 | (E, E)-2,4-Heptadienal | C4313035 | C7H10O | 110.2 | 1028.5 | 640.37 | 1.19347 | fatty, oily, aldehyde, vegetable, cinnamon |
4 | n-Octanal(M) | C124130 | C8H16O | 128.2 | 1019.5 | 624.442 | 1.40351 | aldehyde, waxy, citrus, orange, fruity, fatty |
5 | n-Octanal(D) | C124130 | C8H16O | 128.2 | 1019.8 | 624.91 | 1.82102 | aldehyde, waxy, citrus, orange, fruity, fatty |
6 | Benzaldehyde(M) | C100527 | C7H6O | 106.1 | 969.2 | 526.452 | 1.15271 | bitter almond, cherry, nutty |
7 | Benzaldehyde(D) | C100527 | C7H6O | 106.1 | 968.2 | 524.411 | 1.4752 | bitter almond, cherry, nutty |
8 | (E)-2-Heptenal(M) | C18829555 | C7H12O | 112.2 | 964.9 | 517.706 | 1.25648 | spicy, green vegetables, fresh, fatty |
9 | (E)-2-Heptenal(D) | C18829555 | C7H12O | 112.2 | 964.7 | 517.414 | 1.67382 | spicy, green vegetables, fresh, fatty |
10 | Heptanal(M) | C111717 | C7H14O | 114.2 | 907.0 | 413.271 | 1.33583 | fresh, aldehyde, fatty, green herbs, wine, fruity |
11 | Heptanal(D) | C111717 | C7H14O | 114.2 | 907.4 | 414.05 | 1.70265 | fresh, aldehyde, fatty, green herbs, wine, fruity |
12 | (E)-2-Hexenal(M) | C6728263 | C6H10O | 98.1 | 855.9 | 344.24 | 1.1882 | green, banana, fat |
13 | (E)-2-Hexenal(D) | C6728263 | C6H10O | 98.1 | 855.7 | 343.98 | 1.52152 | green, banana, fat |
14 | 2-Furaldehyde(M) | C98011 | C5H4O2 | 96.1 | 834.5 | 319.688 | 1.08484 | sweet, woody, almond, bready |
15 | 2-Furaldehyde(D) | C98011 | C5H4O2 | 96.1 | 833.7 | 318.831 | 1.33887 | sweet, woody, almond, bready |
16 | 1-Hexanal(M) | C66251 | C6H12O | 100.2 | 797.0 | 280.864 | 1.25457 | fresh, green, fat, fruity |
17 | 1-Hexanal(D) | C66251 | C6H12O | 100.2 | 794.0 | 278.009 | 1.56961 | fresh, green, fat, fruity |
18 | 3-Methyl-2-butenal | C107868 | C5H8O | 84.1 | 781.3 | 265.725 | 1.09303 | fruity |
19 | (E)-2-Pentenal(M) | C1576870 | C5H8O | 84.1 | 751.5 | 237.255 | 1.1097 | potato, peas |
20 | (E)-2-Pentenal(D) | C1576870 | C5H8O | 84.1 | 751.7 | 237.421 | 1.363 | potato, peas |
21 | n-Pentanal(M) | C110623 | C5H10O | 86.1 | 698.5 | 193.887 | 1.19182 | green grassy, faint banana, pungent |
22 | n-Pentanal(D) | C110623 | C5H10O | 86.1 | 699.2 | 194.386 | 1.42632 | green grassy, faint banana, pungent |
23 | Butanal | C123728 | C4H8O | 72.1 | 607.8 | 150.243 | 1.29702 | pungent, fruity, green leaf |
24 | 2-Phenylacetaldehyde | C122781 | C8H8O | 120.2 | 1044.9 | 670.509 | 1.25626 | hyacinth, sweet fruity, almond, cherry, clover honey, cocoa |
25 | (Z)-4-Heptenal | C6728310 | C7H12O | 112.2 | 906.0 | 411.73 | 1.14901 | grass, oil |
26 | (E, E)-2,4-Hexadienal | C142836 | C6H8O | 96.1 | 919.0 | 433.066 | 1.11539 | sweet, green, floral, citrus |
27 | 3-Methyl butanal | C590863 | C5H10O | 86.1 | 661.9 | 173.769 | 1.40451 | chocolate, fat |
Alcohol | ||||||||
1 | 1-Octen-3-ol | C3391864 | C8H16O | 128.2 | 991.5 | 574.264 | 1.16386 | mushroom, lavender, rose, hay |
2 | 1-Heptanol | C111706 | C7H16O | 116.2 | 983.8 | 557.355 | 1.39708 | grape, fruity, wine, violet, peony |
3 | 1-Hexanol(M) | C111273 | C6H14O | 102.2 | 877.2 | 370.451 | 1.32214 | fresh, fruity, wine, sweet, green |
4 | 1-Hexanol(D) | C111273 | C6H14O | 102.2 | 876.9 | 370.191 | 1.63872 | fresh, fruity, wine, sweet, green |
5 | 1-Hexanol(T) | C111273 | C6H14O | 102.2 | 877.2 | 370.451 | 2.00249 | fresh, fruity, wine, sweet, green |
6 | (Z)-2-Pentenol | C1576950 | C5H10O | 86.1 | 771.1 | 255.667 | 0.94181 | green, plastic, rubber |
7 | 1-Pentanol(M) | C71410 | C5H12O | 88.1 | 764.1 | 248.884 | 1.25551 | balsamic |
8 | 1-Pentanol(D) | C71410 | C5H12O | 88.1 | 765.0 | 249.819 | 1.51474 | balsamic |
9 | 3-Methylbutanol | C123513 | C5H12O | 88.1 | 734.0 | 221.968 | 1.24723 | whiskey, banana, fruity |
10 | 1-Penten-3-ol | C616251 | C5H10O | 86.1 | 688.3 | 186.576 | 0.94446 | ethereal, green, tropical fruity |
11 | 2-Propanol(M) | C67630 | C3H8O | 60.1 | 519.8 | 116.007 | 1.09451 | alcohol, spicy |
12 | 2-Propanol(D) | C67630 | C3H8O | 60.1 | 516.0 | 114.699 | 1.23601 | alcohol, spicy |
13 | 3-Octanol | C589980 | C8H18O | 130.2 | 994.8 | 581.591 | 1.40248 | earth, mushrooms, herb, melon, citrus, woody |
14 | 1-Butanol(M) | C71363 | C4H10O | 74.1 | 665.6 | 175.511 | 1.18867 | wine |
15 | 1-Butanol(D) | C71363 | C4H10O | 74.1 | 667.0 | 176.196 | 1.38267 | wine |
Acids | ||||||||
1 | 3-Methylbutanoic acid | C503742 | C5H10O2 | 102.1 | 844.9 | 331.392 | 1.21796 | sour, foot sweat, cheese |
2 | Butanoic acid | C107926 | C4H8O2 | 88.1 | 816.9 | 300.847 | 1.16027 | strong acetic acid, cheese, butter, fruity |
3 | Hexanoic acid | C142621 | C6H12O2 | 116.2 | 1005.3 | 600.109 | 1.30445 | sour, fatty, cheese, pungent, Daqu liquor |
4 | 2-Methylpropanoic acid | C79312 | C4H8O2 | 88.1 | 778.9 | 263.332 | 1.16816 | yogurt, rancid cream |
Ketone | ||||||||
1 | 2-Heptanone(M) | C110430 | C7H14O | 114.2 | 896.4 | 396.662 | 1.26582 | pear, banana, fruity, slight medicinal fragrance |
2 | 2-Heptanone(D) | C110430 | C7H14O | 114.2 | 896.6 | 396.922 | 1.62807 | pear, banana, fruity, slight medicinal fragrance |
3 | 2-Pentanone(M) | C107879 | C5H10O | 86.1 | 690.3 | 187.906 | 1.1186 | acetone, fresh, sweet fruity, wine |
4 | 2-Pentanone(D) | C107879 | C5H10O | 86.1 | 690.9 | 188.404 | 1.37289 | acetone, fresh, sweet fruity, wine |
5 | 2-Butanone(M) | C78933 | C4H8O | 72.1 | 591.3 | 143.701 | 1.06993 | fruity, camphor |
6 | 2-Butanone(D) | C78933 | C4H8O | 72.1 | 595.2 | 145.228 | 1.24957 | fruity, camphor |
7 | 6-Methyl-5-hepten-2-one | C110930 | C8H14O | 126.2 | 998.0 | 587.988 | 1.17827 | citrus, fruity, mouldy, ketone |
8 | 2-Octanone | C111137 | C8H16O | 128.2 | 1002.8 | 595.975 | 1.33448 | mouldy, ketone, milk, cheese, mushroom |
9 | Cyclohexanone | C108941 | C6H10O | 98.1 | 901.1 | 404.043 | 1.15826 | strong pungent, earthy |
10 | 2-Hexanone(M) | C591786 | C6H12O | 100.2 | 784.6 | 269.111 | 1.19074 | fruity, fungal, meaty, buttery |
11 | 2-Hexanone(D) | C591786 | C6H12O | 100.2 | 783.5 | 268.002 | 1.5009 | fruity, fungal, meaty, buttery |
12 | 2,3-Pentandione | C600146 | C5H8O2 | 100.1 | 696.2 | 192.175 | 1.2356 | sweet, cream, caramel, nuts, cheese |
13 | Acetoin(M) | C513860 | C4H8O2 | 88.1 | 713.4 | 205.186 | 1.07012 | butter, cream |
14 | Acetoin(D) | C513860 | C4H8O2 | 88.1 | 712.5 | 204.521 | 1.33232 | butter, cream |
Others | ||||||||
1 | 2-Pentyl furan | C3777693 | C9H14O | 138.2 | 1003.8 | 597.587 | 1.25537 | bean, fruity, earthy, green, vegetable |
2 | 2-Butylfuran | C4466244 | C8H12O | 124.2 | 897.8 | 398.744 | 1.17971 | mild fruity, alcoholic, sweet and spicy |
3 | Acetic acid ethyl ester | C141786 | C4H8O2 | 88.1 | 616.9 | 153.95 | 1.10298 | fresh, fruity, sweet, grassy |
Fermentation Time | Hardness (g) | Adhesiveness (mJ) | Cohesiveness | Springiness (%) | Chewiness (mJ) |
---|---|---|---|---|---|
0 h | 5.13 ± 0.35 e | 0.07 ± 0.01 bc | 0.80 ± 0.33 a | −21.67 ± 16.17 c | −0.03 ± 0.02 e |
2 h | 5.90 ± 0.26 e | 0.11 ± 0.03 a | 0.34 ± 0.29 b | 9.00 ± 6.56 b | 0.00 ± 0.01 e |
4 h | 17.73 ± 0.60 d | 0.09 ± 0.01 ab | 0.89 ± 0.03 a | 93.67 ± 3.06 a | 0.44 ± 0.04 d |
6 h | 95.13 ± 7.46 c | 0.04 ± 0.02 cd | 0.90 ± 0.03 a | 95.67 ± 0.58 a | 2.41 ± 0.18 c |
8 h | 129.93 ± 9.02 b | 0.03 ± 0.01 d | 0.85 ± 0.02 a | 95.00 ± 1.73 a | 3.08 ± 0.21 b |
10 h | 153.60 ± 7.58 a | 0.04 ± 0.01 cd | 0.82 ± 0.04 a | 93.33 ± 3.22 a | 3.45 ± 0.40 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ji, G.; Zhao, Y.; Chen, B.; Li, W.; Guo, Z.; He, S.; Koris, A.; Zhu, X.; Mu, Z.; et al. The Fermentation Mechanism of Pea Protein Yogurt and Its Bean Odour Removal Method. Foods 2025, 14, 3363. https://doi.org/10.3390/foods14193363
Zhang X, Ji G, Zhao Y, Chen B, Li W, Guo Z, He S, Koris A, Zhu X, Mu Z, et al. The Fermentation Mechanism of Pea Protein Yogurt and Its Bean Odour Removal Method. Foods. 2025; 14(19):3363. https://doi.org/10.3390/foods14193363
Chicago/Turabian StyleZhang, Xiaoyue, Guozhi Ji, Yan Zhao, Bingyu Chen, Wenhui Li, Zimeng Guo, Shan He, András Koris, Xuchun Zhu, Zhishen Mu, and et al. 2025. "The Fermentation Mechanism of Pea Protein Yogurt and Its Bean Odour Removal Method" Foods 14, no. 19: 3363. https://doi.org/10.3390/foods14193363
APA StyleZhang, X., Ji, G., Zhao, Y., Chen, B., Li, W., Guo, Z., He, S., Koris, A., Zhu, X., Mu, Z., & Liu, H. (2025). The Fermentation Mechanism of Pea Protein Yogurt and Its Bean Odour Removal Method. Foods, 14(19), 3363. https://doi.org/10.3390/foods14193363